首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Catalytic hydrogenation of 2,3,4,6-tetra-O-benzyl-1-O-[1-benzyl N-(benzyloxycarbonyl)-L-aspart-4-oyl]-alpha-D-glucopyranose (1alpha) in acetic acid-2-methoxyethanol gave 1-O-(L-beta-aspartyl)alpha-D-glucopyranose (2alpha) contaminated with 2-O-(L-alpha-aspartyl)-D-glucopyranose (8). Evidence that 8 was formed from the 1-oyl isomer of 1alpha, namely 2,3,4,6-tetra-O-benzyl-1-O-[4-benzyl N-(benzyloxycarbonyl)-L-aspart-1-oyl]-alpha-D-glucopyranose (7alpha), via 1 leads to 2 acyl migration, was obtained by submitting the deprotected D-glucosyl ester to successive N-acetylation, esterification, and O-acetylation; the final product was identified as a approximately 4:1 mixture of 2,3,4,6-tetra-O-acetyl-1-O-[1-methyl N-(acetyl)-L-aspart-4-oyl]-alpha-D-glucopyranose (4alpha) and 1,3,4,6-tetra-O-acetyl-2-O-[4-methyl N-(acetyl)-L-aspart-1-oyl]-D-glucopyranose (6) which were also prepared by definitive methods. On the other hand, deprotection of 1beta gave isomerically pure 2beta which was converted into the peracetylated ester derivative 4beta; an explanation for the differences in aglycon isomeric purity of 2alpha and 2beta is given. Hydrogenolysis of 7beta under the above conditions led to intermolecular transesterification with scission of the C-1 ester bond to give 1-(2-methoxyethyl) L-aspartic acid and D-glucose. Catalytic hydrogenation of 7alpha and 7beta, performed in the presence of trifluoroacetic acid, afforded 1-O-(L-alpha-aspartyl)-alpha- and -beta-D-glucopyranoside trifluoroacetate salts (11alpha and 11beta), respectively. The structure of 11beta was established by successive conversion into 2,3,4,6-tetra-O-acetyl-1-O-[4-methyl N-(acetyl)-L-aspart-1-oyl]-beta-D-glucopyranose (5beta) which was also prepared by definitive methods. Analogous treatment of 11alpha gave the N-acetyl derivative 12 which underwent 1 leads to 2 acyl migration during esterification with diazomethane to give the N-acetyl methyl ester derivative 10; acetylation of 10 afforded 6.  相似文献   

2.
Glycopeptides corresponding to sequences 27--28, 48--49, and 58--59 of human plasma alpha1-acid glycoproteins have been synthesized by sequential elongation of the peptide chain at the terminal amino group. 2-Acetamido-3,4,6-tri-O-acetyl-1-N-(L-aspart-4-oyl)-2-deoxy-beta-D-glucopyranosylamine was condensed with the p-nitrophenyl esters of protected amino acids to give the corresponding protected glycodipeptides having the sequences Gly-(GlcNAc-4-)Asn, Pro-(GlcNAc-4-)Asn, Val-(GlcNAc-4-)Asn, Leu-(GlcNAc-4-)Asn, Glu-(GlcNAc-4-)Asn, Tyr-(GlcNAc-4-)Asn, Ser-(GlcNAc-4-)Asn, and Cys-(GlcNAc-4-)Asn. Deprotection of the carbohydrate and of the peptide residues of these compounds was achieved, except for those having N-tert-butyloxycarbonyl protective groups, to give the corresponding free glycopeptides. The glycotripeptide 2-acetamido-1-N-(2-N-[N-(tert-butyloxycarbonyl)-L-glutam-1-oyl-L-tyrosyl]-L-aspart-4-oxy)-2-deoxy-beta-D-glucopyranosylamine, having the amino acid sequence 10--12 of human plasma alpha1-acid glycoprotein, was prepared by condensation of 2-acetamido 3,4,6-tri-O-acetyl-2-deoxy-1-N-[2-N-(L-tyrosyl)-L-aspart-4-oyl[-beta-D-glucopyranosylamine with 5-benzyl 1-p-nitrophenyl N-(tert-butyloxycarbonyl)-L-glutamate, followed by removal of the ester groups.  相似文献   

3.
4'-O-Glycosylation of 2-azidoethyl 2,3,6-tri-O-benzyl-4-O-(2,3-di-O- benzyl-6-O-benzoyl-beta-D-galactopyranosyl)-beta-D-glucopyranoside with a disaccharide donor, 4-trichloroacetamidophenyl 4,6-di-O-acetyl-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl-beta-D- galactopyranosyl)-1-thio-2-trichloroacetamido-beta-D-galactopyranoside, in dichloromethane in the presence of N-iodosuccinimide and trifluoromethanesulfonic acid resulted in a tetrasaccharide, 2-azidoethyl (2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1-->3)- (4,6-di-O-acetyl-2-deoxy-2-trichloroacetamido-beta-D-galactopyranosyl)- (1-->4)-(2,3-di-O-benzyl-6-O-benzoyl-beta-D-galactopyranosyl)- (1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside, in 69% yield. The complete removal of O-protecting groups in the tetrasaccharide, the replacement of N-trichloroacetyl by N-acetyl group, and the reduction of the aglycone azide group to amine led to the target aminoethyl glycoside of beta-D-Gal- (1-->3)-beta-D-GalNAc-(1-->4)-beta-D-Gal-(1-->4)-beta-D-Glc-OCH2CH2NH2 containing the oligosaccharide chain of asialo-GM1 ganglioside in 72% overall yield. Selective 3'-O-glycosylation of 2-azidoethyl 2,3,6-tri-O- benzyl-4-O-(2,6-di-O-benzyl-beta-D-galactopyranosyl)-beta-D-glucopyranoside with thioglycoside methyl (ethyl 5-acetamido-4,7,8,9-tetra-O- acetyl-3,5-dideoxy-2-thio-D-glycero-alpha-D-galacto-2-nonulopyranosyl)oate in acetonitrile in the presence of N-iodosuccinimide and trifluoroacetic acid afforded 2-azidoethyl [methyl (5-acetamido-4,7,8,9-tetra-O-acetyl- 3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl)oate in acetonitrile in the presence of N-iodosuccinimide and tri-fluoracetic acid afforded 2-azidoethyl[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl- 3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl) (2,6-di-O-benzyl-beta-D-galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzyl-beta-D- glucopyranoside, the selectively protected derivative of the oligosaccharide chain of GM3 ganglioside, in 79% yield. Its 4'-O-glycosylation with a disaccharide glycosyl donor, (4-trichloroacetophenyl-4,6-di-O-acetyl-2-deoxy-3-O-(2,3,4,6-tetra-O- acetyl-beta-D-galactopyranosyl) 1-thio-2-trichloroacetamido-beta-D-galactopyranoside in dichloromethane in the presence of N-iodosuccinimide and trifluoroacetic acid gave 2-azidoethyl (2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)- (1-->3)-(4,6-di-O-acetyl-2-deoxy-2-trichloroacetamido-beta-D- galactopyranosyl)-(1-->4)-[[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D- galacto-2-nonulopyranosyl)onate]-(2-->3)]-(2,6-di-O-benzyl-beta-D- galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside in 85% yield. The resulting pentasaccharide was O-deprotected, its N-trichloroacetyl group was replaced by N-acetyl group, and the aglycone azide group was reduced to afford in 85% overall yield aminoethyl glycoside of beta-D-Gal-(1-->3)-beta-D-GalNAc-(1-->4)-[alpha-D-Neu5Ac-(2-->3)]- beta-D-Gal-(1-->4)-beta-D-Glc-OCH2CH2NH2 containing the oligosaccharide chain of GM1 ganglioside. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 1; see also http://www.maik.ru.  相似文献   

4.
N-(Benzyloxycarbonyl)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate]-(2----3)-O-(2,4,6-tri-O-acetyl-beta-D - galactopyranosyl)-(1----3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-O-(2-acetamido-4-O-acetyl-2- deoxy-alpha-D- galactopyranosyl)-(1----3)-L-serine benzyl ester was synthesized by using O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5- di-deoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl)onate]- (2----3)-O-(2,4,6- tri-O-acetyl-beta-D-galactopyranosyl)-(1----3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-4-O-acetyl-2-azido-2-deoxy-a lpha- and -beta-D-galactopyranosyl trichloroacetimidate as a key glycotetraosyl donor which, upon reaction with N-(benzyloxycarbonyl)-L-serine benzyl ester, afforded a 44% yield of a mixture of the alpha- and beta-glycosides in the ratio of 2:5.  相似文献   

5.
Total synthesis of O-beta-D-galactopyranosyl-(1----3)-O-[(5-acetamido-3,5-dideoxy- D-glycero-alpha-D-galacto-2-nonulopyranosylonic acid)-(2----6)]-O-(2-acetamido-2-deoxy-alpha-D-galactopyranosyl)-(1----3 )-L- serine was achieved by use of the key glycosyl donor O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1----3)-O- [methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-4-O-acetyl-2-azido-2-deoxy-a lpha-D- galactopyranosyl trichloroacetimidate and the key glycosyl acceptor N-(benzyloxycarbonyl)-L- serine benzyl ester in a regiocontrolled way.  相似文献   

6.
Sequential reaction of 2,3,4,6-tetra-O-benzyl-D-glucopyranose (7) with butyllithium and 2-[2,3,5-tri-O-benzyl-4-O-(tert-butyldiphenylsilyl)-D- arabinonoyl]thio-3-nitropyridine (6) at -78 degrees gave 2,3,4,6-tetra-O-benzyl-alpha-D-glucopyranosyl 2,3,5-tri-O-benzyl-4-O-(tert-butyldiphenylsilyl)-D-arabinonate+ ++ (8; 71%, alpha:beta greater than 50:1). Ester carbonyl methylenylation, desilylation, and iodoetherification in the presence of silica gave 3,4,6-tri-O-benzyl-1-deoxy-1-iodo-(2,3,4,6-tetra-O-benzyl-alpha-D- glucopyranosyl)-beta-D-fructofuranoside (15; 44%, alpha:beta greater than 50:1). This neopentylic iodide 15 was converted into sucrose (1;80%) by free-radical substitution using TEMPO (24) followed by sodium-ammonia reduction, acetylation, and Zemplén methanolysis.  相似文献   

7.
A series of octyl glycosides di- to tetrasaccharides related to the GPI anchor of Trypanosoma brucei was prepared. Treatment of octyl 2-O-benzoyl-4,6-O-(1,1,3,3-tetraisopropyl-1,3-disiloxane-1,3 -diyl)-alpha-D-mannopyranoside with ethyl 2,3,4,6-tetra-O-benzyl-1-thio-beta-D-galactopyranoside under activation with bromine and silver trifluoromethanesulfonate afforded the alpha-linked disaccharide octyl 2-O-benzoyl-3-O-(2,3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl)-4,6-O- (1,1,3,3-tetraisopropyl-1,3-disiloxane-1,3-diyl)-alpha -D-mannospyranoside, the siloxane ring of which was regioselectively opened with a HF-pyridine complex to give the disaccharide acceptor octyl 3-O-(2,3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl)-2-O-benzoyl-4-O-(3 -fluoro-1,1,3,3-tetraisopropyl-1,3-disiloxane-3-yl)-alpha-D- mannopyranoside (4). Mannosylation of 4 with benzobromomannose (7), followed by fluoride catalyzed desilylation gave the trisaccharide octyl 2-O-benzoyl-6-O-(2,3,4,6-tetra-O-benzoyl-alpha-D-mannopyranosyl)-3-O-(2, 3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl)-alpha-D-mannospyranosi de, which was deblocked via the deacylated intermediate octyl 3-O-(2,3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl)-6-O-(alpha-D-manno pyranosyl)-alpha-D-mannospyranoside to afford the octyl glycoside trisaccharide octyl 3-O-(alpha-D-galactopyranosyl)-6-O-(alpha-D-mannopyranosyl)-alpha-D-m annospyranoside. Glycosylation of 4 with 3,4,6-tri-O-acetyl-2-O-(2,3,4,6-tetra-O-benzoyl-alpha-D-mannopyranosyl)- alpha-D-mannopyranosyl trichloroacetimidate resulted in the tetrasaccharide octyl 2-O-benzoyl-4-O-(1-fluoro-1,1,3,3-tetraisopropyl-1,3-disiloxane -3-yl)-3-O-(2,3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl)-6-O-[2-O -(2,3,4,6-tetra-O-benzoyl-alpha-D-mannopyranosyl)-3,4,6-tri-O-acetyl-alp ha-D-mannopyranosyl]-alpha-D-mannospyranoside, sequential desilylation, deacylation and debenzylation, respectively, of which via the intermediate octyl 2-O-benzoyl-3-O-(2,3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl)-6-O-[2 -O-(2,3,4,6-tetra-O-benzoyl-alpha-D-mannopyranosyl)-3,4,6-tri-O-acetyl-a lpha-D-mannopyranosyl]-alpha-D-mannospyranoside afforded the octyl glycoside tetrasaccharide octyl 3-O-(alpha-D-galactopyranosyl)-6-O-[2-O-(alpha-D-mannopyranosyl)-alpha-D -mannopyranosyl]-alpha-D-mannospyranoside.  相似文献   

8.
The synthesis is reported of 3-aminopropyl 4-O-(4-O-beta-D-glucopyranosyl-2-O-alpha-L-rhamnopyranosyl-beta-D- galactopyranosyl)-beta-L-rhamnopyranoside 3'-(glycer-2-yl sodium phosphate) (25 beta), which represents the repeating unit of the capsular polysaccharide of Streptococcus pneumoniae type 23F (American type 23) [(----4)-beta-D-Glcp-(1----4)-[Glycerol-(2-P----3)] [alpha-L- Rhap-(1----2)]-beta-D-Galp-(1----4)-beta-L-Rhap-(1----)n). 2,4,6-Tri-O-acetyl-3-O-allyl-alpha-D-galactopyranosyl trichloroacetimidate (5) was coupled with ethyl 2,3-di-O-benzyl-1-thio-alpha-L-rhamnopyranoside (6). Deacetylation of the resulting disaccharide derivative, followed by benzylidenation, and condensation with 2,3,4-trio-O-acetyl-alpha-L-rhamnopyranosyl trichloroacetimidate (10) afforded ethyl 4-O-[3-O-allyl-4,6-O-benzylidene-2-O-(2,3,4-trio-O-acetyl- alpha-L-rhamnopyranosyl)-beta-D-galactopyranosyl]-2,3-di-O-benzyl-1-thio - alpha-L-rhamnopyranoside (11). Deacetylation of 11, followed by benzylation, selective benzylidene ring-opening, and coupling with 2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (15) gave ethyl 4-O-[3-O-allyl-6-O-benzyl-4-O-(2,3,4,6- tetra-O-acetyl-beta-D-glucopyranosyl)-2-O-(2,3,4-tri-O-benzyl-alpha-L- rhamnopyranosyl)-beta-D-galactopyranosyl]-2,3-di-O-benzyl-1-thio-alpha-L - rhamnopyranoside (16). Deacetylation of 16 followed by benzylation, deallylation, and acetylation yielded ethyl 4-O-[3-O-acetyl-6-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-beta-D-glucopy ran osyl)- 2-O-(2,3,4-tri-O-benzyl-alpha-L-rhamnopyranosyl)-beta-D-galactopyranosyl ]-2,3- di-O-benzyl-1-thio-alpha-L-rhamnopyranoside (20). The glycosyl bromide derived from 20, when coupled with 3-benzyloxycarbonylamino-1-propanol, gave the beta-glycoside (21 beta) as the major product. Deacetylation of 21 beta followed by condensation with 1,3-di-O-benzylglycerol 2-(triethylammonium phosphonate) (27), oxidation, and deprotection, afforded 25 beta.  相似文献   

9.
Methyl[methyl 4,7,8,9-tetra-O-acetyl-5-(tert-butoxycarbonylamino)-3,5- dideoxy-2-thio-D-glycero-alpha-D-galacto-2-nonulopyranosid]onat e was used for the glycosylation of benzyl O-(2,6-di-O-benzyl-beta-D-galactopyranosyl)- and benzyl O-(2,3-di-O-benzyl-beta-D-galactopyranosyl)-(1----4)-3,6-di-O-benzyl- 2-O-pivaloyl-beta-D-glucopyranoside to give benzyl O-[methyl 4,7,8,9-tetra-O-acetyl-5-(tert-butoxycarbonylamino)- 3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosylonate]-(2-- --3)-O-(2,6-di-O-benzyl-beta-D-galactopyranosyl)-(21) and benzyl O-[methyl 4,7,8,9-tetra-O-acetyl-5-(tert-butoxycarbonylamino)-3,5- dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosylonate]-(2----6) -O-(2,3-di- O-benzyl-beta-D-galactopyranosyl)-(1----4)-3,6-di-O-benzyl-2-O-pivaloyl- beta-D-glucopyranoside (18), respectively, accompanied by the beta-linked isomers 22 and 19, respectively. Compounds 18, 21, and 22 were converted into the corresponding glycotriosyl donors which, upon coupling with (2S,3R,4E)-3-O-benzoyl-2-N-tetracosanoylsphingenine, afforded completely protected ganglioside analogs 39, 40, and 41, respectively. Deprotection of 40, 41, and 39 completed the synthesis of the modified ganglioside de-N-acetyl-GM3, a stereoisomer, and a regioisomer. The N-deprotected forms of 40 and 39, on successive treatment with methyl isocyanate and O-deprotection, gave the N-(N-methylcarbamoyl) analogs of GM3 and its regioisomer.  相似文献   

10.
Protected sialo-containing trisaccharides, fragments of oligosaccharide chains of mucin glycoproteins, were synthesized. Regioselective sialylation of the primary hydroxyl group of (3-fluoroacetamidopropyl)-2-azido-2-deoxy-3-O-(2,3,4,6-tetra-O-ben zyl)-alpha -D-galactopyranosyl)-alpha-D-galactopyranoside with methyl ester of peracetyl-beta-ethylthioglycoside of N-acetylneuraminic acid in the presence of N-iodosuccinimide and trifluoromethanesulfonic acid (or its trimethylsilyl ester) yielded 39 and 25% of alpha- and beta-sialyl-(2-->6)biosides, respectively. Catalytic hydrogenolysis of the azide and benzyl groups of the alpha-anomer followed by N- and O-acetylation gave target trifluoroacetamidopropyl glycoside, Neu5Ac(alpha 2-->6)[Gal(alpha 1-->3)]GalNAc alpha-OSp, as a peracetate. An analogous coupling of the sialyl donor with (3-fluoroacetamidopropyl)-2-acetamido-2-deoxy-3-O- (2,3,4,6-tetra-O-acetyl)-beta-D-galactopyranosyl)-alpha-D-galactopyranos ide affords acetylated trifluoroacetamidopropyl glycoside Neu5Ac(alpha 2-->6)[Gal(beta 1-->3)]GalNAc alpha-OSp in a yield of 15% and the corresponding Neu5Ac(beta 2-->6)-anomer in a yield of 12%. After O-deacetylation and N-detrifluoroacetylation, these sialylbiosides can be used as ligands in preparing neoglycoconjugates.  相似文献   

11.
The synthesis is reported of methyl 3-O-(4-O-beta-D-galactopyranosyl-alpha-D- glucopyranosyl)-alpha-L-rhamnopyranoside (1), methyl 2-O-alpha-D-glucopyranosyl-4-O-beta-D-glucopyranosyl-beta-D- galactopyranoside (3), methyl 3-O-(4-O-beta-D-galactopyranosyl-alpha-D-glucopyranosyl)-alpha-L- rhamnopyranoside 3"-(sn-glycer-3-yl sodium phosphate) (2), and methyl 2-O-alpha-D-glucopyranosyl-4-O-beta-D- glucopyranosyl-beta-D-galactopyranoside 3-(sn-glycer-3-yl sodium phosphate) (4), which are trisaccharide methyl glycosides related to fragments of the capsular polysaccharide of Streptococcus pneumoniae type 18C ([----4)-beta-D- Glcp-(1----4)-[alpha-D-Glcp-(1----2)]-[Glycerol-(1-P----3)]-beta-D-Galp - (1----4)-alpha-D-Glcp-(1----3)-alpha-L-Rhap-(1----]n). Ethyl 4-O-acetyl-2,3,6-tri-O-benzyl-1-thio-beta-D-glucopyranoside (10) was coupled with benzyl 2,4-di-O-benzyl-alpha-L-rhamnopyranoside (6). Deacetylation of the product, followed by condensation with 2,4,6-tri-O-acetyl-3-O-allyl-alpha-D-galactopyranosyl trichloroacetimidate (18), gave benzyl 2,4-di-O-benzyl-3-O-[2,3,6-tri-O- benzyl-4-O-(2,4,6-tri-O-acetyl-3-O-allyl-beta-D-galactopyranosyl)-alpha- D- glucopyranosyl]-alpha-L-rhamnopyranoside (19). Acetolysis of 19, followed by methylation, deallylation (----22), and further deprotection afforded 1. Condensation of methyl 2,4-di-O-benzyl-3-O-[2,3,6-tri-O-benzyl-4-O-(2,4,6-tri- O-acetyl-beta-D-galactopyranosyl)-alpha-D-glucopyranosyl]-alpha-L- rhamnopyranoside (22) with 1,2-di-O-benzyl-sn-glycerol 3-(triethyl-ammonium phosphonate) (24), followed by oxidation and deprotection, yielded 2. Condensation of ethyl 2,3,4,6-tetra-O-benzyl-1-thio-beta-D-glucopyranoside (27) with methyl 3-O-allyl-4,6-O-benzylidene-beta-D-galactopyranoside (28), selective benzylidene ring-opening of the product, coupling with 2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (31), and deallylation afforded methyl 6-O-benzyl-4-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-2-O- (2,3,4,6-tetra-O-benzyl-alpha-D-glucopyranosyl)-beta-D-galactopyranoside (33). Deprotection of 33 gave 3, and condensation of 33 with 24, followed by oxidation and deprotection, gave 4.  相似文献   

12.
Both anomers of 1-O-[N-(tert-butoxycarbonyl)-L-α-glutamyl]-d-glucopyranose (2) were converted into the unprotected 1-esters, characterised as the trifluoroacetate salts and . On esterification with diazomethane and acetylation, the N-acetylated derivative of and gave the peracetylated 1-O-[5-methyl N-acetyl- and -tert-butoxycarbonyl-L-glutam-1-oyl]-β-d-glucopyranoses ( and ), respectively. Similar treatment of and led to acyl migration, to yield 1,3,4,6-tetra-O-acetyl-2-O-[5-methyl N-(tert-butoxycarbonyl)-L-glutam-1-oyl]-α-d-glucopyranose (,64%) with traces of , and a mixture (≈2:1:0.2) of the N-acetyl analogue of (), , and , respectively. Treatment of 1-O-[5-methyl N-(tert-butoxycarbonyl)-L-glutam-1-oyl]-α-d-glucopyranose (10) and the corresponding glutam-5-oyl isomer 12 in N,N-dimethylformamide with diazomethane for 1 h resulted in 1 → 2 O-acyl transfer to give, upon acetylation, and the fully acetylated 2-O-[1-methyl N-(tert-butoxy- carbonyl)-L-glutam-5-oyl]-α-d>-glucopyranose in yields of 70 and 90 %, respectively; in the absence of diazomethane, 10 and 12 remained unchanged. Similar experiments with α-d-glucopyranosyl esters of N-acetylglycine, N-acetylalanine, and N-(tert-butoxycarbonyl)phenylalanine yielded the 2-O-acyl derivatives in high yields and with high retention of anomeric configuration. The structures of the rearrangement products were proved both spectroscopically and chemically. The results imply that diazomethane functions as a base in the migration process.  相似文献   

13.
Catalytic hydrogenation of the tetrabenzyl ethers of 1-O-acetamidoacyl- and 1-O-tert-butyloxycarbonylaminoacyl-α- and -β-D-glucopyranoses (1–6) afforded the corresponding 1-O-acylaminoacyl-D-glucopyranoses 8–13 which were fully characterised by physical methods and by conversion into the peracetylated derivatives 14–19. The α anomers of 1-O-tert-butyloxycarbonylaminoacyl-D-glucopyranoses underwent 1→2 acyl migration, and, in order to characterize the rearrangement product of 1-O-(tert-butyloxycarbonyl-L-alanyl)-α-D-glucopyranose (12α), 1,3,4,6-tetra-O-acetyl-2-O-(tert-butyloxycarbonyl-L-alanyl)-α- and -β-D-glucopyranoses (22 and 23) were synthesized by definitive methods. Initial studies of the simultaneous deprotection of the amino and hydroxyl functions were performed with D-glucose-amino acid 6-esters; catalytic hydrogenation of methyl 2,3,4-tri-O-benzyl-6-O-(N-benzyloxycarbonylglycyl)-β-D-glucopyranose (24) gave methyl 6-O-glycyl-β-D-glucopyranose (25) as the stable hydrochloride. Hydrogenolysis of the β anomer of 2,3,4,6-tetra-O-benzyl-1-O-[1-benzyl N-(benzyloxycarbonyl)-L-aspart-4-oyl]-D-glucopyranose (7) afforded 1-O-(L-β-aspartyl)-β-D-glucopyranose (27). The rates of hydrolysis of the unprotected D-glucose-amino acid 1-ester 27 in water and in 0.1M hydrochloric acid were compared with those of the D-glucose-amino acid 6-ester 25.  相似文献   

14.
The reaction of 2,3,4,6-tetra-O-benzyl-1-O-(p-nitrobenzoyl)-alpha-D-glucopyranose with (E)-penta-2,4-dienyltrimethylsilane and boron trifluoride etherate in acetonitrile afforded stereoselectively (E)-5-(tetra-O-benzyl-alpha-D-glucopyranosyl)-1,3-pentadiene in good yield. The readily available penta-O-benzoyl-alpha-D-glucopyranose reacted with allyltrimethylsilane in the presence of boron trifluoride etherate in acetonitrile to give 3-(tetra-O-benzoyl-alpha-D-glucopyranosyl)-1-propene and its beta anomer in yields of 60% and 2.3%, respectively. Diels-Alder cycloaddition of maleic anhydride to diene 1 afforded the adduct cis,cis-3-(tetra-O-benzyl-alpha-D-glucopyranosylmethyl)cyclohex -4-ene- 1,2-dicarboxylic anhydride in high yield.  相似文献   

15.
从栓皮栎(Quercus variabilisBl.)虫瘿中分离了2对平衡互变异构体和4个单体化合物,通过光谱数据和化学方法鉴定:G-1为1-O(3′-没食子酰基)没食子酰基-β-D-葡萄吡喃糖和1-O-(4′-没食子酰基)没食子酰基-β-D-葡萄吡喃糖的平衡互变异构体,G-2为3-O-没食子酰基-没食子酸和4-O-没食子酰基--没食子酸的平衡互变异构体,-3O一1,6-二-O没食子酰基-β-D-葡萄吡喃糖,G-4为1,2,3,6-四-O-没食子酰基-β-D-葡萄吡喃糖,G-5为1-O-没食子酰基-β-D-葡萄吡喃糖,G-6为没食子酸甲酯。对G-1、G-3和G-4进行初步的抗肿瘤、抗脂质过氧化和抗血小板聚集活性实验。  相似文献   

16.
N- and S-galactosylation was carried out via the reaction of 5-((Z)-arylidene)-2-thioxo-4-thiazolidinones with 2,3,4,6-tetra-O-acetyl-α-d-galactopyranosyl bromide under alkaline conditions or under silylation conditions. Deacetylation of the N-galactosylation products was performed with concentrated hydrochloric acid in methanol (3.5%) or sodium methoxide in methanol without cleavage of the 2-thioxo-4-thaizolidinone ring by means of acid hydrolysis. The anomers were separated by flash column chromatography, and their configurations were assigned by NMR spectroscopy. The deprotected nucleosides were screened against leukemia L-1210 and were found inactive.  相似文献   

17.
The disaccharide donor O-[2,3,4,6-tetra-O-acetyl-beta-D- galactopyranosyl)-(1-->4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido - alpha,beta-D-glucopyranosyl] trichloroacetimidate (7) was prepared by reacting O-(2,3,4,6-tetra-O-acetyl- alpha-D-galactopyranosyl) trichloroacetimidate with tert-butyldimethylsilyl 3,6-di-O-benzyl-2-deoxy-2- dimethylmaleoylamido-glucopyranoside to give the corresponding disaccharide 5. Deprotection of the anomeric center and then reaction with trichloroacetonitrile afforded 7. Reaction of 7 with 3'-O-unprotected benzyl (2,4,6-tri-O-benzyl-beta-D-galactopyranosyl)- (1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside (8) as acceptor afforded the desired tetrasaccharide benzyl (2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1-->4)-(3,6-di-O- benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl)-(1-->3)- (2,4,6- tri-O-benzyl-beta-D-galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzyl-beta-D- glucopyranoside. Replacement of the N-dimethylmaleoyl group by the acetyl group, O-debenzylation and finally O-deacetylation gave lacto-N-neotetraose. Similarly, reaction of O-[(2,3,4,6-tetra-O-acetyl-beta- D-galactopyranosyl)-(1-->3)-4,6-O-benzylidene-2-deoxy-2-dimethylmalei mido- alpha,beta-D-glycopyranosyl] trichloroacetimidate as donor with 8 as acceptor afforded the desired tetrasaccharide benzyl (2,3,4,6-tetra-O-acetyl-beta-D- galactopyranosyl)-(1-->3)-(4,6-benzylidene-2-deoxy-2-dimethylmaleimid o- beta-D-glucopyranosyl)-(1-->3)-(2,4,6-tri-O-benzyl-beta-D-galactopyranos yl)- (1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside. Removal of the benzylidene group, replacement of the N-dimethylmaleoyl group by the acetyl group and then O-acetylation afforded tetrasaccharide intermediate 15, which carries only O-benzyl and O-acetyl protective groups. O-Debenzylation and O-deacetylation gave lacto-N-tetraose (1). Additionally, known tertbutyldimethylsilyl (2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1-->3)-4,6-O-benzylide ne- 2-deoxy-2-dimethylmaleimido-beta-D-glucopyranoside was transformed into O-[2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)- (1-->3)-4,6-di-O-acetyl-2-deoxy-2-dimethylmaleimido-alpha,beta-D- glucopyranosyl] trichloroacetimidate as glycosyl donor, to afford with 8 as acceptor the corresponding tetrasaccharide 22, which is transformed into 15, thus giving an alternative approach to 1.  相似文献   

18.
Members of the actinomycetes produce 1D-1-O-(2-[N-acetyl-L-cysteinyl]amino-2-deoxy-alpha-D-glucopyranosyl)-myo-inositol or mycothiol 1 as principal low molecular mass thiol. Chemical synthesis of a biosynthetic precursor of mycothiol, the pseudodisaccharide 1D-1-O-(2-amino-2-deoxy-alpha-D-glucopyranosyl)-myo-inositol 13 was achieved by the following steps: (1) Enantioselective synthesis gave the glycosyl acceptors (-)-2,3,4,5,6-penta-O-acetyl-D-myo-inositol D-7 and the corresponding L-isomer L-7. (2) Condensation of D-7 and L-7 with the glycosyl donor 3,4,6-tri-O-acetyl-2-deoxy-2-(2,4-dinitrophenylamino)-alpha-D-glucopyranosylbromide afforded the corresponding alpha and beta anomeric products, which could be resolved by silica gel chromatography. (3) Deprotection of these by hydrolysis using an anion exchange resin gave 1D- and 1L-1-O-(2-amino-2-deoxy-alpha-D-glucopyranosyl)-myo-inositol 13 and 15 and the corresponding beta-coupled anomers 14 and 16. Only 13, and to a much lesser extent 15, were used by enzymes present in an ammonium sulphate fraction of a cellfree extract of Mycobacterium smegmatis for the enzymatic synthesis of mycothiol. In the absence of acetyl-SCoA, the immediate biosynthetic precursor of 1, desacetylmycothiol, was the major product.  相似文献   

19.
A synthesis of alpha-series ganglioside GM1alpha (III(6)Neu5AcGgOse4Cer) containing C20-sphingosine(d20:1) is described. Glycosylation of 2-(trimethylsilyl)ethyl 2,3,6-tri-O-benzyl-beta-D-galactopyranosyl-(1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside with the glucosamine donor ethyl 3-O-acetyl-2-deoxy-4,6-O-[(4-methoxyphenyl)methylene]-2-phthalimido-1-thio-beta-D-glucopyranoside furnished a beta-(1-->4)-linked trisaccharide. Reductive cleavage of the p-methoxybenzylidene group followed by intramolecular inversion of its triflate afforded the desired trisaccharide, which was transformed into a trisaccharide acceptor via removal of the phthaloyl and O-acetyl groups followed by N-acetylation. A tetrasaccharide acceptor was obtained by glycosylation of the trisaccharide acceptor with dodecyl 2,3,4,6-tetra-O-benzoyl-1-thio-beta-D-galactopyranoside, followed by removal of the p-methoxybenzyl group. Coupling of the tetrasaccharide acceptor with ethyl (methyl 4,7,8,9-tetra-O-acetyl-3,5-dideoxy-1-thio-5-trichloroacetamido-D-glycero-D-galacto-2-nonulopyranosid)onate and subsequent radical reduction gave the desired GM1alpha saccharide derivative, which was coupled with (2S,3R,4E)-2-azido-3-O-benzoyl-4-eicosene-1,3-diol after conversion into the imidate.  相似文献   

20.
Photo-induced radical addition of acetylated alpha-D-glucopyranosyl bromide (1). to acrylonitrile or diethyl vinylphosphonate, in the presence of catalytic amounts of tri-n-butyltin chloride and sodium (or tetra-n-butylammonium) cyanoborohydride in excess, allowed efficient preparations of alpha-configurated nonononitrile and 2-(alpha-D-glucopyranosyl)-ethylphosphonate (79, 70% yields, respectively). These conditions led to 2-(alpha-D-manno-, and galactopyranosyl)-ethylphosphonates in 68 and 76% yields. Similarly, radical addition of acetylated 1-bromo-beta-D-glucopyranosyl chloride (2). to acrylonitrile or diethyl vinylphosphonate afforded mainly intermediate chlorides which, upon radical reduction with excess tri-n-butyltin hydride, afforded the corresponding beta anomers (40 and 38%, respectively) by sequential C-C and C-H bond formation. Stereocontrol relies on the alpha-stereoselective quenching of D-glycopyranos-1-yl radicals. We found also that UV light irradiation of 1 with excess NaBH(3)CN in tert-butanol afforded either 1,3,4,6-tetra-O-acetyl-2-deoxy-alpha-D-arabino-hexopyranose (65% after crystallization) or, when 10% mol thiophenol was added, 2,3,4,6-tetra-O-acetyl-1,5-anhydro-D-glucitol (79%). These are simple, tin-free, and easily controlled conditions, which compare well with known preparations of these reduced sugars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号