首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Set1-containing complex COMPASS, which is the yeast homolog of the human MLL complex, is required for mono-, di-, and trimethylation of lysine 4 of histone H3. We have performed a comparative global proteomic screen to better define the role of COMPASS in histone trimethylation. We report that both Cps60 and Cps40 components of COMPASS are required for proper histone H3 trimethylation, but not for proper regulation of telomere-associated gene silencing. Purified COMPASS lacking Cps60 can mono- and dimethylate but is not capable of trimethylating H3(K4). Chromatin immunoprecipitation (ChIP) studies indicate that the loss subunits of COMPASS required for histone trimethylation do not affect the localization of Set1 to chromatin for the genes tested. Collectively, our results suggest a molecular requirement for several components of COMPASS for proper histone H3 trimethylation and regulation of telomere-associated gene expression, indicating multiple roles for different forms of histone methylation by COMPASS.  相似文献   

2.
3.
4.
COMPASS, the yeast homolog of the mammalian MLL complex, is a histone H3 lysine 4 (H3K4) methylase consisting of Set1 (KMT2) and seven other polypeptides, including Cps35, the only essential subunit. Histone H2B monoubiquitination by Rad6/Bre1 is required for both H3K4 methylation by COMPASS, and H3K79 methylation by Dot1. However, the molecular mechanism for such histone crosstalk is poorly understood. Here, we demonstrate that histone H2B monoubiquitination controls the binding of Cps35 with COMPASS complex. Cps 35 is required for COMPASS' catalytic activity in vivo, and the addition of exogenous purified Cps35 to COMPASS purified from a Deltarad6 background results in the generation of a methylation competent COMPASS. Cps35 associates with the chromatin of COMPASS-regulated genes in a H2BK123 monoubiquitination-dependent but Set1-independent manner. Cps35 is also required for proper H3K79 trimethylation. These findings offer insight into the molecular role of Cps35 in translating the H2B monoubiquitination signal into H3 methylation.  相似文献   

5.
6.
7.
In yeast, the macromolecular complex Set1/COMPASS is capable of methylating H3K4, a posttranslational modification associated with actively transcribed genes. There is only one Set1 in yeast; yet in mammalian cells there are multiple H3K4 methylases, including Set1A/B, forming human COMPASS complexes, and MLL1-4, forming human COMPASS-like complexes. We have shown that Wdr82, which associates with chromatin in a histone H2B ubiquitination-dependent manner, is a specific component of Set1 complexes but not that of MLL1-4 complexes. RNA interference-mediated knockdown of Wdr82 results in a reduction in the H3K4 trimethylation levels, although these cells still possess active MLL complexes. Comprehensive in vitro enzymatic studies with Set1 and MLL complexes demonstrated that the Set1 complex is a more robust H3K4 trimethylase in vitro than the MLL complexes. Given our in vivo and in vitro observations, it appears that the human Set1 complex plays a more widespread role in H3K4 trimethylation than do the MLL complexes in mammalian cells.  相似文献   

8.
9.
In mammalian cells, the SET1/MLL complexes are the main writers of the H3K4 methyl mark that is associated with active gene expression. The activities of these complexes are critically dependent on the association of the catalytic subunit with their shared core subunits, WDR5, RBBP5, ASH2L, and DPY30, collectively referred as WRAD. In addition, some of these core subunits can bind to proteins other than the SET1/MLL complex components. This review starts with discussion of the molecular activities of these core subunits, with an emphasis on DPY30 in organizing the assembly of the SET1/MLL complexes with other associated factors. This review then focuses on the roles of the core subunits in stem cells and development, as well as in diseased cell states, mainly cancer, and ends with discussion on dissecting the responsible activities of the core subunits and how we may target them for potential disease treatment. This article is part of a Special Issue entitled: The MLL family of proteins in normal development and disease edited by Thomas A Milne.  相似文献   

10.
11.
Histone methylation at specific lysine residues brings about various downstream events that are mediated by different effector proteins. The WD40 domain of WDR5 represents a new class of histone methyl-lysine recognition domains that is important for recruiting H3K4 methyltransferases to K4-dimethylated histone H3 tail as well as for global and gene-specific K4 trimethylation. Here we report the crystal structures of full-length WDR5, WDR5Delta23 and its complexes with unmodified, mono-, di- and trimethylated histone H3K4 peptides. The structures reveal that WDR5 is able to bind all of these histone H3 peptides, but only H3K4me2 peptide forms extra interactions with WDR5 by use of both water-mediated hydrogen bonding and the altered hydrophilicity of the modified lysine 4. We propose a mechanism for the involvement of WDR5 in binding and presenting histone H3K4 for further methylation as a component of MLL complexes.  相似文献   

12.
PTIP, a protein with tandem BRCT domains, has been implicated in DNA damage response. However, its normal cellular functions remain unclear. Here we show that while ectopically expressed PTIP is capable of interacting with DNA damage response proteins including 53BP1, endogenous PTIP, and a novel protein PA1 are both components of a Set1-like histone methyltransferase (HMT) complex that also contains ASH2L, RBBP5, WDR5, hDPY-30, NCOA6, SET domain-containing HMTs MLL3 and MLL4, and substoichiometric amount of JmjC domain-containing putative histone demethylase UTX. PTIP complex carries robust HMT activity and specifically methylates lysine 4 (K4) on histone H3. Furthermore, PA1 binds PTIP directly and requires PTIP for interaction with the rest of the complex. Moreover, we show that hDPY-30 binds ASH2L directly. The evolutionarily conserved hDPY-30, ASH2L, RBBP5, and WDR5 likely constitute a subcomplex that is shared by all human Set1-like HMT complexes. In contrast, PTIP, PA1, and UTX specifically associate with the PTIP complex. Thus, in cells without DNA damage agent treatment, the endogenous PTIP associates with a Set1-like HMT complex of unique subunit composition. As histone H3 K4 methylation associates with active genes, our study suggests a potential role of PTIP in the regulation of gene expression.  相似文献   

13.
In mammals, the SET1 family of lysine methyltransferases (KMTs), which includes MLL1-5, SET1A and SET1B, catalyzes the methylation of lysine-4 (Lys-4) on histone H3. Recent reports have demonstrated that a three-subunit complex composed of WD-repeat protein-5 (WDR5), retinoblastoma-binding protein-5 (RbBP5) and absent, small, homeotic disks-2-like (ASH2L) stimulates the methyltransferase activity of MLL1. On the basis of studies showing that this stimulation is in part controlled by an interaction between WDR5 and a small region located in close proximity of the MLL1 catalytic domain [referred to as the WDR5-interacting motif (Win)], it has been suggested that WDR5 might play an analogous role in scaffolding the other SET1 complexes. We herein provide biochemical and structural evidence showing that WDR5 binds the Win motifs of MLL2-4, SET1A and SET1B. Comparative analysis of WDR5-Win complexes reveals that binding of the Win motifs is achieved by the plasticity of WDR5 peptidyl-arginine-binding cleft allowing the C-terminal ends of the Win motifs to be maintained in structurally divergent conformations. Consistently, enzymatic assays reveal that WDR5 plays an important role in the optimal stimulation of MLL2-4, SET1A and SET1B methyltransferase activity by the RbBP5-ASH2L heterodimer. Overall, our findings illustrate the function of WDR5 in scaffolding the SET1 family of KMTs and further emphasize on the important role of WDR5 in regulating global histone H3 Lys-4 methylation.  相似文献   

14.
15.
16.
The MLL/SET family of histone H3 lysine 4 methyltransferases form enzyme complexes with core subunits ASH2L, WDR5, RbBP5, and DPY-30 (often abbreviated WRAD), and are responsible for global histone H3 lysine 4 methylation, a hallmark of actively transcribed chromatin in mammalian cells. Accordingly, the function of these proteins is required for a wide variety of processes including stem cell differentiation, cell growth and division, body segmentation, and hematopoiesis. While most work on MLL-WRAD has focused on the function this core complex in histone methylation, recent studies indicate that MLL-WRAD proteins interact with a variety of other proteins and lncRNAs and can localize to cellular organelles beyond the nucleus. In this review, we focus on the recently described activities and interacting partners of MLL-WRAD both inside and outside the nucleus.  相似文献   

17.
The mixed lineage leukemia protein-1 (MLL1) belongs to the SET1 family of histone H3 lysine 4 methyltransferases. Recent studies indicate that the catalytic subunits of SET1 family members are regulated by interaction with a conserved core group of proteins that include the WD repeat protein-5 (WDR5), retinoblastoma-binding protein-5 (RbBP5), and the absent small homeotic-2-like protein (Ash2L). It has been suggested that WDR5 functions to bridge the interactions between the catalytic and regulatory subunits of SET1 family complexes. However, the molecular details of these interactions are unknown. To gain insight into the interactions among these proteins, we have determined the biophysical basis for the interaction between the human WDR5 and MLL1. Our studies reveal that WDR5 preferentially recognizes a previously unidentified and conserved arginine-containing motif, called the "Win" or WDR5 interaction motif, which is located in the N-SET region of MLL1 and other SET1 family members. Surprisingly, our structural and functional studies show that WDR5 recognizes arginine 3765 of the MLL1 Win motif using the same arginine binding pocket on WDR5 that was previously shown to bind histone H3. We demonstrate that WDR5's recognition of arginine 3765 of MLL1 is essential for the assembly and enzymatic activity of the MLL1 core complex in vitro.  相似文献   

18.
The mixed lineage leukemia protein-1 (MLL1) catalyzes histone H3 lysine 4 methylation and is regulated by interaction with WDR5 (WD-repeat protein-5), RbBP5 (retinoblastoma-binding protein-5), and the Ash2L (absent, small, homeotic discs-2-like) oncoprotein. In the accompanying investigation, we describe the identification of a conserved arginine containing motif, called the "Win" or WDR5 interaction motif, that is essential for the assembly and H3K4 dimethylation activity of the MLL1 core complex. Here we present a 1.7-A crystal structure of WDR5 bound to a peptide derived from the MLL1 Win motif. Our results show that Arg-3765 of MLL1 is bound in the same arginine binding pocket on WDR5 that was previously suggested to bind histone H3. Thermodynamic binding experiments show that the MLL1 Win peptide is preferentially recognized by WDR5. These results are consistent with a model in which WDR5 recognizes Arg-3765 of MLL1, which is essential for the assembly and enzymatic activity of the MLL1 core complex.  相似文献   

19.
20.
Methylation of histone H3 at lysine 4 (H3K4) is a conserved feature of active chromatin catalyzed by methyltransferases of the SET1-family (SET1A, SET1B, MLL1, MLL2, MLL3 and MLL4 in humans). These enzymes participate in diverse gene regulatory networks with a multitude of known biological functions, including direct involvement in several human disease states. Unlike most lysine methyltransferases, SET1-family enzymes are only fully active in the context of a multi-subunit complex, which includes a protein module comprised of WDR5, RbBP5, ASH2L and DPY-30 (WRAD). These proteins bind in close proximity to the catalytic SET domain of SET1-family enzymes and stimulate H3K4 methyltransferase activity. The mechanism by which WRAD promotes catalysis involves elements of allosteric control and possibly the utilization of a second H3K4 methyltransferase active site present within WRAD itself. WRAD components also engage in physical interactions that recruit SET1-family proteins to target sites on chromatin. Here, the known molecular mechanisms through which WRAD enables the function of SET1-related enzymes will be reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号