首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wetlands can influence global climate via greenhouse gas (GHG) exchange of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Few studies have quantified the full GHG budget of wetlands due to the high spatial and temporal variability of fluxes. We report annual open‐water diffusion and ebullition fluxes of CO2, CH4, and N2O from a restored emergent marsh ecosystem. We combined these data with concurrent eddy‐covariance measurements of whole‐ecosystem CO2 and CH4 exchange to estimate GHG fluxes and associated radiative forcing effects for the whole wetland, and separately for open‐water and vegetated cover types. Annual open‐water CO2, CH4, and N2O emissions were 915 ± 95 g C‐CO2 m?2 yr?1, 2.9 ± 0.5 g C‐CH4 m?2 yr?1, and 62 ± 17 mg N‐N2O m?2 yr?1, respectively. Diffusion dominated open‐water GHG transport, accounting for >99% of CO2 and N2O emissions, and ~71% of CH4 emissions. Seasonality was minor for CO2 emissions, whereas CH4 and N2O fluxes displayed strong and asynchronous seasonal dynamics. Notably, the overall radiative forcing of open‐water fluxes (3.5 ± 0.3 kg CO2‐eq m?2 yr?1) exceeded that of vegetated zones (1.4 ± 0.4 kg CO2‐eq m?2 yr?1) due to high ecosystem respiration. After scaling results to the entire wetland using object‐based cover classification of remote sensing imagery, net uptake of CO2 (?1.4 ± 0.6 kt CO2‐eq yr?1) did not offset CH4 emission (3.7 ± 0.03 kt CO2‐eq yr?1), producing an overall positive radiative forcing effect of 2.4 ± 0.3 kt CO2‐eq yr?1. These results demonstrate clear effects of seasonality, spatial structure, and transport pathway on the magnitude and composition of wetland GHG emissions, and the efficacy of multiscale flux measurement to overcome challenges of wetland heterogeneity.  相似文献   

2.
In the sporadic permafrost zone of northwestern Canada, boreal forest carbon dioxide (CO2) fluxes will be altered directly by climate change through changing meteorological forcing and indirectly through changes in landscape functioning associated with thaw‐induced collapse‐scar bog (‘wetland’) expansion. However, their combined effect on landscape‐scale net ecosystem CO2 exchange (NEELAND), resulting from changing gross primary productivity (GPP) and ecosystem respiration (ER), remains unknown. Here, we quantify indirect land cover change impacts on NEELAND and direct climate change impacts on modeled temperature‐ and light‐limited NEELAND of a boreal forest–wetland landscape. Using nested eddy covariance flux towers, we find both GPP and ER to be larger at the landscape compared to the wetland level. However, annual NEELAND (?20 g C m?2) and wetland NEE (?24 g C m?2) were similar, suggesting negligible wetland expansion effects on NEELAND. In contrast, we find non‐negligible direct climate change impacts when modeling NEELAND using projected air temperature and incoming shortwave radiation. At the end of the 21st century, modeled GPP mainly increases in spring and fall due to reduced temperature limitation, but becomes more frequently light‐limited in fall. In a warmer climate, ER increases year‐round in the absence of moisture stress resulting in net CO2 uptake increases in the shoulder seasons and decreases during the summer. Annually, landscape net CO2 uptake is projected to decline by 25 ± 14 g C m?2 for a moderate and 103 ± 38 g C m?2 for a high warming scenario, potentially reversing recently observed positive net CO2 uptake trends across the boreal biome. Thus, even without moisture stress, net CO2 uptake of boreal forest–wetland landscapes may decline, and ultimately, these landscapes may turn into net CO2 sources under continued anthropogenic CO2 emissions. We conclude that NEELAND changes are more likely to be driven by direct climate change rather than by indirect land cover change impacts.  相似文献   

3.
Controls on the fate of ~277 Pg of soil organic carbon (C) stored in permafrost peatland soils remain poorly understood despite the potential for a significant positive feedback to climate change. Our objective was to quantify the temperature, moisture, organic matter, and microbial controls on soil organic carbon (SOC) losses following permafrost thaw in peat soils across Alaska. We compared the carbon dioxide (CO2) and methane (CH4) emissions from peat samples collected at active layer and permafrost depths when incubated aerobically and anaerobically at ?5, ?0.5, +4, and +20 °C. Temperature had a strong, positive effect on C emissions; global warming potential (GWP) was >3× larger at 20 °C than at 4 °C. Anaerobic conditions significantly reduced CO2 emissions and GWP by 47% at 20 °C but did not have a significant effect at ?0.5 °C. Net anaerobic CH4 production over 30 days was 7.1 ± 2.8 μg CH4‐C gC?1 at 20 °C. Cumulative CO2 emissions were related to organic matter chemistry and best predicted by the relative abundance of polysaccharides and proteins (R2 = 0.81) in SOC. Carbon emissions (CO2‐C + CH4‐C) from the active layer depth peat ranged from 77% larger to not significantly different than permafrost depths and varied depending on the peat type and peat decomposition stage rather than thermal state. Potential SOC losses with warming depend not only on the magnitude of temperature increase and hydrology but also organic matter quality, permafrost history, and vegetation dynamics, which will ultimately determine net radiative forcing due to permafrost thaw.  相似文献   

4.
Eddy covariance measurements of methane (CH4) net flux were made in a boreal fen, typical of the most abundant peatlands in western Canada during May–September 2007. The objectives of this study were to determine: (i) the magnitude of diurnal and seasonal variation in CH4 net flux, (ii) the relationship between the temporally varying flux rates and associated changes in controlling biotic and abiotic factors, and (iii) the contribution of CH4 emission to the ecosystem growing season carbon budget. There was significant diurnal variation in CH4 emission during the peak of the growing season that was strongly correlated with associated changes in solar radiation, latent heat flux, air temperature and ecosystem conductance to water vapor. During days 181–215, nighttime average CH4 efflux was only 47% of the average midday values. The peak value for daily average CH4 emission rate was approximately 80 nmol m?2 s?1 (4.6 mg CH4 m?2 h?1), and seasonal variation in CH4 flux was strongly correlated with changes in soil temperature. Integrated over the entire measurement period [days 144–269 (late May–late September)], the total CH4 emission was 3.2 g CH4 m?2, which was quite low relative to other wetland ecosystems and to the simultaneous high rate of ecosystem net CO2 sequestration that was measured (18.1 mol CO2 m?2 or 217 g C m?2). We estimate that the negative radiative forcing (cooling) associated with net carbon storage over the life of the peatland (approximately 2200 years) was at least twice the value of positive radiative forcing (warming) caused by net CH4 emission over the last 50 years.  相似文献   

5.
The biosphere–atmosphere exchange of methane (CH4) was estimated for a temperate/boreal lowland and wetland forest ecosystem in northern Wisconsin for 1997–1999 using the modified Bowen ratio (MBR) method. Gradients of CH4 and CO2 and CO2 flux were measured on the 447‐m WLEF‐TV tower as part of the Chequamegon Ecosystem–Atmosphere Study (ChEAS). No systematic diurnal variability was observed in regional CH4 fluxes measured using the MBR method. In all 3 years, regional CH4 emissions reached maximum values during June–August (24±14.4 mg m?2 day?1), coinciding with periods of maximum soil temperatures. In 1997 and 1998, the onset in CH4 emission was coincident with increases in ground temperatures following the melting of the snow cover. The onset of emission in 1999 lagged 100 days behind the 1997 and 1998 onsets, and was likely related to postdrought recovery of the regional water table to typical levels. The net regional emissions were 3.0, 3.1, and 2.1 g CH4 m?2 for 1997, 1998, and 1999, respectively. Annual emissions for wetland regions within the source area (28% of the land area) were 13.2, 13.8, and 10.3 g CH4 m?2 assuming moderate rates of oxidation of CH4 in upland regions in 1997, 1998, and 1999, respectively. Scaling these measurements to the Chequamegon Ecosystem (CNNF) and comparing with average wetland emissions between 40°N and 50°N suggests that wetlands in the CNNF emit approximately 40% less than average wetlands at this latitude. Differences in mean monthly air temperatures did not affect the magnitude of CH4 emissions; however, reduced precipitation and water table levels suppressed CH4 emission during 1999, suggesting that long‐term climatic changes that reduce the water table will likely transform this landscape to a reduced source or possibly a sink for atmospheric CH4.  相似文献   

6.
Wetlands are the single largest natural source of atmospheric methane (CH4), a greenhouse gas, and occur extensively in the northern hemisphere. Large discrepancies remain between “bottom‐up” and “top‐down” estimates of northern CH4 emissions. To explore whether these discrepancies are due to poor representation of nongrowing season CH4 emissions, we synthesized nongrowing season and annual CH4 flux measurements from temperate, boreal, and tundra wetlands and uplands. Median nongrowing season wetland emissions ranged from 0.9 g/m2 in bogs to 5.2 g/m2 in marshes and were dependent on moisture, vegetation, and permafrost. Annual wetland emissions ranged from 0.9 g m?2 year?1 in tundra bogs to 78 g m?2 year?1 in temperate marshes. Uplands varied from CH4 sinks to CH4 sources with a median annual flux of 0.0 ± 0.2 g m?2 year?1. The measured fraction of annual CH4 emissions during the nongrowing season (observed: 13% to 47%) was significantly larger than that was predicted by two process‐based model ensembles, especially between 40° and 60°N (modeled: 4% to 17%). Constraining the model ensembles with the measured nongrowing fraction increased total nongrowing season and annual CH4 emissions. Using this constraint, the modeled nongrowing season wetland CH4 flux from >40° north was 6.1 ± 1.5 Tg/year, three times greater than the nongrowing season emissions of the unconstrained model ensemble. The annual wetland CH4 flux was 37 ± 7 Tg/year from the data‐constrained model ensemble, 25% larger than the unconstrained ensemble. Considering nongrowing season processes is critical for accurately estimating CH4 emissions from high‐latitude ecosystems, and necessary for constraining the role of wetland emissions in a warming climate.  相似文献   

7.
Agricultural drainage of organic soils has resulted in vast soil subsidence and contributed to increased atmospheric carbon dioxide (CO2) concentrations. The Sacramento‐San Joaquin Delta in California was drained over a century ago for agriculture and human settlement and has since experienced subsidence rates that are among the highest in the world. It is recognized that drained agriculture in the Delta is unsustainable in the long‐term, and to help reverse subsidence and capture carbon (C) there is an interest in restoring drained agricultural land‐use types to flooded conditions. However, flooding may increase methane (CH4) emissions. We conducted a full year of simultaneous eddy covariance measurements at two conventional drained agricultural peatlands (a pasture and a corn field) and three flooded land‐use types (a rice paddy and two restored wetlands) to assess the impact of drained to flooded land‐use change on CO2 and CH4 fluxes in the Delta. We found that the drained sites were net C and greenhouse gas (GHG) sources, releasing up to 341 g C m?2 yr?1 as CO2 and 11.4 g C m?2 yr?1 as CH4. Conversely, the restored wetlands were net sinks of atmospheric CO2, sequestering up to 397 g C m?2 yr?1. However, they were large sources of CH4, with emissions ranging from 39 to 53 g C m?2 yr?1. In terms of the full GHG budget, the restored wetlands could be either GHG sources or sinks. Although the rice paddy was a small atmospheric CO2 sink, when considering harvest and CH4 emissions, it acted as both a C and GHG source. Annual photosynthesis was similar between sites, but flooding at the restored sites inhibited ecosystem respiration, making them net CO2 sinks. This study suggests that converting drained agricultural peat soils to flooded land‐use types can help reduce or reverse soil subsidence and reduce GHG emissions.  相似文献   

8.
Quantifying landscape‐scale methane (CH4) fluxes from boreal and arctic regions, and determining how they are controlled, is critical for predicting the magnitude of any CH4 emission feedback to climate change. Furthermore, there remains uncertainty regarding the relative importance of small areas of strong methanogenic activity, vs. larger areas with net CH4 uptake, in controlling landscape‐level fluxes. We measured CH4 fluxes from multiple microtopographical subunits (sedge‐dominated lawns, interhummocks and hummocks) within an aapa mire in subarctic Finland, as well as in drier ecosystems present in the wider landscape, lichen heath and mountain birch forest. An intercomparison was carried out between fluxes measured using static chambers, up‐scaled using a high‐resolution landcover map derived from aerial photography and eddy covariance. Strong agreement was observed between the two methodologies, with emission rates greatest in lawns. CH4 fluxes from lawns were strongly related to seasonal fluctuations in temperature, but their floating nature meant that water‐table depth was not a key factor in controlling CH4 release. In contrast, chamber measurements identified net CH4 uptake in birch forest soils. An intercomparison between the aerial photography and satellite remote sensing demonstrated that quantifying the distribution of the key CH4 emitting and consuming plant communities was possible from satellite, allowing fluxes to be scaled up to a 100 km2 area. For the full growing season (May to October), ~ 1.1–1.4 g CH4 m?2 was released across the 100 km2 area. This was based on up‐scaled lawn emissions of 1.2–1.5 g CH4 m?2, vs. an up‐scaled uptake of 0.07–0.15 g CH4 m?2 by the wider landscape. Given the strong temperature sensitivity of the dominant lawn fluxes, and the fact that lawns are unlikely to dry out, climate warming may substantially increase CH4 emissions in northern Finland, and in aapa mire regions in general.  相似文献   

9.
Drained peat soils are a significant source of greenhouse gas (GHG) emissions to the atmosphere. Rewetting these soils is considered an important climate change mitigation tool to reduce emissions and create suitable conditions for carbon sequestration. Long‐term monitoring is essential to capture interannual variations in GHG emissions and associated environmental variables and to reduce the uncertainty linked with GHG emission factor calculations. In this study, we present GHG balances: carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) calculated for a 5‐year period at a rewetted industrial cutaway peatland in Ireland (rewetted 7 years prior to the start of the study); and compare the results with an adjacent drained area (2‐year data set), and with ten long‐term data sets from intact (i.e. undrained) peatlands in temperate and boreal regions. In the rewetted site, CO2 exchange (or net ecosystem exchange (NEE)) was strongly influenced by ecosystem respiration (Reco) rather than gross primary production (GPP). CH4 emissions were related to soil temperature and either water table level or plant biomass. N2O emissions were not detected in either drained or rewetted sites. Rewetting reduced CO2 emissions in unvegetated areas by approximately 50%. When upscaled to the ecosystem level, the emission factors (calculated as 5‐year mean of annual balances) for the rewetted site were (±SD) ?104 ± 80 g CO2‐C m?2 yr?1 (i.e. CO2 sink) and 9 ± 2 g CH4‐C m?2 yr?1 (i.e. CH4 source). Nearly a decade after rewetting, the GHG balance (100‐year global warming potential) had reduced noticeably (i.e. less warming) in comparison with the drained site but was still higher than comparative intact sites. Our results indicate that rewetted sites may be more sensitive to interannual changes in weather conditions than their more resilient intact counterparts and may switch from an annual CO2 sink to a source if triggered by slightly drier conditions.  相似文献   

10.
Despite occupying a small fraction of the landscape, fluvial networks are disproportionately large emitters of CO2 and CH4, with the potential to offset terrestrial carbon sinks. Yet the extent of this offset remains uncertain, because current estimates of fluvial emissions often do not integrate beyond individual river reaches and over the entire fluvial network in complex landscapes. Here we studied broad patterns of concentrations and isotopic signatures of CO2 and CH4 in 50 streams in the western boreal biome of Canada, across an area of 250,000 km2. Our study watersheds differ starkly in their geology (sedimentary and shield), permafrost extent (sporadic to extensive discontinuous) and land cover (large variability in lake and wetland extents). We also investigated the effect of wildfire, as half of our study streams drained watersheds affected by megafires that occurred 3 years prior. Similar to other boreal regions, we found that stream CO2 concentrations were primarily associated with greater terrestrial productivity and warmer climates, and decreased downstream within the fluvial network. No effects of recent wildfire, bedrock geology or land cover composition were found. The isotopic signatures suggested dominance of biogenic CO2 sources, despite dominant carbonate bedrock in parts of the study region. Fluvial CH4 concentrations had a high variability which could not be explained by any landscape factors. Estimated fluvial CO2 emissions were 0.63 (0.09–6.06, 95% CI) and 0.29 (0.17–0.44, 95% CI) g C m?2 year?1 at the landscape scale using a stream network modelling and a mass balance approach, respectively, a small but potentially important component of the landscape C balance. These fluvial CO2 emissions are lower than in other northern regions, likely due to a drier climate. Overall, our study suggests that fluvial CO2 emissions are unlikely to be sensitive to altered fire regimes, but that warming and permafrost thaw will increase emissions significantly.  相似文献   

11.
Arctic wetlands are currently net sources of atmospheric CH4. Due to their complex biogeochemical controls and high spatial and temporal variability, current net CH4 emissions and gross CH4 processes have been difficult to quantify, and their predicted responses to climate change remain uncertain. We investigated CH4 production, oxidation, and surface emissions in Arctic polygon tundra, across a wet‐to‐dry permafrost degradation gradient from low‐centered (intact) to flat‐ and high‐centered (degraded) polygons. From 3 microtopographic positions (polygon centers, rims, and troughs) along the permafrost degradation gradient, we measured surface CH4 and CO2 fluxes, concentrations and stable isotope compositions of CH4 and DIC at three depths in the soil, and soil moisture and temperature. More degraded sites had lower CH4 emissions, a different primary methanogenic pathway, and greater CH4 oxidation than did intact permafrost sites, to a greater degree than soil moisture or temperature could explain. Surface CH4 flux decreased from 64 nmol m?2 s?1 in intact polygons to 7 nmol m?2 s?1 in degraded polygons, and stable isotope signatures of CH4 and DIC showed that acetate cleavage dominated CH4 production in low‐centered polygons, while CO2 reduction was the primary pathway in degraded polygons. We see evidence that differences in water flow and vegetation between intact and degraded polygons contributed to these observations. In contrast to many previous studies, these findings document a mechanism whereby permafrost degradation can lead to local decreases in tundra CH4 emissions.  相似文献   

12.
Inland waters transport and emit into the atmosphere large amounts of carbon (C), which originates from terrestrial ecosystems. The effect of land cover and land‐use practises on C export from terrestrial ecosystems to inland waters is not fully understood, especially in heterogeneous landscapes under human influence. We sampled for dissolved C species in five tributaries with well‐determined subcatchments (total size 174.5 km2), as well as in various points of two of the subcatchments draining to a boreal lake in southern Finland over a full year. Our aim was to find out how land cover and land‐use affect C export from the catchments, as well as CH4 and CO2 concentrations of the streams, and if the origin of C in stream water can be determined from proxies for quality of dissolved organic matter (DOM). We further estimated the gas evasion from stream surfaces and the role of aquatic fluxes in regional C cycling. The export rate of C from the terrestrial system through an aquatic conduit was 19.3 g C m?2(catchment) yr?1, which corresponds to 19% of the estimated terrestrial net ecosystem exchange of the catchment. Most of the C load to the recipient lake consisted of dissolved organic carbon (DOC, 6.1 ± 1.0 g C m?2 yr?1); the share of dissolved inorganic carbon (DIC) was much smaller (1.0 ± 0.2 g C m?2 yr?1). CO2 and CH4 emissions from stream and ditch surfaces were 7.0 ± 2.4 g C m?2 yr?1 and 0.1 ± 0.04 g C m?2 yr?1, respectively, C emissions being thus equal with C load to the lake. The proportion of peatland in the catchment and the drainage density of peatland increased DOC in streams, whereas the proportion of agricultural land in the catchment decreased it. The opposite was true for DIC. Drained peatlands were an important CH4 source for streams.  相似文献   

13.
The role of coastal mangrove wetlands in sequestering atmospheric carbon dioxide (CO2) and mitigating climate change has received increasing attention in recent years. While recent studies have shown that methane (CH4) emissions can potentially offset the carbon burial rates in low‐salinity coastal wetlands, there is hitherto a paucity of direct and year‐round measurements of ecosystem‐scale CH4 flux (FCH4) from mangrove ecosystems. In this study, we examined the temporal variations and biophysical drivers of ecosystem‐scale FCH4 in a subtropical estuarine mangrove wetland based on 3 years of eddy covariance measurements. Our results showed that daily mangrove FCH4 reached a peak of over 0.1 g CH4‐C m?2 day?1 during the summertime owing to a combination of high temperature and low salinity, while the wintertime FCH4 was negligible. In this mangrove, the mean annual CH4 emission was 11.7 ± 0.4 g CH4‐C m–2 year?1 while the annual net ecosystem CO2 exchange ranged between ?891 and ?690 g CO2‐C m?2 year?1, indicating a net cooling effect on climate over decadal to centurial timescales. Meanwhile, we showed that mangrove FCH4 could offset the negative radiative forcing caused by CO2 uptake by 52% and 24% over a time horizon of 20 and 100 years, respectively, based on the corresponding sustained‐flux global warming potentials. Moreover, we found that 87% and 69% of the total variance of daily FCH4 could be explained by the random forest machine learning algorithm and traditional linear regression model, respectively, with soil temperature and salinity being the most dominant controls. This study was the first of its kind to characterize ecosystem‐scale FCH4 in a mangrove wetland with long‐term eddy covariance measurements. Our findings implied that future environmental changes such as climate warming and increasing river discharge might increase CH4 emissions and hence reduce the net radiative cooling effect of estuarine mangrove forests.  相似文献   

14.
Arctic ecosystems are characterized by a wide range of soil moisture conditions and thermal regimes and contribute differently to the net methane (CH4) budget. Yet, it is unclear how climate change will affect the capacity of those systems to act as a net source or sink of CH4. Here, we present results of in situ CH4 flux measurements made during the growing season 2014 on Disko Island (west Greenland) and quantify the contribution of contrasting soil and landscape types to the net CH4 budget and responses to summer warming. We compared gas flux measurements from a bare soil and a dry heath, at ambient conditions and increased air temperature, using open‐top chambers (OTCs). Throughout the growing season, bare soil consumed 0.22 ± 0.03 g CH4‐C m?2 (8.1 ± 1.2 g CO2‐eq m?2) at ambient conditions, while the dry heath consumed 0.10 ± 0.02 g CH4‐C m?2 (3.9 ± 0.6 g CO2‐eq m?2). These uptake rates were subsequently scaled to the entire study area of 0.15 km2, a landscape also consisting of wetlands with a seasonally integrated methane release of 0.10 ± 0.01 g CH4‐C m?2 (3.7 ± 1.2 g CO2‐eq m?2). The result was a net landscape sink of 12.71 kg CH4‐C (0.48 tonne CO2‐eq) during the growing season. A nonsignificant trend was noticed in seasonal CH4 uptake rates with experimental warming, corresponding to a 2% reduction at the bare soil, and 33% increase at the dry heath. This was due to the indirect effect of OTCs on soil moisture, which exerted the main control on CH4 fluxes. Overall, the net landscape sink of CH4 tended to increase by 20% with OTCs. Bare and dry tundra ecosystems should be considered in the net CH4 budget of the Arctic due to their potential role in counterbalancing CH4 emissions from wetlands – not the least when taking the future climatic scenarios of the Arctic into account.  相似文献   

15.
Methane (CH4) is an important greenhouse gas, contributing 0.4–0.5 W m?2 to global warming. Methane emissions originate from several sources, including wetlands, rice paddies, termites and ruminating animals. Previous measurements of methane flux from farm animals have been carried out on animals in unnatural conditions, in laboratory chambers or fitted with cumbersome masks. This study introduces eddy covariance measurements of CH4, using the newly developed LI‐COR LI‐7700 open‐path methane analyser, to measure field‐scale fluxes from sheep grazing freely on pasture. Under summer conditions, fluxes of methane in the morning averaged 30 nmol m?2 s?1, whereas those in the afternoon were above 100 nmol m?2 s?1, and were roughly two orders of magnitude larger than the small methane emissions from the soil. Methane emissions showed no clear relationship with air temperature or photosynthetically active radiation, but some diurnal pattern was apparent, probably linked to sheep grazing behaviour and metabolism. Over the measurement period (days 60–277, year 2010), cumulative methane fluxes were 0.34 mol CH4 m?2, equating to 134.3 g CO2 equivalents m?2. By comparison, a carbon dioxide (CO2) sink of 819 g CO2 equivalents m?2 was measured over the same period, but it is likely that much of this would be released back to the atmosphere during the winter or as off‐site losses (through microbial and animal respiration). By dividing methane fluxes by the number of sheep in the field each day, we calculated CH4 emissions per head of livestock as 7.4 kg CH4 sheep?1 yr?1, close to the published IPCC emission factor of 8 kg CH4 sheep?1 yr?1.  相似文献   

16.
Natural wetlands release about 20% of global emissions of CH4, an effective greenhouse gas contributing to the total radiative forcing. Thus, changes in the carbon cycle in wetlands could have significant impacts on climate. The effect of raised supply of CO2 or NH4NO3 on the annual CH4 efflux from the lawn of a boreal oligotrophic mire was investigated over two years. Ten study plots were enclosed with mini‐FACE rings, five vented with CO2‐enriched air and the other five with ambient air. In addition, five plots were sprayed with NH4NO3 so that the cumulative addition of N was 3 g m?2 y?1; and five plots were controls. The CO2 enrichment (target concentration 560 ppmv) increased CH4 efflux about 30–40%, but half of this increase seemed to be caused by the air‐blowing system. The increasing atmospheric concentration of CO2 would promote CH4 release in boreal mires, but the increase in CH4 efflux would be clearly smaller than that reported in studies made in temperate or subtropical temperature conditions. Addition of N enhanced the annual release of CH4 only slightly. At least over the short‐term, the increase in N deposition would have little effect on CH4 effluxes. The increase in CH4 release would probably increase radiative forcing and thus accelerate climate change. However, CH4 effluxes are only a small part in the whole matter balance in mires and thus further studies are needed to define the net effects of raised supply of CO2 or N for carbon accumulation, trace gas fluxes and radiative forcing.  相似文献   

17.
Permafrost peatlands are biogeochemical hot spots in the Arctic as they store vast amounts of carbon. Permafrost thaw could release part of these long‐term immobile carbon stocks as the greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4) to the atmosphere, but how much, at which time‐span and as which gaseous carbon species is still highly uncertain. Here we assess the effect of permafrost thaw on GHG dynamics under different moisture and vegetation scenarios in a permafrost peatland. A novel experimental approach using intact plant–soil systems (mesocosms) allowed us to simulate permafrost thaw under near‐natural conditions. We monitored GHG flux dynamics via high‐resolution flow‐through gas measurements, combined with detailed monitoring of soil GHG concentration dynamics, yielding insights into GHG production and consumption potential of individual soil layers. Thawing the upper 10–15 cm of permafrost under dry conditions increased CO2 emissions to the atmosphere (without vegetation: 0.74 ± 0.49 vs. 0.84 ± 0.60 g CO2–C m?2 day?1; with vegetation: 1.20 ± 0.50 vs. 1.32 ± 0.60 g CO2–C m?2 day?1, mean ± SD, pre‐ and post‐thaw, respectively). Radiocarbon dating (14C) of respired CO2, supported by an independent curve‐fitting approach, showed a clear contribution (9%–27%) of old carbon to this enhanced post‐thaw CO2 flux. Elevated concentrations of CO2, CH4, and dissolved organic carbon at depth indicated not just pulse emissions during the thawing process, but sustained decomposition and GHG production from thawed permafrost. Oxidation of CH4 in the peat column, however, prevented CH4 release to the atmosphere. Importantly, we show here that, under dry conditions, peatlands strengthen the permafrost–carbon feedback by adding to the atmospheric CO2 burden post‐thaw. However, as long as the water table remains low, our results reveal a strong CH4 sink capacity in these types of Arctic ecosystems pre‐ and post‐thaw, with the potential to compensate part of the permafrost CO2 losses over longer timescales.  相似文献   

18.
Freshwater marshes are well‐known for their ecological functions in carbon sequestration, but complete carbon budgets that include both methane (CH4) and lateral carbon fluxes for these ecosystems are rarely available. To the best of our knowledge, this is the first full carbon balance for a freshwater marsh where vertical gaseous [carbon dioxide (CO2) and CH4] and lateral hydrologic fluxes (dissolved and particulate organic carbon) have been simultaneously measured for multiple years (2011–2013). Carbon accumulation in the sediments suggested that the marsh was a long‐term carbon sink and accumulated ~96.9 ± 10.3 (±95% CI) g C m?2 yr?1 during the last ~50 years. However, abnormal climate conditions in the last 3 years turned the marsh to a source of carbon (42.7 ± 23.4 g C m?2 yr?1). Gross ecosystem production and ecosystem respiration were the two largest fluxes in the annual carbon budget. Yet, these two fluxes compensated each other to a large extent and led to the marsh being a CO2 sink in 2011 (?78.8 ± 33.6 g C m?2 yr?1), near CO2‐neutral in 2012 (29.7 ± 37.2 g C m?2 yr?1), and a CO2 source in 2013 (92.9 ± 28.0 g C m?2 yr?1). The CH4 emission was consistently high with a three‐year average of 50.8 ± 1.0 g C m?2 yr?1. Considerable hydrologic carbon flowed laterally both into and out of the marsh (108.3 ± 5.4 and 86.2 ± 10.5 g C m?2 yr?1, respectively). In total, hydrologic carbon fluxes contributed ~23 ± 13 g C m?2 yr?1 to the three‐year carbon budget. Our findings highlight the importance of lateral hydrologic inflows/outflows in wetland carbon budgets, especially in those characterized by a flow‐through hydrologic regime. In addition, different carbon fluxes responded unequally to climate variability/anomalies and, thus, the total carbon budgets may vary drastically among years.  相似文献   

19.
Throughout the Holocene, northern peatlands have both accumulated carbon and emitted methane. Their impact on climate radiative forcing has been the net of cooling (persistent CO2 uptake) and warming (persistent CH4 emission). We evaluated this by developing very simple Holocene peatland carbon flux trajectories, and using these as inputs to a simple atmospheric perturbation model. Flux trajectories are based on estimates of contemporary CH4 flux (15–50 Tg CH4 yr−1), total accumulated peat C (250–450 Pg C), and peatland initiation dates. The contemporary perturbations to the atmosphere due to northern peatlands are an increase of ∼100 ppbv CH4 and a decrease of ∼35 ppmv CO2. The net radiative forcing impact northern peatlands is currently about −0.2 to −0.5 W m−2 (a cooling). It is likely that peatlands initially caused a net warming of up to +0.1 W m−2, but have been causing an increasing net cooling for the past 8000–11 000 years. A series of sensitivity simulations indicate that the current radiative forcing impact is determined primarily by the magnitude of the contemporary methane flux and the magnitude of the total C accumulated as peat, and that radiative forcing dynamics during the Holocene depended on flux trajectory, but the overall pattern was similar in all cases.  相似文献   

20.
In the sporadic permafrost zone of North America, thaw‐induced boreal forest loss is leading to permafrost‐free wetland expansion. These land cover changes alter landscape‐scale surface properties with potentially large, however, still unknown impacts on regional climates. In this study, we combine nested eddy covariance flux tower measurements with satellite remote sensing to characterize the impacts of boreal forest loss on albedo, eco‐physiological and aerodynamic surface properties, and turbulent energy fluxes of a lowland boreal forest region in the Northwest Territories, Canada. Planetary boundary layer modelling is used to estimate the potential forest loss impact on regional air temperature and atmospheric moisture. We show that thaw‐induced conversion of forests to wetlands increases albedo: and bulk surface conductance for water vapour and decreases aerodynamic surface temperature. At the same time, heat transfer efficiency is reduced. These shifts in land surface properties increase latent at the expense of sensible heat fluxes, thus, drastically reducing Bowen ratios. Due to the lower albedo of forests and their masking effect of highly reflective snow, available energy is lower in wetlands, especially in late winter. Modelling results demonstrate that a conversion of a present‐day boreal forest–wetland to a hypothetical homogeneous wetland landscape could induce a near‐surface cooling effect on regional air temperatures of up to 3–4 °C in late winter and 1–2 °C in summer. An atmospheric wetting effect in summer is indicated by a maximum increase in water vapour mixing ratios of 2 mmol mol?1. At the same time, maximum boundary layer heights are reduced by about a third of the original height. In fall, simulated air temperature and atmospheric moisture between the two scenarios do not differ. Therefore, permafrost thaw‐induced boreal forest loss may modify regional precipitation patterns and slow down regional warming trends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号