首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The in vitro regeneration of flower buds was studied in pedicel explants from tobacco (Nicotiana tabacum L., cv Petit Havana) transformed with Agrobacterium rhizogenes, pRi 1855 (agropine type). At a low concentration (0.1 micromolar) of 1-naphthalene-acetic acid, pedicel strips from phenotypically aberrant plants regenerated two to three times more flower buds than explants from untransformed tobacco. Intermediate bud numbers were observed in transformants with a less extreme phenotype. The results can be explained by an increased sensitivity of the transformed explants to auxin with respect to flower bud regeneration. The effect of transformation on the auxin response is fully accounted for by the absence of a negative interaction of endogenous ethylene with 1-naphthaleneacetic acid, a phenomenon normally encountered in untransformed tissues. Three observations led to this conclusion. Application of 1 micromolar AgNO3 to untransformed explants increased the number of flower buds to the level observed in transformed tissues but had no effect on transformed pedicel strips; exposure to 10 microliters per liter ethylene strongly reduced the response to auxin at all concentrations in untransformed explants but was almost ineffective in the transformed tissues; and endogenous ethylene synthesis occurred at the same rate in both types of explants.  相似文献   

2.
The competence of pedicel explants of tobacco (Nicotiana tabacum L. cv Samsun) to regenerate flower buds in response to auxin was manipulated by preincubating excised tissues in the absence of auxin. When exposed to 1 micromolar 1-naphthaleneacetic acid, these tissues formed fewer buds than controls that were not preincubated. The number of buds eventually formed correlated with the 1-naphthaleneacetic acid concentration in the tissue 6 hours after the start of hormone application. The internal concentrations in pretreated explants were lower than in tissues that were not pretreated due to diminished uptake per milligram fresh weight and increased hormone conjugation. The change in the developmental state induced by auxin deprivation had a dual effect on bud regeneration: (a) the pretreatment caused fewer buds to be formed at any 1-naphthaleneacetic acid concentration tested, and (b) a higher auxin concentration in the medium was required to get a maximum bud number on precultured explants. An increase of the 1-naphthaleneacetic acid concentration in the medium led to an elevated hormone level in freshly cut as well as in preincubated tissues. It was concluded that the developmental state of the tissue directly affects the maximum number of buds that can be regenerated. Apart from that there is an indirect effect exerted via modulation of the ratio between external and internal auxin concentration. The change in this ratio can be compensated for by an adjustment of the auxin concentration in the medium.  相似文献   

3.
Using both 1-mm segments of corn (Zea mays L.) coleoptiles and a preparation of membranes isolated from the same source, we have compared the effectiveness of several inhibitors of geotropism and polar transport in stimulating uptake of auxin (indole-3-acetic acid, IAA) into the tissue and in competing with N-1-naphthylphthalamic acid (NPA) for a membrane-bound site. Low concentrations of 2,3,5-triiodobenzoic acid (TIBA), NPA, 2-chloro-9-hydroxyfluorene-9-carboxylic acid (morphactin), and fluorescein, eosin, and mercurochrome all stimulated net uptake of [3H]IAA by corn coleoptile tissues while higher concentrations reduced the uptake of both [3H]IAA and another lipophilic weak acid, [14C]benzoic acid. Since low concentrations of fluorescein and its derivatives competed for the same membrane-bound site in vitro as did morphactin and NPA, the basis for both the specific stimulation of auxin accumulation and the inhibition of polar auxin transport by all these compounds may be their ability to interfere with the carrier-mediated efflux of auxin anions from cells. At higher concentrations, the decrease in accumulation of weak acids was nonspecific and thus may be the result of acidification of the cytoplasm and a general decrease in the driving force for uptake of the weak acids. Triiodobenzoic acid was an exception. Low concentration of TIBA (0.1–1 M) were much less effective than NPA in competing for the NPA receptor in vitro, but little different from NPA in ability to stimulate auxin uptake. One possibility is that TIBA, a substance which is polarly transported, may compete with auxin for the polar transport site while NPA, morphactin, and the fluorescein derivatives may render this site inactive.Abbreviations C1-NPA 2,3,4,5-tetrachloro-N-1-naphthylphthalamic acid - IAA indole-3-acetic acid - -NAA -naphthaleneacetic acid - -NAA -naphthalenacetic acid - NPA N-1-naphthylphthalamic acid - TIBA 2,3,5-triiodobenzoic acid  相似文献   

4.
Possibilities of adventitious buds induction on the cotyledons obtained from sterile seedlings ofAbies concolor xAbies grandis hybrid were investigated. The following variables influencing bud induction and their further development were studied: the effect of expiant age, the effect of different growth regulators and their concentrations and duration of their application. The most suitable expiants proved to be the cotyledons of 7 d old seedlings. The most efficient cytokinin was benzylaminopurine (S mg l?1) in combination with napthaleneacetic acid (0.01 mg l?1). The most optimal duration of treatment was 17 to 21 d culture of explants on induction medium. Shoot growth was achieved on basal medium to which 14 mg 1?1 spermidine was added.  相似文献   

5.
1-Naphthaleneacetic acid (1-NAA), required for in vitro flower bud formation, was taken up by pedicel explants of tobacco (Nicotiana tabacum L.) in large amounts and rapidly metabolized into various conjugates. These conjugates have been tentatively identified in four thin-layer Chromatographic systems using authentic standards as references. The major metabolite formed during the first hours of culture comigrated with 1-NAA-glucoside (1-NAGlu). From the 6th hour on, most 1-NAA had been converted into a yet unidentified metabolite. 1-NAglu was an intermediate in the formation of this metabolite. After 24 h, 1-NAA-aspartate (1-NAAsp) became the second major metabolite. The increase in 1-NAAsp formation was induced by 1-NAA. The inactive analog 2-naphthaleneacetic acid (2-NAA) was metabolized similar to 1-NAA, but was unable to increase the formation of the aspartate conjugate. When explants were fed labeled 1-NAGlu, 1-NAAsp or the major unidentified metabolite, radioactivity became associated with free 1-NAA and all major conjugates, indicating interconversion of conjugates and breakdown to free 1-NAA. A regulatory role of conjugation in maintaining a particular level of free 1-NAA in the tissue is proposed herein.  相似文献   

6.
Accumulation of radiolabelled naphthalene-1-acetic acid (1-NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), and indole-3-acetic acid (IAA) has been measured in suspension-cultured tobacco (Nicotiana tabacum) cells. In this paper is presented a simple methodology allowing activities of the auxin influx and efflux carriers to be monitored independently by measuring the cellular accumulation of [3H]NAA and [14C]2,4-D. We have shown that 1-NAA enters cells by passive diffusion and has its accumulation level controlled by the efflux carrier. By contrast, 2,4-D uptake is mostly ensured by the influx carrier and this auxin is not secreted by the efflux carrier. Both auxin carriers contribute to IAA accumulation. The kinetic parameters and specificity of each carrier have been determined and new information concerning interactions with naphthylphthalamic acid, pyrenoylbenzoic acid, and naphthalene-2-acetic acid are provided. The relative contributions of diffusion and carrier-mediated influx and efflux to the membrane transport of 2,4-D, 1-NAA, and IAA have been quantified, and the data indicate that plant cells are able to modulate over a large range their auxin content by modifying the activity of each carrier.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - 1-NAA naphthalene-1-acetic acid - 2-NAA naphthalene-2-acetic acid - NPA N-1-naphthylphthalamic acid - PBA 2-(1-pyrenoyl)benzoic acid - Vm maximum transport capacity of the carrier In honour of Professor Dieter Klämbt's 65th birthdayThe authors thank Drs. A.E. Geissler and G.F. Katekar (CSIRO, Canberra City, Australia) for providing auxin efflux carrier inhibitors CPD, CPP, and PBA, and Dr. H. Barbier-Brygoo (Institut des Sciences Végétales, CNRS, Gif-sur-Yvette, France) for helpful discussions. This work was supported by funds from the Centre National de la Recherche Scientifique (UPR0040).  相似文献   

7.
Summary A viable protocol has been developed for direct and indirect shoot regeneration of Vernonia cinerea. To establish a stable and high-frequency plant regeneration system, leaf and stem explants were tested with different combinations of α-naphthalene acetic acid (NAA), indole-3-acetic acid (IAA), and benzylaminopurine (BA). Lateral buds on nodal explants grew into shoots within 2 wk of culture in Murashige and Skoog (MS) basal medium supplemented with 20.9 μM BA. Excision and culture of nodal segments from in vitro-raised shoots on fresh medium with the same concentration of BA facilitated development of more than 15 shoots per node. Similarly leaf, nodal, and internodal explants were cultured on MS basal medium supplemented with different concentrations of BA, NAA, and IAA either alone or in combinations for callus induction and organogenesis. Shoot buds and/or roots were regenerated on callus. Shoot buds formed multiple shoots within 4 wk after incubation in induction medium. Adventitious buds and shoots proliferated when callus was cut into pieces and subcultured on MS basal medium containing 20.9 μM BA and 5.3 μM NAA. This combination proved to be the best medium for enhanced adventitious shoot bud multiplication, generating a maximum of 50 shoots in 4 wk. This medium was also used successfully for shoot proliferation in liquid medium. Root formation was observed from callus induced in medium containing 8.05–13.4 μM NAA. Regenerated shoots exhibited flowering and root formation in MS basal medium without any growth regulators. Plantlets established in the field showed 85% survival and exhibited identical morphological characteristics as the donor plant.  相似文献   

8.
The investigations carried out to find the role of abscisic acid in the phenomena of abscission of flower buds and bolls of cotton (Gossypium hirsutum L. cv. ‘H-14’) have shown abscisic acid content to be low in retained bolls as compared to that in the abscising ones of the same age, suggesting that relatively higher endogenous abscisic acid content to be promotive of abscission. Abscisic acid applied exogenously either to intact flower buds/bolls or boll explants promoted their abscission. Naphthalene acetic acid not only reduced abscission but also could erase completely the promotive effect of abscisic acid on abscission. Gibberellic acid promoted abscission in intact buds and boll explants but applied to intact bolls it reduced their shedding even more than naphthalene acetic acid. Gibberellic acid could also counteract the promotive effect of abscisic acid in the case of intact bolls but enhanced that of boll explants. All the cytokinin-furfurylamino-purine treatments given other than at the abscission zone promoted abscission. Furfurylaminopurine applied in combination with abscisic acid showed some antagonistic effect in the case of intact bolls and boll explants abscission zone treatments. Ascorbic acid applied at a relatively lower dose (0.025 mM) reduced shedding but applied at a higher dose it showed promotion. Ascorbic acid could erase the promotive effect of abscisic acid on abscission to a significant extent.  相似文献   

9.
1-Naphthaleneacetic acid (1-NAA), required for in vitro flower bud formation, was taken up by pedicel explants of tobacco (Nicotiana tabacum L.) in large amounts and rapidly metabolized into various conjugates. These conjugates have been tentatively identified in four thin-layer Chromatographic systems using authentic standards as references. The major metabolite formed during the first hours of culture comigrated with 1-NAA-glucoside (1-NAGlu). From the 6th hour on, most 1-NAA had been converted into a yet unidentified metabolite. 1-NAglu was an intermediate in the formation of this metabolite. After 24 h, 1-NAA-aspartate (1-NAAsp) became the second major metabolite. The increase in 1-NAAsp formation was induced by 1-NAA. The inactive analog 2-naphthaleneacetic acid (2-NAA) was metabolized similar to 1-NAA, but was unable to increase the formation of the aspartate conjugate. When explants were fed labeled 1-NAGlu, 1-NAAsp or the major unidentified metabolite, radioactivity became associated with free 1-NAA and all major conjugates, indicating interconversion of conjugates and breakdown to free 1-NAA. A regulatory role of conjugation in maintaining a particular level of free 1-NAA in the tissue is proposed herein.  相似文献   

10.
Suttle JC 《Plant physiology》1988,86(1):241-245
The effect of the defoliant thidiazuron (TDZ) on basipetal auxin transport in petiole segments isolated from cotton (Gossypium hirsutum L. cv LG102) seedlings was examined using the donor/receiver agar block technique. Treatment of intact seedlings with TDZ at concentrations of 1 micromolar or greater resulted in a dose-dependent inhibition of 14C-IAA transport in petiole segments isolated 1 or 2 days after treatment. Using 100 micromolar TDZ, the inhibition was detectable 19 hours after treatment and was complete by 27 hours. Both leaves and petiole segments exhibited a marked increase in ethylene production following treatment with TDZ at concentrations of 0.1 micromolar or greater. The involvement of ethylene in this TDZ response was evaluated by examining the effects of two inhibitors of ethylene action: silver thiosulfate, 2,5-norbornadiene. One day after treatment, both inhibitors effectively antagonized the TDZ-induced inhibition of auxin transport. Two days after TDZ treatment both inhibitors were ineffective. The decrease in IAA transport in TDZ treated tissues was associated with increased metabolism of IAA. The transport of 14C-2,4-dichlorophenoxyacetic acid was also inhibited by TDZ treatment. This inhibition was not accompanied by increased metabolism. Incorporation of TDZ into the receiver blocks had no effect on auxin transport. The ability of the phytotropin N-1-naphthylphthalamic acid to stimulate IAA uptake from a bathing medium was reduced in TDZ-treated tissues. This reduction is thought to reflect a decline in the auxin efflux system following TDZ treatment.  相似文献   

11.
The hormonal control of axillary bud growth was investigated in cultured stem segments of Phaseolus vulgaris L. When the stem explants were excised and implanted with their apical end in a solid nutrient medium, outgrowth of the axillary buds-located at the midline of the segment-was induced. However, if indoleacetic acid (IAA) or naphthaleneacetic acid (NAA) was included in the medium, bud growth was inhibited. The exposure of the apical end to IAA also caused bud abscission and prevented the appearance of new lateral buds.In contrast to apically inserted segments, those implanted in the control medium with their basal end showed much less bud growth. In these segments, the auxin added to the medium either had no effect or caused a slight stimulation of bud growth.The IAA transport inhibitor N-1-naphthylphthalamic acid (NPA) relieved bud growth inhibition by IAA. This suggests that the effect of IAA applied at the apical end requires the transport of IAA itself rather than a second factor. With the apical end of the segment inserted into the IAA-containing medium, simultaneous basal application of IAA relieved to some extent the inhibitory effect of the apical IAA treatment. These results, together with data presented in a related article [Lim R and Tamas I (1989) Plant Growth Regul 8: 151–164], show that the polarity of IAA transport is a critical factor in the control of axillary bud growth.Of the IAA conjugates tested for their effect on axillary bud growth, indoleacetyl alanine, indoleacetic acid ethyl ester, indoleacetyl-myo-inositol and indoleacetyl glucopyranose were strongly inhibitory when they were applied to the apical end of the stem explants. There was a modest reduction of growth by indoleacetyl glycine and indoleacetyl phenylalanine. Indoleacetyl aspartic acid and indoleglyoxylic acid had no effect.In addition to IAA and its conjugates, a number of other plant growth substances also affected axillary bud growth when applied to the apical end of stem segments. Myo-inositol caused some increase in the rate of growth, but it slightly enhanced the inhibitory effect of IAA when the two substances were added together. Gibberellic acid (GA3) caused some stimulation of bud growth when the explants were from younger, rather than older plants. The presence of abscisic acid (ABA) in the medium had no effect on axillary bud growth. Both kinetin and zeatin caused some inhibition of axillary buds from younger plants but had the opposite effect on buds from older ones. Kinetin also enhanced the inhibitory effect of IAA when the two were applied together.In conclusion, axillary buds of cultured stem segments showed great sensitivity to auxins and certain other substances. Their growth responded to polarity effects and the interaction among different substances. Therefore, the use of cultured stem segments seems to offer a convenient, sensitive and versatile test system for the study of axillary bud growth regulation.  相似文献   

12.
Shoot buds were induced from plumular explants of peanut (Arachis hypogaea L., cv `Okrun') preconditioned on medium containing 2,4-dichlorophenoxyacetic acid and kinetin and then transferred to regeneration medium containing benzylaminopurine and β-naphthoxyacetic acid. Buds differentiated 25 days following transfer to regeneration medium. Each explant produced 30 to 40 buds, but only 4 shoots. The remaining buds were dormant and did not produce shoots when maintained on regeneration medium. Shoots were regenerated continuously, however, when explants were subsequently transferred to shoot conversion medium containing 1 μM brassin, benzylaminopurine and β-naphthoxyacetic acid, respectively. Approximately 5 shoots were harvested every 30 days after transfer to shoot conversion medium for up to 7 months. No further shoot production was observed from explants maintained on regeneration medium without brassin. Regenerated shoots could be rooted and produced viable seeds. This procedure provides an efficient and reliable system for regeneration and transformation studies using cv `Okrun'. Received: 9 April 1997 / Revision received: 27 August 1997 / Accepted: 20 September 1997  相似文献   

13.
Plants were regenerated from cotyledon and hypocotyl explants of watermelon (Citrullus vulgaris). The explants were cultured on a Murashige and Skoog's basal nutrient medium supplemented with auxin, cytokinin and auxin-cytokinin combinations. Green healthy nodular and compact callus was obtained in medium containing naphthalene acetic acid and benzylaminopurine. Shoot differentiation and root differentiation from the cotyledon and hypocotyl after callus formation in different media containing benzylaminopurine or naphthalene acetic acid, respectively. Shoot formation required benzylaminopurine. Kinetin proved ineffective in inducing shoot buds or shoots. Root differentiation occurred in a medium containing naphthalene acetic acid or indole acetic acid. There was a greater proliferation of roots on medium supplemented with naphthalene acetic acid. The regenerated shoots developed roots when transferred to medium containing naphthalene acetic acid and complete plantlets could be transferred to soil for further growth.Abbreviations BAP 6 Benzylaminopurine - NAA -Naphthalene acetic acid - MS Murashige and Skoog's medium - IAA Indole acetic acid - KN Kinetin  相似文献   

14.
Axillary buds of the dioecious plant Rumex acetosella L. were isolated and cultured in vitro. The callus tissue which developed at the basal parts of the explants displayed a high capacity for shoot formation. This morphogenetic pattern was predominant on Murashige and Skoog (MS) medium supplemented with 2% sucrose, 2.2 mgl-1 benzylaminopurine and 0.17 mgl-1 indole-3-acetic acid. Somatic embryogenesis was induced when the osmolality of the medium was increased by adding 6% sucrose instead of 2%, or hexitols in addition to 2% sucrose. Most of the embryogenic calli were formed on the basal parts of leaf laminae and bracts. Development and maturation was strongly promoted by transferring the tissue to a solid or liquid medium lacking benzylaminopurine and indole-3-acetic acid and supplemented with 10 mgl-1 gibberellic acid. The embryos germinated and developed into normal rosette plants when transferred to vermiculite moistened with hormone-free, half-strength MS salt solution. The histology of successive embryogenic stages is presented.  相似文献   

15.
During the last century, two key hypotheses have been proposed to explain apical dominance in plants: auxin promotes the production of a second messenger that moves up into buds to repress their outgrowth, and auxin saturation in the stem inhibits auxin transport from buds, thereby inhibiting bud outgrowth. The recent discovery of strigolactone as the novel shoot-branching inhibitor allowed us to test its mode of action in relation to these hypotheses. We found that exogenously applied strigolactone inhibited bud outgrowth in pea (Pisum sativum) even when auxin was depleted after decapitation. We also found that strigolactone application reduced branching in Arabidopsis (Arabidopsis thaliana) auxin response mutants, suggesting that auxin may act through strigolactones to facilitate apical dominance. Moreover, strigolactone application to tiny buds of mutant or decapitated pea plants rapidly stopped outgrowth, in contrast to applying N-1-naphthylphthalamic acid (NPA), an auxin transport inhibitor, which significantly slowed growth only after several days. Whereas strigolactone or NPA applied to growing buds reduced bud length, only NPA blocked auxin transport in the bud. Wild-type and strigolactone biosynthesis mutant pea and Arabidopsis shoots were capable of instantly transporting additional amounts of auxin in excess of endogenous levels, contrary to predictions of auxin transport models. These data suggest that strigolactone does not act primarily by affecting auxin transport from buds. Rather, the primary repressor of bud outgrowth appears to be the auxin-dependent production of strigolactones.  相似文献   

16.
The role of α-naphthaleneacetic acid (NAA) in the control of abscission in Citrus (Citrus sinensis L. Osbeck) leaf explants and its conjugation were studied in non-aged and 24-hour-aged explants. Dipping non-aged explants in 1.5 micromolar NAA for 15 minutes immediately after excision did not delay abscission whereas 150 micromolar NAA effectively delayed it. As incubation time was prolonged up to 24 hours after excision, the delaying effect of both concentrations gradually increased. In general, both concentrations did not delay abscission when applied to 24-hour-aged explants held for an additional period of up to 24 hours. The uptake and conjugation of 14C-NAA to glucose and aspartic acid were similar in petiole, abscission zone, and leaf blade of non-aged and aged tissues, for all NAA concentrations. No correlation was established between the kinetics of abscission and the rate of conjugation in the abscission zone.  相似文献   

17.
Experiments were performed to determine the influence of gibberellic acid (GA3) and benzyladenine (BA) on organogenesis of lsquo;Crimson Giantrsquo; Easter cactus [Hatiora gaertneri (Regel) Barthlott] phylloclades cultured in vitro. The numbers of flower buds and new phylloclades increased linearly as BA concentration increased from 0 to 444.1 micro;M. GA3 increased the number of new phylloclades when present in moderate concentrations (2.9 or 28.9 micro;M), but inhibited flower bud formation when present in concentrations as low as 0.3 micro;M. The inhibitory effect of GA3 on flower bud formation was diminished when the medium was amended with BA at 44.4 or 444.1 micro;M. Explants cultured in media that contained 288.7 micro;M GA3 produced fewer organs (new phylloclades plus flower buds) compared to those cultured in media with 0, 0.3, 2.9, or 28.9 micro;M GA3. BA and GA3 concentrations also affected the percentage of explants with flower buds and the percentage of explants with new phylloclades. This study shows that organogenesis in H. gaertneri can be controlled by varying the concentrations of BA and GA3 in the culture medium.  相似文献   

18.
In vitro flower bud formation in tobacco: interaction of hormones   总被引:3,自引:0,他引:3       下载免费PDF全文
External application of auxin and cytokinin is required for the formation of flower buds on thin-layer tissue explants of Nicotiana tabacum cv Samsun. Interaction between both plant growth regulators during this regenerative process has been demonstrated with respect to speed of flower bud initiation and the number of flower buds formed. Separation in time of the hormone application during culture revealed that the cytokinin benzyladenine plays a key role in flower bud initiation whereas auxin (indoleacetic acid) stimulates in particular the differentiation of flower buds. The uptake of each hormone was proportional to the concentration supplied in the medium, and the uptake of either hormone appeared independently of the presence of the other. Metabolism studies showed the conversion of indoleacetic acid by the tissue to at least 13 metabolites after 24 h of culture. In addition, indoleacetic acid metabolism was demonstrated not to be influenced by the uptake and metabolism of benzyladenine. Taken together the results indicate that the interaction of auxin and cytokinin with respect to in vitro flower bud formation is indirect, i.e. does not take place at the level of hormone uptake or metabolism but at some step in the cascade of processes they initiate.  相似文献   

19.
A simple and efficient protocol for obtaining organogenesis from mature nodal explants of Citrus macrophylla (alemow) and Citrus aurantium (sour orange) has been developed by optimizing the concentrations of the plant growth regulators, the incubation conditions, the basal medium and by the choice of explant. In order to optimize the plant growth regulator balance, explants were cultured in the regeneration medium supplemented with several N 6-benzyladenine (BA) concentrations or with 2 mg?l?1 BA in combination with kinetin (KIN) or 1-naphthaleneacetic acid (NAA). The presence of BA was found to be essential for the development of adventitious buds; the best results were obtained using BA at 3 and 2 mg?l?1 for alemow and sour orange, respectively. The combination of BA with KIN or NAA in the culture medium decreased the regeneration frequency, with respect to the use of BA alone. The effect of three different basal media was rootstock-dependent. For C. macrophylla the best results were obtained with Woody Plant Medium or Driver and Kuniyuki Walnut Medium (DKW). However, for C. aurantium, although high percentages of regenerating explants were obtained independently of the basal medium used, the highest number of buds per regenerating explants was obtained with DKW medium. Attempts were made to identify the type of explants which had a higher regeneration ability using particular regions along the mature shoots of C. macrophylla. When nodal segments, where the buds were completely removed, and internode segments were compared, the highest percentage of responsive explants was obtained with nodal segments. The existence of a morphogenetic gradient along the shoot was observed and the organogenic efficiency was highest when explants from the apical zone were used. Incubation in darkness for 3 or 4 wk was essential for regeneration process in both rootstocks.  相似文献   

20.
洋桔梗是国际上十分流行的盆花和切花种类。以洋桔梗‘圣剑’无菌苗叶片为外植体,研究了6-BA与NAA不同浓度组合对其不定芽再生的影响,并分别比较了不同浓度IBA和NAA诱导其生根的效果,测定了该品种在不定芽再生时对卡那霉素(Km)的敏感性。结果表明:MS+0.5 mg·L-16-BA+0.01 mg·L-1NAA为不定芽再生最适培养基,不定芽再生率达91%;1/2 MS+0.2 mg·L-1IBA为不定根再生的最适培养基,生根率达89%;抑制叶片不定芽再生的Km最低浓度为25 mg·L-1。建立了‘圣剑’洋桔梗植株高频再生体系,并确定了其对卡那霉素的敏感性,为该品种的基因工程研究奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号