首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Manganese induces the central nervous system injury leading to manganism, by mechanisms not completely understood. Chronic exposure to manganese generates oxidative stress and induces the mitochondrial permeability transition. In the present study, we characterized apoptotic cell death mechanisms associated with manganese toxicity in rat cortical astrocytes and demonstrated that (i) Mn treatment targets the mitochondria and induces mitochondrial membrane depolarization followed by cytochrome c release to the cytoplasm, (ii) Mn induces both effector caspases 3/7 and 6 as well as PARP-1 cleavage and (iii) Mn shifts the balance of cell death/survival of Bcl-2 family proteins to favor the apoptotic demise of astrocytes. Our model system using cortical rat astrocytes treated with Mn would emerge as a good tool for investigations aimed to elucidate the role of apoptosis in manganism.  相似文献   

2.
Manganese is known to cause central nervous system injury leading to parkinsonism and to contribute to the pathogenesis of hepatic encephalopathy. Although mechanisms of manganese neurotoxicity are not completely understood, chronic exposure of various cell types to manganese has shown oxidative stress and mitochondrial energy failure, factors that are often implicated in the induction of the mitochondrial permeability transition (MPT). In this study, we examined whether exposure of cultured neurons and astrocytes to manganese induces the MPT. Cells were treated with manganese acetate (10-100 microM), and the MPT was assessed by changes in the mitochondrial membrane potential and in mitochondrial calcein fluorescence. In astrocytes, manganese caused a dissipation of the mitochondrial membrane potential and decreased the mitochondrial calcein fluorescence in a concentration- and time-dependent manner. These changes were completely blocked by pretreatment with cyclosporin A, consistent with induction of the MPT. On the other hand, similarly treated cultured cortical neurons had a delayed or reduced MPT as compared with astrocytes. The manganese-induced MPT in astrocytes was blocked by pretreatment with antioxidants, suggesting the potential involvement of oxidative stress in this process. Induction of the MPT by manganese and associated mitochondrial dysfunction in astrocytes may represent key mechanisms in manganese neurotoxicity.  相似文献   

3.
Abstract: To clarify mechanisms of neuronal death in the postischemic brain, we examined whether astrocytes exposed to hypoxia/reoxygenation exert a neurotoxic effect, using a coculture system. Neurons cocultured with astrocytes subjected to hypoxia/reoxygenation underwent apoptotic cell death, the effect enhanced by a combination of interleukin-1β with hypoxia. The synergistic neurotoxic activity of hypoxia and interleukin-1β was dependent on de novo expression of inducible nitric oxide synthase (iNOS) and on nitric oxide (NO) production in astrocytes. Further analysis to determine the neurotoxic mechanism revealed decreased Bcl-2 and increased Bax expression together with caspase-3 activation in cortical neurons cocultured with NO-producing astrocytes. Inhibition of NO production in astrocytes by N G-monomethyl- l -arginine, an inhibitor of NOS, significantly inhibited neuronal death together with changes in Bcl-2 and Bax protein levels and in caspase-3-like activity. Moreover, treatment of neurons with a bax antisense oligonucleotide inhibited the caspase-3-like activation and neuronal death induced by an NO donor, sodium nitroprusside. These data suggest that NO produced by astrocytes after hypoxic insult induces apoptotic death of neurons through mechanisms involving the caspase-3 activation after down-regulation of BCl-2 and up-regulation of Bax protein levels.  相似文献   

4.
Yersinia outer protein P (YopP) is a virulence factor of Yersinia enterocolitica that is injected into the cytosol of host cells where it targets MAP kinase kinases (MKKs) and inhibitor of κB kinase (IKK)-β resulting in inhibition of cytokine production as well as induction of apoptosis in murine macrophages and dendritic cells (DC). Here we show that DC death was only partially prevented by the broad spectrum caspase inhibitor zVAD-fmk, indicating simultaneous caspase-dependent and caspase-independent mechanisms of cell death induction by YopP. Microscopic analyses and measurement of cell size demonstrated necrosis-like morphology of caspase-independent cell death. Application of zVAD-fmk prevented cleavage of procaspases and Bid, decrease of the inner transmembrane mitochondrial potential ΔΨm and mitochondrial release of cytochrome c. From these data we conclude that YopP-induced activation of the mitochondrial death pathway is mediated upstream via caspases. In conclusion, our results suggest that YopP simultaneously induces caspase-dependent apoptotic and caspase-independent necrosis-like death in DC. However, it has to be resolved if necrosis-like DC death occurs independently from apoptotic events or as an apoptotic epiphenomenon.  相似文献   

5.
Polygonatum cyrtonema lectin (PCL), a mannose/sialic acid-binding plant lectin, has recently drawn a rising attention for cancer biologists because PCL bears remarkable anti-tumor activities and thus inducing programmed cell death (PCD) including apoptosis and autophagy in cancer cells. In this review, we focus on exploring the precise molecular mechanisms by which PCL induces cancer cell apoptotic death such as the caspase-dependent pathway, mitochondria-mediated ROS–p38–p53 pathway, Ras–Raf and PI3K–Akt pathways. In addition, we further elucidate that PCL induces cancer cell autophagic death via activating mitochondrial ROS–p38–p53 pathway, as well as via blocking Ras–Raf and PI3K–Akt pathways, suggesting an intricate relationship between autophagic and apoptotic death in PCL-induced cancer cells. In conclusion, these findings may provide a new perspective of Polygonatum cyrtonema lectin (PCL) as a potential anti-tumor drug targeting PCD pathways for future cancer therapeutics.  相似文献   

6.
7.
Astrocytes, the most abundant glial cell population in the central nervous system (CNS), play physiological roles in neuronal activities. Oxidative insult induced by the injury to the CNS causes neural cell death through extrinsic and intrinsic pathways. This study reports that reactive oxygen species (ROS) generated by exposure to the strong oxidizing agent, hexavalent chromium (Cr(VI)) as a chemical‐induced oxidative stress model, caused astrocytes to undergo an apoptosis‐like cell death through a caspase‐3‐independent mechanism. Although activating protein‐1 (AP‐1) and NF‐κB were activated in Cr(VI)‐primed astrocytes, the inhibition of their activity failed to increase astrocytic cell survival. The results further indicated that the reduction in mitochondrial membrane potential (MMP) was accompanied by an increase in the levels of ROS in Cr(VI)‐primed astrocytes. Moreover, pretreatment of astrocytes with N‐acetylcysteine (NAC), the potent ROS scavenger, attenuated ROS production and MMP loss in Cr(VI)‐primed astrocytes, and significantly increased the survival of astrocytes, implying that the elevated ROS disrupted the mitochondrial function to result in the reduction of astrocytic cell viability. In addition, the nuclear expression of apoptosis‐inducing factor (AIF) and endonuclease G (EndoG) was observed in Cr(VI)‐primed astrocytes. Taken together, evidence shows that astrocytic cell death occurs by ROS‐induced oxidative insult through a caspase‐3‐independent apoptotic mechanism involving the loss of MMP and an increase in the nuclear levels of mitochondrial pro‐apoptosis proteins (AIF/EndoG). This mitochondria‐mediated but caspase‐3‐independent apoptotic pathway may be involved in oxidative stress‐induced astrocytic cell death in the injured CNS. J. Cell. Biochem. 107: 933–943, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Despite extensive investigation, the molecular mechanism of anticancer activity of sphingolipid metabolites remains to be clarified. Here we demonstrate that sphingosine induces mitochondrial cell death via Lck-mediated conformational activation of Bak in Jurkat T cell lymphoma. Treatment of cells with sphingosine rapidly induced mitochondrial membrane potential loss, cytochrome c release from mitochondria, and apoptotic cell death. Sphingosine also induced conformational activation of Bak, but not Bax. siRNA targeting of Bak effectively attenuated sphingosine-induced mitochondrial cell death, indicating that Bak is involved in sphingosine-induced mitochondrial cell death. Sphingosine also induced activation of tyrosine kinase Lck. Inhibition of Lck by treatment of PP2, a Lck inhibitor or siRNA targeting of Lck suppressed sphingosine-induced conformational activation and oligomerization of Bak, mitochondrial membrane potential loss, and apoptotic cell death, implying that activation of Lck is critically required for sphingosine-induced conformational activation of Bak and mitochondrial cell death. The results elucidated in this study provide a novel cellular mechanism for the anticancer activity of sphingolipid metabolites.  相似文献   

9.
Manganese (Mn) is a trace element known to be essential for maintaining the proper function and regulation of many biochemical and cellular reactions. However, chronic exposure to high levels of Mn in occupational or environmental settings can lead to its accumulation in the brain resulting in a degenerative brain disorder referred to as Manganism. Astrocytes are the main Mn store in the central nervous system and several lines of evidence implicate these cells as major players in the role of Manganism development. In the present study, we employed rat astrocytoma C6 cells as a sensitive experimental model for investigating molecular mechanisms involved in Mn neurotoxicity. Our results show that C6 cells undergo reactive oxygen species-mediated apoptotic cell death involving caspase-8 and mitochondrial-mediated pathways in response to Mn. Exposed cells exhibit typical apoptotic features, such as chromatin condensation, cell shrinkage, membrane blebbing, caspase-3 activation and caspase-specific cleavage of the endogenous substrate poly (ADP-ribose) polymerase. Participation of the caspase-8 dependent pathway was assessed by increased levels of FasL, caspase-8 activation and Bid cleavage. The involvement of the mitochondrial pathway was demonstrated by the disruption of the mitochondrial membrane potential, the opening of the mitochondrial permeability transition pore, cytochrome c release, caspase-9 activation and the increased mitochondrial levels of the pro-apoptotic Bcl-2 family proteins. In addition, our data also shows for the first time that mitochondrial fragmentation plays a relevant role in Mn-induced apoptosis. Taking together, these findings contribute to a deeper elucidation of the molecular signaling mechanisms underlying Mn-induced apoptosis.  相似文献   

10.
Hydrogen sulfide (H2S), a gasotransmitter, exerts both neurotoxicity and neuroprotection, and targets multiple molecules including NMDA receptors, T-type calcium channels and NO synthase (NOS) that might affect neuronal viability. Here, we determined and characterized effects of NaHS, an H2S donor, on cell viability in the primary cultures of mouse fetal cortical neurons. NaHS caused neuronal death, as assessed by LDH release and trypan blue staining, but did not significantly reduce the glutamate toxicity. The neurotoxicity of NaHS was resistant to inhibitors of NMDA receptors, T-type calcium channels and NOS, and was blocked by inhibitors of MEK, but not JNK, p38 MAP kinase, PKC and Src. NaHS caused prompt phosphorylation of ERK and upregulation of Bad, followed by translocation of Bax to mitochondria and release of mitochondrial cytochrome c, leading to the nuclear condensation/fragmentation. These effects of NaHS were suppressed by the MEK inhibitor. Our data suggest that the NMDA receptor-independent neurotoxicity of H2S involves activation of the MEK/ERK pathway and some apoptotic mechanisms.  相似文献   

11.
Apoptosis is a highly complex form of cell death that can be triggered by alterations in Ca2+ homeostasis. Members of the Bcl-2 family may regulate apoptosis and modulate Ca2+ distribution within intracellular compartments. Bax, a proapoptotic member of the family, is constitutively expressed and soluble in the cytosol and, under apoptotic induction, translocates to mitochondrial membranes. However, it is not clear if the intracellular Ca2+ stores and selective Ca2+ releases can modulate or control Bax translocation. The aim of this study was to investigate the relation of intracellular Ca2+ stores with Bax translocation in rat cortical astrocytes. Results show that the classical apoptotic inducer, staurosporine, caused high elevations of cytosolic Ca2+ that precede Bax translocation. On the other hand, agents that mobilize Ca2+ from endoplasmic reticulum such as noradrenaline or thapsigargin, induced Bax translocation, while mitochondrial Ca2+ release evoked by carbonyl cyanide-p-(trifluoromethoxyphenyl) hydrazone was not able to cause Bax punctation. In addition, microinjection of inositol 1,4,5- trisphosphate induced Bax translocation. Taken together, our results show that in Bax overexpressing cortical astrocytes, endoplasmic reticulum-Ca2+ release may induce Bax transactivation and specifically control apoptosis.  相似文献   

12.
Oxidative stress occurs as a consequence of disturbance in the balance between the generation of reactive oxygen species (ROS) and the antioxidant defence mechanisms. The interaction of ROS with DNA can cause single-, or double-strand breaks that subsequently can lead to the activation of p53, which is central for the regulation of cellular response, e.g. apoptosis, to a range of environmental and intracellular stresses. Previous reports have suggested a regulatory role of p53 in the early activation of caspase-2, upstream of mitochondrial apoptotic signaling. Here we show that excessive ROS formation, induced by 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) exposure, induces apoptosis in primary cultured neural stem cells (NSCs) from cortices of E15 rat embryos. Following DMNQ exposure cells exhibited apoptotic hallmarks such as Bax oligomerization and activation, cytochrome c release, caspase activation and chromatin condensation. Additionally, we could show early p53 accumulation and a subsequent activation of caspase-2. The attenuation of caspase-2 activity with selective inhibitors could antagonize the mitochondrial signaling pathway and cell death. Overall, our results strongly suggest that DMNQ-induced oxidative stress causes p53 accumulation and consequently caspase-2 activation, which in turn initiates apoptotic cell death via the mitochondria-mediated caspase-dependent pathway in NSCs.  相似文献   

13.
Ammonia is a neurotoxin that is implicated in the CNS dysfunction associated with hepatic encephalopathy, urea cycle disorders, Reye’s syndrome and other neurological conditions. While in vivo studies suggest that astrocytes are the principal target of ammonia toxicity, recent in vitro investigations suggest that neurons may also be directly affected by ammonia. To further examine the issue of neural cell sensitivity to ammonia, pure rat cortical neuronal cultures, as well as co-cultures of neurons and astrocytes, were exposed to 5 mM NH4Cl for 48 h. Cultures were examined for morphological changes by light microscopy, measures of cell death, free radical production and changes in the mitochondrial inner membrane potential. Ammonia caused extensive degenerative changes in pure cultured neurons, while such neuronal changes were minor in the co-cultures. Similarly, processes of pure cultured neurons displayed a significant loss of the mitochondrial inner membrane potential, as compared to neurons in co-cultures. Cell death (LDH release) in ammonia-treated neuronal cultures was twice as great as untreated controls, while in co-cultures ammonia did not significantly increase cell death. Free radical production at 3 min was increased (69%, P<0.05) in pure neuronal cultures but not in co-cultures. The neuroprotective effects observed in co-cultures may have been mediated by the astrocyte’s ability to scavenge free radicals, by their detoxification of ammonia and/or by their neurotrophic actions. The neuroprotective action of astrocytes may explain the failure to detect significant pathological changes in neurons in ammonia toxicity in vivo. Special issue dedicated to Dr. Bernd Hamprecht.  相似文献   

14.
Oridonin was reported to induce L929 cell apoptosis via ROS-mediated mitochondrial and ERK pathways; however, the precise mechanisms by which oridonin induces cell death remain unclear. Herein, we found that oridonin treatment induced an increase in G2/M phase cell percentage. And, G2/M phase arrest was associated with down-regulation of cell cycle related cdc2, cdc25c and cyclinB levels, as well as up-regulation of p21 and p-cdc2 levels. In addition, we discovered that interruption of p53 activation decreased oridonin-induced apoptosis, and blocking ERK by specific inhibitors or siRNA suppressed oridonin-induced p53 activation. Moreover, inhibition of PTK, protein kinase C, Ras, Raf or JNK activation increased oridonin-induced apoptosis. Also, the level of Ras, Raf or JNK was down-regulated by oridonin, and the inhibition of PTK, Ras, Raf activation decreased p-JNK level. In conclusion, oridonin induces L929 cell G2/M arrest and apoptosis, which is regulated by promoting ERK-p53 apoptotic pathway and suppressing PTK-mediated survival pathway.  相似文献   

15.
While traces of manganese (Mn) take part in important and essential functions in biology, elevated exposures have been shown to cause significant toxicity. Chronic exposure to the metal leads to manganese neurotoxicity (or manganism), a brain disorder that resembles Parkinsonism. Toxic effect mechanisms of Mn is not understood, toxic concentrations of manganese are not well defined and blood manganese concentration at which neurotoxicity occurs has not been identified. There are reports indicating that the most abundant Mn-species in Mn carriers within blood is the Mn-citrate complex. Despite the well-documented information about the toxic effects of Mn, there are scarce reports concerning the effects of manganese compounds on both structure and functions of cell membranes, particularly those of human erythrocytes. With the aim to better understand the molecular mechanisms of the interaction of Mn with cell membranes, MnCl2, and the Mn-citrate complex were incubated with intact erythrocytes, isolated unsealead human erythrocyte membranes (IUM), and molecular models of the erythrocyte membrane. These consisted in bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), phospholipid classes present in the outer and inner monolayers of the erythrocyte membrane, respectively. The capacity of the Mn compounds to perturb the bilayer structures of DMPC and DMPE was evaluated by X-ray diffraction, IUM were studied by fluorescence spectroscopy, and intact human erythrocytes were observed by scanning electron microscopy (SEM). In all these systems it was found that Mn2+ exerted considerable higher structural perturbations than the Mn-citrate complex.  相似文献   

16.
Oxidative stress is known to induce cell death in a wide variety of cell types, apparently by modulating intracellular signaling pathways. Activation of extracellular signal-regulated kinase (ERK) in oxidative stress remains controversial. In some cellular systems, the ERK activation is associated with protection against oxidative stress, while in other system, the ERK activation is involved in apoptotic cell death. The present study was undertaken to examine the role of ERK activation in H2O2-induced cell death of human glioma (A172) cells. H2O2 resulted in a time- and dose-dependent cell death, which was largely attributed to apoptosis. H2O2 treatment caused marked sustained activation of ERK. The ERK activation and cell death induced by H2O2 was prevented by catalase, the hydrogen peroxide scavenger, and U0126, an inhibitor of ERK upstream kinase MEK1/2. Transient transfection with constitutive active MEK1, an upstream activator of ERK1/2, increased H2O2-induced cell death, whereas transfection with dominant-negative mutants of MEK1 decreased the cell death. The ERK activation and cell death caused by H2O2 was inhibited by antioxidants (N-acetylcysteine and trolox), Ras inhibitor, and suramin. H2O2 produced depolarization of mitochondrial membrane potential and its effect was prevented by catalase and U0126. Taken together, these findings suggest that growth factor receptor/Ras/MEK/ERK signaling pathway plays an active role in mediating H2O2-induced apoptosis of human glioma cells and functions upstream of mitochondria-dependent pathway to initiate the apoptotic signal.  相似文献   

17.
N‐(3‐Oxododecanoyl)‐l ‐homoserine lactone (C12) is produced by Pseudomonas aeruginosa to function as a quorum‐sensing molecule for bacteria–bacteria communication. C12 is also known to influence many aspects of human host cell physiology, including induction of cell death. However, the signalling pathway(s) leading to C12‐triggered cell death is (are) still not completely known. To clarify cell death signalling induced by C12, we examined mouse embryonic fibroblasts deficient in “initiator” caspases or “effector” caspases. Our data indicate that C12 selectively induces the mitochondria‐dependent intrinsic apoptotic pathway by quickly triggering mitochondrial outer membrane permeabilisation. Importantly, the activities of C12 to permeabilise mitochondria are independent of activation of both “initiator” and “effector” caspases. Furthermore, C12 directly induces mitochondrial outer membrane permeabilisation in vitro. Overall, our study suggests a mitochondrial apoptotic signalling pathway triggered by C12, in which C12 or its metabolite(s) acts on mitochondria to permeabilise mitochondria, leading to activation of apoptosis.  相似文献   

18.
Manganese (Mn) is an essential dietary nutrient, but an excess or accumulation can be toxic. Disease states, such as manganism, are associated with overexposure or accumulation of Mn and are due to the production of reactive oxygen species, free radicals, and toxic metabolites; alteration of mitochondrial function and ATP production; and depletion of cellular antioxidant defense mechanisms. This review focuses on all of the preceding mechanisms and the scientific studies that support them as well as providing an overview of the absorption, distribution, and excretion of Mn and the stability and transport of Mn compounds in the body.  相似文献   

19.
Mimosine, a non-protein amino acid, is mainly known for its action as a reversible inhibitor of DNA replication and, therefore, has been widely used as a cell cycle synchronizing agent. Recently, it has been shown that mimosine also induces apoptosis, as mainly reflected in its ability to elicit characteristic nuclear changes. The present study elucidates the mechanism underlying mimosine’s apoptotic effects, using the U-937 leukemia cell line. We now demonstrate that in isolated rat liver mitochondria, mimosine induces mitochondrial swelling that can be inhibited by cyclosporine A, indicative of permeability transition (PT) mega-channel opening. Mimosine-induced apoptosis was accompanied by formation of hydrogen peroxide and a decrease in reduced glutathione levels. The apoptotic process was partially inhibited by cyclosporine A and substantially blocked by the antioxidant N-acetylcysteine, suggesting an essential role for reactive oxygen species formation during the apoptotic processes. The apoptosis induced by mimosine was also accompanied by a decrease in mitochondrial membrane potential, cytochrome c release and caspase 3 and 9 activation. Our results thus imply that mimosine activates apoptosis through mitochondrial activation and formation of H2O2, both of which play functional roles in the induction of cell death. Maher Hallak and Liat Vazana have contributed equally to the work.  相似文献   

20.
Altered glial function may contribute to the initiation or progression of neuronal death in neurodegenerative diseases. Thus, modulation of astrocyte death may be essential for preventing pathological processes in the CNS. In recent years, metabotropic glutamate receptor (mGluR) activation has emerged as a key target for neuroprotection. We investigated the effect of subtype 3 mGluR (mGluR3) activation on nitric oxide (NO)‐induced astroglial death. A mGluR3 selective agonist, LY379268, reduced inducible NO synthase expression and NO release induced by bacterial lipopolysaccharide and interferon‐γ in cultured rat astrocytes. In turn, a NO donor (diethylenetriamine/NO) induced apoptotic‐like death in cultured astrocytes, which showed apoptotic morphology and DNA fragmentation, but no caspase 3 activation. LY379268 prevented astrocyte death induced by NO exposure, which correlates with a reduction in: phosphatidylserine externalization, p53 and Bax activation and mitochondrial permeability. The reported effects of LY379268 were prevented by the mGluR3 antagonist (s)‐α‐ethylglutamic acid. All together, these findings show the protective effect of mGluR3 activation on astroglial death and provide further evidence of a role of these receptors in preventing CNS injury triggered by several inflammatory processes associated with dysregulated NO production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号