首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 541 毫秒
1.
郭中伟  李鸿昌 《昆虫知识》2002,39(6):401-405
蝗虫多样性既是草原生态系统演化的产物 ,反过来也影响着草原生态系统的结构与功能。蝗虫多样性状况与草原生态系统的持续发展有着密切的关联 ,这其中的科学问题包括 :(1 )蝗虫多样性及其空间变异机理 ;(2 )蝗虫多样性对草原生态系统过程的影响 ;(3 )蝗虫多样性空间格局与草原生态系统演化中的自然和人文因素的关联 ;(4 )蝗虫种群暴发的多样性阈值与草原生态系统的调控 ;(5 )蝗虫多样性和稳定性与草原生态系统的健康等。深入发掘生物多样性所包含的科学内涵 ,将一个物种的多样性与生态系统的结构和功能耦合起来研究 ,从重要物种蝗虫的生物多样性入手 ,深入探讨草原生态系统的持续发展问题 ,将为减少或减轻我国西部草原蝗灾发生提供科学的支持  相似文献   

2.
研究生物多样性对季节的响应对于维持生态系统稳定、保护生物多样性、解析群落构建机制具有重要意义。本文以博斯腾湖湖滨湿地为研究对象,探究不同季节植物群落的物种多样性与功能多样性的变化规律。结果显示:(1)物种多样性指数随季节变化没有显著改变;功能多样性指数中,功能丰富度由春季到夏季逐渐减小,功能离散度逐渐增大;不同季节的功能均匀度差异性不显著;(2)植物功能性状在不同季节间差异显著;春季叶绿素含量显著低于夏季;夏季比叶面积和叶干物质含量显著高于秋季;叶片含水量和厚度由春季到秋季呈递增趋势;(3)影响Pielou指数和功能丰富度的主要环境因子分别为土壤铵态氮和速效磷;影响Shannon-Wiener指数、Simpson指数和功能均匀度的主要环境因子为土壤有机质;影响功能离散度的主要环境因子为土壤含水量;(4)影响最大株高的主要环境因子为土壤 pH值;影响叶干物质含量的主要环境因子为土壤速效钾;影响叶片厚度和比叶面积的主要环境因子为土壤总磷;而影响叶片含水量的主要环境因子为土壤硝态氮;叶绿素含量与土壤因子无显著相关关系。  相似文献   

3.
冯思远  赵文武  韩逸 《生态学报》2022,(5):2050-2058
2021年1月11日,由联合国、世界银行和法国共同发起的第四届“一个星球”峰会通过线上线下相结合的方式在巴黎举行,本次峰会主题为生物多样性保护。峰会针对4个议题展开,分别是:(1)保护陆地和海洋生态系统;(2)促进生态农业;(3)生物多样性与资金筹措;(4)保护人类健康、物种和热带森林。对变化背景下的生物多样性保护主要有以下几个方面的启示:(1)识别优先保护区域,提高保护区有效性;(2)开展变化背景下的生态修复规划,提高自然-社会生态系统抗风险能力;(3)加强模型预测与情景分析,发展生物多样性与生态系统服务集成模型;(4)发展基于自然的解决方案,可持续利用自然资源;(5)加强后疫情时代国际间交流合作,开展生物多样性保护资金筹措工作。  相似文献   

4.
《植物学通报》2006,23(1):125-125
第七届全国生物多样性保护与持续利用研讨会将于2006年8月在吉林省长春市召开。本次会议由国际生物多样性计划中国国家委员会与有关部门和组织共同主办。会议诚邀全国及海内外有识之士,共同研讨全球变化与生物多样性保护及其相关的科学与保护问题。会议主题:(1)全球气候变化与生物多样性保护;(2)全球森林生态系统网络与生物多样性永久监测;(3)生物多样性与生物安全;(4)湿地生物多样性;(5)全球环境变化与可持续发展;(6)生物多样性信息管理与知识传播;(7)生态建设与生物多样性保护;(8)物种濒危机制与保护对策特别专题:(1)生态系统控制实验;(2)…  相似文献   

5.
贵州部分森林群落物种多样性初步研究   总被引:47,自引:1,他引:46       下载免费PDF全文
 本文根据贵州省178个森林群落样地的数据研究了群落物种的多样性。测定的指标有群 落物种丰富度,群落Simpson多样性指数和群落均匀度。测定结果表明;不同垂直带生物气 候条件下的森林群落有不同的多样性。相同垂直带生物气候条件下,基质生境相同时,不同森林植被亚型的群落的多样性近似,基质生境不同时,群落多样性则不同;同一群落类型的各个样地的多样性也有变化,结构不同的群落个体,其多样性指数不同,演替趋势也不同。乔木第二亚层的多样性普遍地高于乔木第一亚层。同一演替系列中,越接近顶极阶段多样性越高。多样性指数与群落物种丰富度,均匀度呈紧密的正相关,与群落个体总数没有相关。认为多样性测定在比较、说明群落的结构、类型、组织特征、生境、演替等方面有一定意义。  相似文献   

6.
植物凝集素及其在抗虫植物基因工程中的应用   总被引:5,自引:0,他引:5  
常团结  朱祯 《遗传》2002,24(4):493-500
植物凝集素是一类具有特异糖结合活性的蛋白,具有一个或多个可以与糖或寡聚糖特异可逆结合的非催化结构域。其糖结合活性是针对外源寡糖,参与植物的防御反应。本文综述了有关植物凝集素分子生物学的研究进展,介绍了植物凝集素的分类、糖结合特性、近年来有关植物凝集素蛋白晶体结构的研究,及其与糖结合能力相关的生物学功能。并对植物凝集素在抗虫植物基因工程中的应用现状及发展前景做了阐述。 Abstract:Plant lectins are proteins possessing at least one non-catalytic domain that binds reversibly to specific mono-or oligosaccharides.They distinguish themselves from other plant proteins by the ability of carbohydrate binding.Most plant lectins are directed to bind foreign polysacchride.Plant lectin is believed to take part in the defense responses against invader.In this paper we presented a review on the classification,characters,functions,crystal structure and,functions related to the carbohydrate binding activity.The status and prospect of plant lectins utilization were also discussed.  相似文献   

7.
黄土丘陵区土地覆盖和生物多样性功能演化及预测   总被引:2,自引:0,他引:2  
马永强  石云  郝姗姗  赵金涛 《生态学报》2019,39(8):2806-2815
为探究黄土丘陵区土地覆盖和生物多样性功能演化,评价生物多样性保护视角下的最优生境,研究以宁夏彭阳县为研究区,1995、2000、2005、2010、2015年的Landsat TM影像为基础数据,集成3S技术获取土地覆盖时空动态变化特征,采用陷阱法于2012和2013年6—8月在研究区灌草混交林地、乔灌混交林地等6种不同生境内采集地表甲虫样本数据,利用InVEST-Habitate Quality模型评价生物多样性功能,结合采样数据探究最佳生境,借助CA-Marcov模型模拟研究区2020年土地覆盖及生物多样性功能。研究结果表明:(1)1995—2015年彭阳县土地覆盖及生物多样性功能发生显著变化,未利用地减少,城镇用地快速扩张,生境中天然封育草地和水平农田地变化明显,研究期间生物多样性功能经历了退化-优化的转变,2015年最佳;(2)模拟2020年土地覆盖中的水平农田地、城镇用地等较2015年有显著变化,生物多样性功能提高;(3)灌草混交林地是彭阳县生物多样性功能保护的最优生境,生境中固有的"88542"水平沟整地措施可作为当地典型生态恢复的最优模式;(4)InVEST模型和CA-Markov模型综合利用,普适性及准确性较好,研究区水平沟、鱼鳞坑、"88542"等水土保持工程和退耕还林还草、生态功能区划等生态恢复策略的实施和建设成效显著。  相似文献   

8.
卢训令  刘俊玲  丁圣彦 《生态学报》2019,39(13):4602-4614
农业景观是人类生活所需资料的最主要来源地,农业景观及其提供的生物多样性和生态系统服务是影响人类福祉的最主要因素之一。系统梳理了景观异质性变化对生物多样性和生态系统服务影响的相关研究,总结指出:(1)农业景观格局变化会强烈的影响着区域生物多样性和生态系统服务,但总体上更关注了空间异质性,对于时间和功能异质性的研究仍需加强;(2)尺度效应、大尺度上景观背景的差异、种间差异、营养级联效应等会对景观异质性和生物多样性、生态系统服务间的关系产生显著的、综合的、交互的影响效应。未来区域农业景观中如何通过景观构建和管理措施的施行来确保生物多样性与生态系统服务供给的持续稳定仍需进一步加强以下内容的研究:景观异质性变化在时间上和功能上的影响效应及其阈值的探讨;跨尺度、多因素、多物种类群与多生态系统服务的综合及其交互作用;不同生物类群和不同生态系统服务间的权衡;景观异质性提高与有效生境面积下降及其引起的生物随机丧失间的权衡等问题。  相似文献   

9.
植物血凝素(1ectin)一词,起源于拉丁语Legere,它是非免起源的,能与糖类结合的一类蛋白质,具有使细胞凝集和多糖沉淀的性质。一般而言,植物凝集素是由二至四个亚单位的寡聚蛋白,个别植物凝集素分子的亚单位可达十八个,通常每个亚单位有一个能与糖结合的位点,这样使植物血凝素能凝能植物和动物的细胞,在含糖的微分子之间起连接作用,其连接方式主要是疏水键和氢键。不同的植物血凝素在分子量大小,氨基酸组成,对金属的需求及三维结构方面都不相同。最早的凝集素是1888在植物中发现的,所以命名为植物凝集素。当时,Stillmark在蓖麻子中发现了一种蛋白酶细胞凝集因子。至今,已分离了几百种凝集素,发现其不光存在于植物中,亦存在于动物和微生物中,几乎见于各种生活的有机体,并不限于特殊的器官和组织。  相似文献   

10.
生物多样性与生态系统服务——关系、权衡与管理   总被引:4,自引:0,他引:4  
李奇  朱建华  肖文发 《生态学报》2019,39(8):2655-2666
生物多样性和生态系统服务是人类生存和社会经济可持续发展的物质基础,应对生物多样性丧失和生态系统服务退化问题已经成为继气候变化之后的又一个全球性环境热点问题。生物多样性是生态系统生产力、稳定性、抵抗生物入侵以及养分动态的主要决定因素,生物多样性越高,生态系统功能性状的范围越广,生态系统服务质量就越高越稳定。目的是探讨生物多样性和生态系统服务之间的关系:(1)明确了生物多样性与生态系统过程、功能、服务之间的关系;(2)生物多样性在生态系统服务中的角色:生物多样性在不同的空间尺度通过各种形式的运行机制与生态系统服务产生联系,生物多样性是生态系统过程的调节者,是巩固生态系统服务的一个重要因素,生物多样性也是一种终极的生态系统服务,并在遗传和物种水平上直接贡献了其利益和价值;(3)生物多样性与生态系统服务权衡和协同关系的研究可以更好的帮助管理人员做出有利的决策和保护工作,也是制定规划和适应策略以减少生物多样性危机带来的不利影响的基础;(4)生物多样性与生态系统服务的关系在不同的时间和空间尺度上是不恒定的,有必要共同确定生态系统服务和生物多样性的空间格局,以有效和可持续的进行生态系统管理;(5)虽然生物多样性保护和生态系统管理还存在许多不确定性,但相关理论应该在管理、保护和恢复生态系统中发挥重要作用。研究提出了进一步研究的领域,以促进生物多样性保护和生态系统服务提供之间的协同作用。希望对相关领域的研究有所帮助。  相似文献   

11.
Mannose-specific lectins are widely distributed in higher plants and are believed to play a role in recognition of high-mannose type glycans of foreign micro-organisms or plant predators. Structural studies have demonstrated that the mannose-binding specificity of lectins is mediated by distinct structural scaffolds. The mannose/glucose-specific legume (e.g., Con A, pea lectin) exhibit the canonical twelve-stranded beta-sandwich structure. In contrast to legume lectins that interact with both mannose and glucose, the monocot mannose-binding lectins (e.g., the Galanthus nivalis agglutinin or GNA from bulbs) react exclusively with mannose and mannose-containing N-glycans. These lectins possess a beta-prism structure. More recently, an increasing number of mannose-specific lectins structurally related to jacalin (e.g., the lectins from the Jerusalem artichoke, banana or rice), which also exhibit a beta-prism organization, were characterized. Jacalin itself was re-defined as a polyspecific lectin which, in addition to galactose, also interacts with mannose and mannose-containing glycans. Finally the B-chain of the type II RIP of iris, which has the same beta-prism structure as all other members of the ricin-B family, interacts specifically with mannose and galactose. This structural diversity associated with the specific recognition of high-mannose type glycans highlights the importance of mannose-specific lectins as recognition molecules in higher plants.  相似文献   

12.
The direct interaction of mannose-specific plant lectins with gp120 of HIV-1 was studied by surface plasmon resonance. Inhibition experiments indicated that exposed high mannose type glycans play a key role in the interaction. Most of the lectins specifically accommodate outer alpha1,2-, alpha1,3-, or alpha1,6-linked di- or trimannosides, and especially legume lectins, also interact with the trimannoside core of the complex type glycans. The unexpected affinity of some lectins towards gp120 presumably results from conformational differences in their binding sites. These results demonstrate that mannose-specific plant lectins are powerful tools to study the accessibility and elucidate the function of the gp120 glycans in the recognition and infection of the host cells by HIV-1.  相似文献   

13.
Raval S  Gowda SB  Singh DD  Chandra NR 《Glycobiology》2004,14(12):1247-1263
Lectins are known to be important for many biological processes, due to their ability to recognize cell surface carbohydrates with high specificity. Plant lectins have been model systems to study protein-carbohydrate recognition, because individually they exhibit high sensitivity and as a group large diversity in recognizing carbohydrate structures. Although extensive studies have been carried out for legume lectins that have led to interesting insights into the sequence determinants of sugar recognition in them, frameworks with such specific correlations are not available for other plant lectin families. This study reports a large-scale data acquisition and extensive analysis of sequences and structures of beta-prism-I or jacalin-related lectins (JRLs) and shows that hypervariability in the binding site loops generates carbohydrate recognition diversity, a strategy analogous to that in legume lectins. Analyses of the size, conformation, and sequence variability in key regions reveal the existence of a common theme, encoded as a set of structural features over a common scaffold, in defining specificity. This study also points to the remarkable range of domain architectures, often arising out of gene duplication events in lectins of this family. The data analyzed here also indicate a spectacular variety of quaternary associations possible in this family of lectins that have implications for glycan recognition. These results thus provide sequence-structure-function correlations, an understanding of the molecular basis of carbohydrate recognition by beta-prism-I lectins, and also a rationale for engineering specific recognition capabilities in relevant molecules.  相似文献   

14.
Lectins are a group of proteins of non‐immune origin recognized for their ability to bind reversibly to carbohydrates. Researchers have been intrigued by oligosaccharides and glycoconjugates for their involvement as mediators of complex cellular events and then many biotechnological applications of lectins are based on glycocode decoding and their activities. Here, we report a structural and biological study of a ConA‐like mannose/glucose‐specific lectin from Canavalia bonariensis seeds, CaBo. More specifically, we evaluate the binding of CaBo with α‐methyl‐D‐mannoside (MMA) and mannose‐1,3‐α‐D‐mannose (M13) and the resultant in vivo effects on a rat model of acute inflammation. A virtual screening was also carried out to cover a larger number of possible bindings of CaBo. In silico analysis demonstrated the stability of CaBo interaction with mannose‐type ligands, and the lectin was able to induce acute inflammation in rats with the participation of the carbohydrate recognition domain (CRD) and histamine release. These results confirm the ability of CaBo to interact with hybrid and high‐mannose N‐glycans, supporting the hypothesis that CaBo's biological activity occurs primarily through its interaction with cell surface glycosylated receptors.  相似文献   

15.
A re-investigation of the occurrence and taxonomic distribution of proteins built up of protomers consisting of two tandem arrayed domains equivalent to the GNA [Galanthus nivalis (snowdrop) agglutinin] revealed that these are widespread among monotyledonous plants. Phylogenetic analysis of the available sequences indicated that these proteins do not represent a monophylogenetic group but most probably result from multiple independent domain duplication/in tandem insertion events. To corroborate the relationship between inter-domain sequence divergence and the widening of specificity range, a detailed comparative analysis was made of the sequences and specificity of a set of two-domain GNA-related lectins. Glycan microarray analyses, frontal affinity chromatography and surface plasmon resonance measurements demonstrated that the two-domain GNA-related lectins acquired a marked diversity in carbohydrate-binding specificity that strikingly contrasts the canonical exclusive specificity of their single domain counterparts towards mannose. Moreover, it appears that most two-domain GNA-related lectins interact with both high mannose and complex N-glycans and that this dual specificity relies on the simultaneous presence of at least two different independently acting binding sites. The combined phylogenetic, specificity and structural data strongly suggest that plants used domain duplication followed by divergent evolution as a mechanism to generate multispecific lectins from a single mannose-binding domain. Taking into account that the shift in specificity of some binding sites from high mannose to complex type N-glycans implies that the two-domain GNA-related lectins are primarily directed against typical animal glycans, it is tempting to speculate that plants developed two-domain GNA-related lectins for defence purposes.  相似文献   

16.
植物凝集素研究进展   总被引:18,自引:1,他引:17  
植物凝集素广泛分布于植物界,它可以根据不同性质进行分类,按进化及结构相关性可以分为七个家族;豆科凝集素,单子叶植物甘露糖结构凝集素,含橡胶素结构域的几丁质结合凝集素,2型核糖体失活蛋白,葫芦科韧皮部凝集素,木菠萝素相关凝集素和苋科凝集素,在长期的进化过程中,它们形成几种不同的结合模体来识别一些外源多糖,在植物中未发现合适的内源性多糖受体。植物凝集素在生物学研究,农业和医学上有广泛的应用。  相似文献   

17.
Lectins are ubiquitous proteins with the ability to induce cell agglutination and, mediate cellular and molecular recognition processes in a variety of biological interactions. Fungi display exquisite specificity for target tissues and attach to host glycoconjugates via these sugar-binding proteins. Although only few reports are available on lectin activity of yeasts, these sugar binding proteins have been embraced for their role in cell flocculation, a commercially beneficial property, that simplifies downstream recovery operations in yeast fermentations. The lectins bind to cell wall mannans of the neighboring cells via hydrogen bonds leading to the formation of cell aggregates which get interrupted in the presence of specific sugars. Attachment of pathogenic yeasts to host cell surface is also a consequence of lectin-mediated recognition process. This review provides a brief overview of yeast lectins, with an insight to lectin-mediated cellular recognition phenomenon in yeasts.  相似文献   

18.
Binding and uptake studies of in vitro aged or senescent rat erythrocytes by isolated rat liver macrophages suggest recognition by galactose-specific receptors on the cell surface of the macrophages. We analyzed carbohydrates exposed on old erythrocytes by plant lectins in an agglutination assay in comparison with freshly isolated untreated erythrocytes. Rat erythrocytes aged in vitro by storage are agglutinated by a panel of lectins that do not react with freshly isolated erythrocytes. Specificity of agglutination was shown by inhibition with monosaccharides. Antibodies eluted from senescent rat erythrocytes agglutinate in vitro aged as well as senescent rat erythrocytes, but not freshly isolated cells nor human erythrocytes. Galactose-specific lectins isolated from rat liver give similar results; they also agglutinate normal human erythrocytes. Agglutination by the liver lectin is inhibitable by galactose and N-acetylgalactosamine but not by N-acetylglucosamine or mannose. Furthermore, rat liver macrophages devoid of galactose-specific receptors show markedly reduced binding of senescent rat erythrocytes. We conclude that recognition of old rat erythrocytes is mediated by two systems: old erythrocytes expose different terminal sugar residues or a different arrangement of glycans when compared to young erythrocytes, rendering them recognizable by liver lectins and by autoantibodies.  相似文献   

19.
Lectins are a structurally diverse group of carbohydrate recognizing proteins that are involved in various biological processes and exhibit substantial structural diversity. Interestingly, in spite of having varied carbohydrate-binding specificities, they show modest variation in their secondary and tertiary structure. However, very similar tertiary folds give rise to a range of quaternary structures by simply varying the mutual orientations of the subunits involved. The variety in the quaternary structure generates multivalency in sugar specificities among lectins along with the requisite surface topology to allow for unobstructed recognition events.  相似文献   

20.
Complex carbohydrates and sugar receptors at the surface of eukaryotic cells are involved in recognition phenomena. Membrane lectins have been characterized, using biochemical, biological and cytological methods. Their biological activities have been assessed using labeled glycoproteins or neoglycoproteins. Specific glycoproteins or neoglycoproteins have been used to inhibit their binding capacity in both in vitro and in vivo experiments. In adults, lymphoid and myeloid cells as well as tumor cells grow in a given organ and eventually migrate and home in another organ; these phenomena are known as the homing process or metastasis, respectively. In specific cases, membrane lectins of endothelial cells recognize cell surface glycoconjugates of lymphocytes or tumor cells, while membrane lectins of lymphocytes and of tumor cells recognize glycoconjugates of extracellular matrices or of non-migrating cells. Therefore, membrane lectins are involved in cell-cell recognition phenomena. Membrane lectins are also involved in endocytosis and intracellular traffic of glycoconjugates. This property has been demonstrated not only in hepatocytes, fibroblasts, macrophages and histiocytes but also in tumor cells, monocytes, thyrocytes, etc. Upon endocytosis, membrane lectins are present in endosomes, whose luminal pH rapidly decreases. In cells such as tumor cells or macrophages, endosomes fuse with lysosomes; it is therefore possible to target cytotoxic drugs or activators, by binding them to specific glycoconjugates or neoglycoproteins through a linkage specifically hydrolyzed by lysosomal enzymes. In cells such as monocytes, the delivery of glycoconjugates to lysosomes is not active; in this case, it would be preferable to use an acid-labile linkage. Cell surface membrane lectins are developmentally regulated; they are present at given stages of differentiation and of malignant transformation. Cell surface membrane lectins usually bind glycoconjugates at neutral pH but not in acidic medium: their ligand is released in acidic specialized organelles; the internalized ligand may be then delivered into lysosomes, while the membrane lectin is recycled. Some membrane lectins, however, do bind their ligand in relatively acidic medium as in the case of thyrocytes. The presence of cell surface membrane lectins which recognize specific sugar moieties opens the way to interesting applications: for instance, isolation of cell subpopulations such as human suppressor T cells, targeting of anti-tumor or anti-viral drugs, targeting of immunomodulators or biological response modifiers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号