首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Summary The behaviour of plastids and mitochondria during the formation and development of the male gametophyte of Chlorophytum comosum has been investigated using electron microscopy. During first pollen mitosis an intracellular polarization of plastids occurs in that the plastids are clustered in the centre of the microspore. The originating generative cell normally lacks plastids. Only in a small number of microspores have plastids been observed near the dividing nucleus of the microspore and later on in the generative cell. These observations agree with the genetic investigations of Collins (1922) on the mode of plastid inheritance which demonstrated a small amount of biparental plastid inheritance in Chlorophytum. The cytological mechanisms underlying plastid polarization during the first pollen mitosis are discussed.  相似文献   

2.
 Mature Jasminum officinale and J. nudiflorum pollen grains were stained with 4′,6-diamidino-2-phenylindole (DAPI) and examined by epifluorescence microscopy. The pollen grains were found to be trinucleate, and the sperm cells in both species contained a large number of epifluorescent spots that corresponded to cytoplasmic DNA aggregates (nucleoids). The nucleoids of J. nudiflorum were observed to be dimorphic under the epifluorescence microscope, indicating that the sperm cells might contain both plastid and mitochondrial DNA. The nucleoids of J. officinale presented a similar appearance when stained with DAPI, but electron microscopic examination of the sperm cells revealed that they contained both plastids and mitochondria. When analyzed by DNA immunogold electron microscopy, gold particles were detected on both plastids and mitochondria. These findings demonstrated the preservation of plastid and mitochondrial DNA in mature sperm cells and thus the potential for biparental cytoplasmic inheritance in J. officinale and J. nudiflorum. Received: 8 August 1997 / Revision accepted: 25 February 1998  相似文献   

3.
Organellar DNA in mature pollen grains of eight angiosperm species (Actinidia deliciosa Lindl., Antirrhinum majus L., Arabidopsis thaliana (L.) Heynh., Medicago sativa L., Musa acuminata Colla, Pelargonium zonale (L.) L'Hér, Petunia hybrida Vilm. and Rhododendron mucronatum (Blume) G. Don, in which the modes of organellar inheritance have been determined genetically, was observed by fluorescence microscopy using Technovit 7100 resin sections double-stained with 4′,6-diamidino-2-phenylindole (DAPI) and 3,3′-dihexyloxacarbocyanine iodide (DiOC6). The eight species were classified into four types, based on the presence or absence of organellar DNA in mature generative cells: namely (1) type “m+p+”, which has both mitochondrial and plastid DNA (P. zonale), (2) type “m+p–”, which only has mitochondrial DNA (M. acuminata), (3) type “m−p+”, which only has plastid DNA (A. deliciosa, M. sativa, R. mucronatum), and (4) type “m−p−”, which has neither mitochondrial nor plastid DNA (A. majus, A. thaliana, P. hybrida). This classification corresponded to the mode of organellar inheritance determined by genetic analysis. The presence or absence of mitochondrial and plastid DNA corresponded to paternal/biparental inheritance or maternal inheritance of the respective organelle, respectively. When organellar DNA was present in mature generative cells (m+ or p+), the DNA content of the organelles in the generative cells started to increase immediately after pollen mitosis one (PMI). In contrast, the DNA content of organelles in generative cells decreased rapidly after PMI when organellar DNA was absent from mature generative cells (m− or p−). These results indicate that the modes of inheritance (paternal/biparental inheritance or maternal inheritance) of mitochondria and plastids are determined independently of each other in young generative cells just after PMI. Received: 22 December 1998 / Accepted: 8 February 1999  相似文献   

4.
The inheritance of mitochondria and plastids in angiosperms has been categorized into three modes: maternal, biparental and paternal. Many mechanisms have been proposed for maternal inheritance, including: (1) physical exclusion of the organelle itself during pollen mitosis I (PMI); (2) elimination of the organelle by formation of enucleated cytoplasmic bodies (ECB); (3) autophagic degradation of organelles during male gametophyte development; (4) digestion of the organelle after fertilization; and (5)—the most likely possibility—digestion of organellar DNA in generative cells just after PMI. In detailed cytological observations, the presence or absence of mitochondrial and plastid DNA in generative cells corresponds to biparental/paternal inheritance or maternal inheritance of the respective organelle examined genetically. These improved cytological observations demonstrate that the replication or digestion of organellar DNA in young generative cells just after PMI is a critical point determining the mode of cytoplasmic inheritance. This review describes the independent control mechanisms in mitochondria and plastids that lead to differences in cytoplasmic inheritance in angiosperms.  相似文献   

5.
The fates of mitochondrial and plastid nucleoids during pollen development in six angiosperm species (Antirrhinum majus, Glycine max, Medicago sativa, Nicotiana tabacum, Pisum sativum, and Trifolium pratense) were examined using epifluorescence microscopy after double staining with 4',6-diamidino-2- phenylindole (DAPI) to stain DNA and with a potentiometric dye (either DiOC7 or rhodamine 123) for visualization of metabolically active mitochondria. From the pollen mother cell stage to the microspore stage of pollen development, mitochondria and plastids both contained DNA detectable by DAPI staining. However, during the further maturation preceding anthesis, mitochondrial DNA became undetectable cytologically in either the generative or the vegetative cell of mature pollen; even in germinated pollen tubes containing hundreds of metabolically active mitochondria undergoing cytoplasmic streaming, vital staining with DAPI failed to reveal mitochondrial DNA. By the mature pollen stage, plastid DNA also became undetectable by DAPI staining in the vegetative cell. However, in the generative cell of mature pollen the timing of plastid DNA disappearance as detected by DAPI varied with the species. Plastid DNA remained detectable only in the generative cells of pollen grains from species known or suspected to have biparental transmission of plastids. The apparent absence of cytologically detectable organelle genomes in living pollen was further examined using molecular methods by hybridizing organelle DNA-specific probes to digests of total DNA from mature pollen and from other organs of A. majus and N. tabacum, both known to be maternal for organelle inheritance. Mitochondrial DNA was detected in pollen of both species; thus the cytological alteration of mitochondrial genomes during pollen development does not correspond with total mtDNA loss from the pollen. Plastid DNA was detectable with molecular probes in N. tabacum pollen but not in A. majus pollen. Since the organelle DNA detected by molecular methods in mature pollen may lie solely in the vegetative cell, further study of the basis of maternal inheritance of mitochondria and plastids will require molecular methods which distinguish vegetative cell from reproductive cell organelle genomes. The biological effect of the striking morphological alteration of organelle genomes during later stages of pollen development, which leaves them detectable by molecular methods but not by DAPI staining, is as yet unknown.  相似文献   

6.
M. -B. Schröder 《Protoplasma》1985,124(1-2):123-129
Summary This paper describes the development of pollen grains ofGasteria verrucosa from the late microspore to the mature two-cellular pollen grain. Ultrastructural changes and the distribution of plastids as a result of the first pollen mitosis have been investigated using light and electron microscopy. The microspores as well as the generative and the vegetative cell contain mitochondria and other cytoplasmic organelles during all of the observed developmental stages. In contrast, the generative cell and the vegetative cell show a different plastid content. Plastids are randomly distributed within the microspores before pollen mitosis. During the prophase of the first pollen mitosis the plastids become clustered at the proximal pole of the microspore. The dividing nucleus of the microspore is located at the distal pole of the microspore. Therefore, the plastids are not equally distributed into both the generative and the vegetative cell. The possible reasons for the polarization of plastids within the microspore are briefly discussed. The lack of plastids in the generative cell causes a maternal inheritance of plastids inGasteria verrucosa.  相似文献   

7.
Summary In the present study, we studied changes in organellar DNA in the sperm cells of maturing pollen ofPelargonium zonale, a plant typical to exhibit biparental inheritance, by fluorescence microscopy after staining with 4,6-diamidino-2-phenylindole (DAPI) and by immunogold electron microscopy using anti-DNA antibody. Fluorescence intensities of DAPI-stained plastid nuclei in generative and sperm cells at various developmental stages were quantified with a video-intensified microscope photon counting system (VIMPCS). Results indicated that the amount of DNA per plastid in generative cells increased gradually during pollen development and reached a maximum value (about 70 T per plastid; 1 T represents the amount of DNA in a particle of T4 phage) in young sperm cells at 5 days before flowering. However, the DNA content of plastids was subsequently reduced to about 20% of the maximum value on the day of flowering. Moreover, the DNA content of the plastid further decreased to 4% of the maximum value when pollen grains were cultured for 6 h in germination medium. In contrast, the amount of DNA per mitochondrion did not decrease significantly around the flowering day. Similar results were also obtained by immunogold electron microscopy using anti-DNA antibody. The density of gold particles on plastids decreased during pollen maturation whereas labelling density on mitochondria remained relatively constant. The number of plastids and mitochondria per generative cell or per pair of sperm cells did not change significantly, indicating that the segregation of DNA by plastid division was not responsible for the decrease in the amount of DNA per plastid. These results indicate that the plastid DNA is preferentially degraded, but the mitochondrial DNA is preserved, in the sperm cells ofP. zonale. While the plastid DNA of the sperm cells decreased before fertilization, it was also suggested that the low DNA contents that remain in the plastids of the sperm cells are enough to account for the biparental inheritance of plastids inP. zonale.Abbreviations DAPI 4,6-diamidino-2-phenylindole - VIMPCS video-intensified microscope photon counting system  相似文献   

8.
Electron microscopic and DNA fluorescence microscopic observations of the plastids, mitochondria and their DNA in the developing pollen of Phaseolus vulgaris L. have demonstrated that the male plastids were excluded during microspore mitosis. The formed generative cell was free of plastids because of regional localization of plastids in early developing microspore and the extremely unequal distribution during division. The fluorescence observations of DNA showed that cytoplasmic (plastid and mitochondria) nucleoids degenerated and disappeared during the development of microspore/pollen, and were never presented in the generative cell at different development stages. These results provided precise cytological evidence of maternal plastid inheritance in Phaseolus vulgaris, which was not in accord with the biparental plastid inheritance identified from early genetic analysis. Based on authors' previous observations in a variety of common bean that the organelle DNA of male gamete was completely degenerated, the early genetic finding of the biparental plastid inheritance was unlikely to be effected by genotypic difference. Thus those biparental plastid inheritance might be caused by occational male plastid transmission, and plastid uniparental maternal inheritance was the species character of Phaseolus vulgaris.  相似文献   

9.
Mature pollen grains of 295 angiosperm species were screened by epifluorescence microscopy for a marker that denotes the mode of cytoplasmic inheritance. We used the DNA fluorochrome DAPI (4',6-diamidino-2-phenylindole) for pollen cell staining. The presence or absence of fluorescence of cytoplasmic DNA in the generative cell or sperm cells was examined in each species. The species examined represented 254 genera and 98 families, and 40 of these families had not been previously studied in this regard. The cytoplasmic DNA of the generative cell or sperm cells did not fluoresce in 81% of the species examined, from 83% of the genera and 87% of the families examined, indicating the potential for maternal cytoplasmic inheritance in these species. In contrast, the male reproductive cells of 19% of the species, from 17% of the genera and 26% of the families examined, displayed fluorescence of the cytoplasmic DNA, indicating the potential for biparental cytoplasmic inheritance in these species. The results revealed the potential for biparental cytoplasmic inheritance in several species in which the inheritance mode was previously unknown, including plants in the Bignoniaceae, Cornaceae, Cruciferae (Brassicaceae), Cyperaceae, Dipsacaceae, Hydrocharitaceae, Papaveraceae, Portulacaceae, Tiliaceae, Valerianaceae, and Zingiberaceae. Electron microscopy revealed that the sperm cells of Portulaca grandiflora contain both plastid and mitochondrial DNA. However, in the generative cells of Musella lasiocarpa, the mitochondria contain DNA, but the plastids do not. These data provide a foundation for further studies of cytoplasmic inheritance in angiosperms.  相似文献   

10.
应用电镜和DNA的DAPI荧光检测技术研究了菜豆(Phaseolus vulgaris L.)小孢子/花粉发育中质体和线粒体及其DNA存在的状况。观察表明:在小孢子分裂时质体全部分配到营养细胞中,初形成的生殖细胞已不含质体。线粒体和质体的DNA在花粉发育中也先后降解,生殖细胞从刚形成时发育至成熟花粉时期这两种细胞器DNA均不存在。研究结果为菜豆质体母系遗传提供了确切的细胞学证据。遗传分析的研究曾确定菜豆质体为双亲遗传,对与本研究结论不同的原因进行了讨论。  相似文献   

11.
Liu Y  Zhang Q  Hu Y  Sodmergen 《Plant physiology》2004,135(1):193-200
The majority of angiosperms display maternal plastid inheritance. The cytological mechanisms of this mode of inheritance have been well studied, but little is known about its genetic relationship to biparental inheritance. The angiosperm Chlorophytum comosum is unusual in that different pollen grains show traits of different modes of plastid inheritance. About 50% of these pollen grains exhibit the potential for biparental plastid inheritance, whereas the rest exhibit maternal plastid inheritance. There is no morphological difference between these two types of pollen. Pollen grains from different individuals of C. comosum all exhibited this variability. Closer examination revealed that plastid polarization occurs, with plastids being excluded from the generative cell during the first pollen mitosis. However, the exclusion is incomplete in 50% of the pollen grains, and the few plastids distributed to the generative cells divide actively after mitosis. Immunoelectron microscopy using an anti-DNA antibody demonstrated that the plastids contain a large amount of DNA. As there is a considerable discrepancy between the exclusion and duplication of plastids, resulting in plastids with opposite fates occurring simultaneously in C. comosum, we propose that the species is a transitional type with a mode of plastid inheritance that is genetically intermediate between the maternal and biparental modes.  相似文献   

12.
We examined pollen cells of Wisteria sinensis and Robinia pseudoacacia (Leguminosae) to determine a possible mode for cytoplasmic inheritance in these species. Epifluorescence microscopy revealed distinct mature generative cells. Mature generative cells of W. sinensis were associated with large numbers of punctuated fluorescent signals corresponding to cytoplasmic DNA aggregates, but no fluorescent signals were observed in the generative cells of R. pseudoacacia. Closer examination showed that the punctate fluorescent signals corresponded to plastid but not mitochondrial DNA. These results suggest a strong potential for paternal transmission of the plastid genome in W. sinensis. Electron microscopy confirmed the presence of plastids in the generative cells of W. sinensis and the absence of plastids in R. pseudoacacia cells due to an unequal distribution of plastids during the first pollen mitosis. Mitochondria were present and intact in the mature generative cells of both species. The lack of fluoresced mitochondrial DNA suggests a very low level of mitochondrial DNA in the cells. Immunoelectron microscopy demonstrated that the labeling of mitochondrial DNA in these cells was reduced by nearly 90% during pollen development. Such a dramatic reduction suggests an active degradation of paternal mitochondrial DNA, which may contribute greatly to the maternal inheritance of mitochondria. In short, we found that W. sinensis exhibits a strong potential for paternal transmission of plastids and that both W. sinensis and R. pseudoacacia appear to share the same mechanism for maternal mitochondrial inheritance.  相似文献   

13.
Liu Y  Cui H  Zhang Q  Sodmergen 《Plant physiology》2004,136(1):2762-2770
Epifluorescence microscopic detection of organelle DNA in the mature generative cell is a rapid method for determining the potential for the mode of cytoplasmic inheritance. We used this method to examine 19 of the known 22 to 27 species in the genus Syringa. Organelle DNA was undetectable in seven species, all in the subgenus Syringa, but was detected in the 12 species examined of the subgenera Syringa and Ligustrina. Therefore, species within the genus Syringa display differences in the potential cytoplasmic inheritance. Closer examination revealed that the mature generative cells of the species in which organelle DNA was detected contained both mitochondria and plastids, but cells of the species lacking detectable organelle DNA contained only mitochondria, and the epifluorescent organelle DNA signals from the mature generative cells corresponded to plastid DNA. In addition, semiquantitative analysis was used to demonstrate that, during pollen development, the amount of mitochondrial DNA decreased greatly in the generative cells of the species examined, but the amount of plastid DNA increased remarkably in the species containing plastids in the generative cell. The results suggest that all Syringa species exhibit potential maternal mitochondrial inheritance, and a number of the species exhibit potential biparental plastid inheritance. The difference between the modes of potential plastid inheritance among the species suggests different phylogenies for the species; it also supports recent conclusions of molecular, systematic studies of the Syringa. In addition, the results provide new evidence for the mechanisms of maternal mitochondrial inheritance in angiosperms.  相似文献   

14.
Ji X  Zhang Q  Liu Y  Sodmergen 《Protoplasma》2004,224(3-4):211-216
Summary. Epifluorescence microscopy of mature pollen grains of Turnera ulmifolia and Zantedeschia aethiopica stained with 4,6-diamidino-2-phenylindole demonstrated the presence of fluorescent cytoplasmic DNA aggregates in the male reproductive cells of both species. Double staining of the cells with 4,6-diamidino-2-phenylindole and 3,3-dihexyloxacarbocyanine iodide in Technovit resin sections showed that the mitochondria of these cells did not correspond to the fluorescent cytoplasmic DNA aggregates. Electron microscopy studies revealed both plastids and mitochondria in the cells of these species. In addition, immunoelectron microscopy using an anti-DNA monoclonal antibody showed clear labeling of plastids but not mitochondria. These data provide cytological evidence for biparental plastid inheritance and maternal mitochondrial inheritance in these species.Correspondence and reprints: College of Life Sciences, Peking University, Beijing 100871, Peoples Republic of China.  相似文献   

15.
The mature pollen of sweet potato ( Ipomoea batatas lam. ) was bicellular. After pollination generative cell divided into a pair of sperm cells before its germination. The pair of sperm cells remained in the hydrated pollen was similar in their shape and volume with enriched cytoplasmic plastids and mitochondria. The specific fluorescence of cytoplasm DNA indicated that the sperm cells and the generative cell contained numerous organelle nucleoids. The pair of sperm cells had no significant difference in their numbers of organelle nucleoids. Two kinds of organelle nucleoids existed in the pair of sperm cells. Tile ones as big and strong fluorescent dots appeared to be the plastid nucleoids and the others as tile small and weak fluorescent dots could be the mitochondrial nucleoid. Few of the angiosperms were of biparental or paternal plastid inheritance. The result of this study has provided the cytological evidence for another genus, Ipomoea, which is of biparental or paternal plastid inheritance besides Pharbitis and Calystegia in Convolvulaceae.  相似文献   

16.
Biparental inheritance of plastids has been documented in numerous angiosperm species. The adaptive significance of the mode of plastid inheritance (unior biparental) is poorly understood. In plants exhibiting paternal inheritance of plastids, DNA-containing plastids in the microgametophyte may affect survival or growth of the gametophyte or the embryo. In this study the number of plastids containing DNA (nucleoids) in generative cells and generative cell and pollen volumes were evaluated in a range of genotypes of Medicago sativa (alfalfa). M. sativa exhibits biparental inheritance of plastids with strong paternal bias. The M. sativa genotypes used were crossed as male parents to a common genotype and the relationships between the gametophytic traits measured and male reproductive success were assessed. Generative cell plastid number and pollen grain size exhibited opposing associations with male fertility. Path analysis showed that generative cell plastid number was negatively associated with male fertility. This study provides evidence that there may be a competitive advantage at fertilization afforded sperm that have minimized their organelle content. The apparent lack of strong selection for reduced plastid number in generative cells of M. sativa may be a reflection of the diminished importance of reproductive success due to its perenniality or its long use in cultivation.  相似文献   

17.
It was proved by ultrastructural observations that few plastids and abundent mitochondria were ever present in the generative cell of Pisurn sativurn L. from its initiation to maturation. Fluorescence observations of DNA showed that many cytoplasmic DNA nucleoids were present in generative cell of mature pollen, but none in the early developing generative cell. During the germination of mature pollen in vitro, the cytoplasmic DNA nucleoids of the generative cell in the pollen tube degenerated gradually following the growth of the pollen tube and disappered completely 24 h after germination. The results provided a cytological basis for confirming the conclusion of plastid maternal inheritance in P. sativurn obtained from genetic study, and resolved the contradiction between results from cytological observation and genetic or RFLP analysis.  相似文献   

18.
Sperm cells within pollen grains and pollen tubes of alfalfa (Medicago sativa L.) were observed at the ultrastructural level, and their plastid DNA was detected by DAPI (4,6-diamidino-2-phenylindole) staining. One sperm pair within the pollen grain and three sperm pairs within pollen tubes were reconstructed in three-dimensions from serial ultrathin sections. The two sperm cells are linked by cytoplasmic bridges in both pollen grains and tubes, and the vegetative nucleus is closely associated with the sperm cells within the pollen tube. The number of plastids and plastid nucleoids (DNA aggregates) in the sperm cell pair, collectively, is not significantly different from that in the generative cell; however, over 60% of the sperm cell plastids contain no DNA detectable with DAPI. The mean number of mitochondria in sperm cells is reduced from that in the generative cell (from 54 to 17), which suggests that paternal mitochondrial inheritance probably does not occur in the genotype investigated. Sperm cells of a pair may vary in their shape within the pollen grain and tube, but the number of plastids and mitochondria is not significantly different between the sperm cells. Therefore, heterospermy is not a factor determining cytoplasmic inheritance patterns in this species.  相似文献   

19.
In the male gametophyte of Pelargonium zonale, generative and sperm cells contain cytoplasmic DNA in high density compared to vegetative cells. Cytoplasmic DNA was examined using the DNA fluorochrome DAPI (4'6-diamidino-2-phenylindole) and observed with epifluorescence and electron microscopy. The microspore cell contains a prominent central vacuole before mitosis; mitochondria and plastids are randomly distributed throughout the cytoplasm. Following the first pollen grain mitosis, neither the vegetative cell nor the early generative cell display a distributional difference in cytoplasmic DNA, nor is there in organelle content at this stage. During the maturation of the male gametophyte, however, a significant discrepancy in plastid abundance develops. Plastids in the generative cell return to proplastids and do not contain large starch grains, while those in the vegetative cell develop starch grains and differentiate into large amyloplasts. Plastid nucleoids in generative and sperm cells in a mature male gametophyte are easily discriminated after DAPI staining due to their compactness, while those in vegetative cells stained only weakly. The utility of the hydrophilic, non-autofluorescent resin Technovit 7100 in observing DAPI fluorescence is also demonstrated.  相似文献   

20.
超微结构的研究证明,豌豆(Pisum sativum L.)生殖细胞自形成直至成熟花粉时期,始终存在少量质体和较多的线粒体。DNA 荧光的观察表明,在发育早期的生殖细胞中不含细胞质DNA 类核,但在成熟花粉的生殖细胞中有许多的类核。在花粉离体萌发过程中,随着花粉管的生长,生殖细胞中的类核逐渐降解。在花粉培养24 h 后,生殖细胞的类核全部消失。研究结果确定了豌豆质体母系遗传的细胞学基础,支持遗传分析及RFLP研究的结论,阐明了过去在细胞学上认为是双亲遗传的判断不正确的原因  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号