首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The tetratricopeptide repeat (TPR) is a 34-residue helix-turn-helix motif that occurs as three or more tandem repeats in a wide variety of proteins. We have determined the repeat motions and backbone fluctuations of proteins containing two or three consensus TPR repeats (CTPR2 and CPTR3, respectively) using 15N NMR relaxation measurements. Rotational diffusion tensors calculated from these data for each repeat within each TPR protein indicate that there is a high degree of motional correlation between different repeats in the same protein. This is consistent with the prevailing view that repeat proteins, such as CTPR2 and CTPR3, behave as single cooperatively folded domains. The internal motions of backbone NH groups were determined using the Lipari-Szabo model-free formalism. For most residues, there was a clear separation between the influence of internal motion and the influence of global rotational tumbling on the observed magnetic relaxation. The local internal motions are highly restricted in most of the helical elements, with slightly greater flexibility in the linker elements. Comparisons between CTPR2 and CTPR3 indicate that an addition of a TPR repeat to the C-terminus (before the solvation helix) of CTPR2 slightly reduces the flexibility of the preceding helix.  相似文献   

2.
The tetratricopeptide repeat (TPR) motif is a protein–protein interaction module that acts as an organizing centre for complexes regulating a multitude of biological processes. Despite accumulating evidence for the formation of TPR oligomers as an additional level of regulation there is a lack of structural and solution data explaining TPR self‐association. In the present work we characterize the trimeric TPR‐containing protein YbgF, which is linked to the Tol system in Gram‐negative bacteria. By subtracting previously identified TPR consensus residues required for stability of the fold from residues conserved across YbgF homologs, we identified residues involved in oligomerization of the C‐terminal YbgF TPR domain. Crafting these residues, which are located in loop regions between TPR motifs, onto the monomeric consensus TPR protein CTPR3 induced the formation of oligomers. The crystal structure of this engineered oligomer shows an asymmetric trimer where stacking interactions between the introduced tyrosines and displacement of the C‐terminal hydrophilic capping helix, present in most TPR domains, are key to oligomerization. Asymmetric trimerization of the YbgF TPR domain and CTPR3Y3 leads to the formation of higher order oligomers both in the crystal and in solution. However, such open‐ended self‐association does not occur in full‐length YbgF suggesting that the protein's N‐terminal coiled‐coil domain restricts further oligomerization. This interpretation is borne out in experiments where the coiled‐coil domain of YbgF was engineered onto the N‐terminus of CTPR3Y3 and shown to block self‐association beyond trimerization. Our study lays the foundations for understanding the structural basis for TPR domain self‐association and how such self‐association can be regulated in TPR domain‐containing proteins. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Repeat proteins contain tandem arrays of a simple structural motif. In contrast to globular proteins, repeat proteins are stabilized only by interactions between residues that are relatively close together in the sequence, with no ”long-range” interactions. Our work focuses on the tetratricopeptide repeat (TPR), a 34 amino acid helix-turn-helix motif found in tandem arrays in many natural proteins. Earlier, we reported the design and characterization of a series of consensus TPR (CTPR) proteins, which are built as arrays of multiple tandem copies of a 34 amino acid consensus sequence. Here, we present the results of extensive hydrogen exchange (HX) studies of the folding-unfolding behavior of two CTPR proteins (CTPR2 and CTPR3). We used HX to detect and characterize partially folded species that are populated at low frequency in the nominally folded state. We show that for both proteins the equilibrium folding-unfolding transition is non-two-state, but sequential, with the outermost helices showing a significantly higher probability than inner helices of being unfolded. We show that the experimentally observed unfolding behavior is consistent with the predictions of a simple Ising model, in which individual helices are treated as ”spin-equivalents”. The results that we present have general implications for our understanding of the thermodynamic properties of repeat proteins.  相似文献   

4.
Repeat proteins comprise tandem arrays of a small structural motif. Their structure is defined and stabilized by interactions between residues that are close in the primary sequence. Several studies have investigated whether their structural modularity translates into modular thermodynamic properties. Tetratricopeptide repeat proteins (TPRs) are a class in which the repeated unit is a 34 amino acid helix-turn-helix motif. In this work, we use differential scanning calorimetry (DSC) to study the equilibrium stability of a series of TPR proteins with different numbers of an identical consensus repeat, from 2 to 20, CTPRa2 to CTPRa20. The DSC data provides direct evidence that the folding/unfolding transition of CTPR proteins does not fit a two-state folding model. Our results confirm and expand earlier studies on TPR proteins, which showed that apparent two-state unfolding curves are better fit by linear statistical mechanics models: 1D Ising models in which each repeat is treated as an independent folding unit.  相似文献   

5.
Tetratricopeptide repeat (TPR) domains are ubiquitous protein interaction domains that adopt a modular antiparallel array of α‐helices. The TPR fold typically adopts a monomeric state, and consensus TPRs sequences successfully fold into the expected monomeric topology. The versatility of the TPR fold also supports different quaternary structures, which may function as regulatory switches. One example is yeast mitochondrial fission 1 (Fis1) that appears to interconvert between monomer and dimer states in regulating division of peroxisomes and mitochondria. Whether human Fis1 can also interconvert like the yeast molecule is unknown. A TPR consensus proline residue present in human Fis1 is absent in the yeast molecule and, when added, prevents yeast Fis1 dimerization suggesting that the TPR consensus proline might have persisted to prevent TPR oligomerization. Here, we address this question with human Fis1 and the consensus TPR protein CTPR3. We demonstrate that human Fis1 does not form a noncovalent dimer via its TPR domain, despite conditions that favor dimerization of the yeast protein. We also show that the presence of the consensus proline is not sufficient to forbid TPR dimerization. Lastly, an analysis of all available TPR protein structures (22 nonredundant structures, totaling 64 TPRs—42 with the consensus proline and 22 without) revealed that the consensus proline is not necessary for turn formation, but does favor shorter turns. This work suggests the TPR consensus proline is not to prevent oligomerization, but to favor tight turns between repeats.  相似文献   

6.
7.
There are several different families of repeat proteins. In each, a distinct structural motif is repeated in tandem to generate an elongated structure. The nonglobular, extended structures that result are particularly well suited to present a large surface area and to function as interaction domains. Many repeat proteins have been demonstrated experimentally to fold and function as independent domains. In tetratricopeptide (TPR) repeats, the repeat unit is a helix-turn-helix motif. The majority of TPR motifs occur as three to over 12 tandem repeats in different proteins. The majority of TPR structures in the Protein Data Bank are of isolated domains. Here we present the high-resolution structure of NlpI, the first structure of a complete TPR-containing protein. We show that in this instance the TPR motifs do not fold and function as an independent domain, but are fully integrated into the three-dimensional structure of a globular protein. The NlpI structure is also the first TPR structure from a prokaryote. It is of particular interest because it is a membrane-associated protein, and mutations in it alter septation and virulence.  相似文献   

8.
Viral protein U (Vpu) is a protein encoded by human immunodeficiency virus type 1 (HIV-1) that promotes the degradation of the virus receptor, CD4, and enhances the release of virus particles from cells. We isolated a cDNA that encodes a novel cellular protein that interacts with Vpu in vitro, in vivo, and in yeast cells. This Vpu-binding protein (UBP) has a molecular mass of 41 kDa and is expressed ubiquitously in human tissues at the RNA level. UBP is a novel member of the tetratricopeptide repeat (TPR) protein family containing four copies of the 34-amino-acid TPR motif. Other proteins that contain TPR motifs include members of the immunophilin superfamily, organelle-targeting proteins, and a protein phosphatase. UBP also interacts directly with HIV-1 Gag protein, the principal structural component of the viral capsid. However, when Vpu and Gag are coexpressed, stable interaction between UBP and Gag is diminished. Furthermore, overexpression of UBP in virus-producing cells resulted in a significant reduction in HIV-1 virion release. Taken together, these data indicate that UBP plays a role in Vpu-mediated enhancement of particle release.  相似文献   

9.
The major heat shock protein (Hsp) chaperones Hsp70 and Hsp90 both bind the co-chaperone Hop (Hsp70/Hsp90 organizing protein), which coordinates Hsp actions in folding protein substrates. Hop contains three tetratricopeptide repeat (TPR) domains that have binding sites for the conserved EEVD C termini of Hsp70 and Hsp90. Crystallographic studies have shown that EEVD interacts with positively charged amino acids in Hop TPR-binding pockets (called carboxylate clamps), and point mutations of these carboxylate clamp positions can disrupt Hsp binding. In this report, we use circular dichroism to assess the effects of point mutations and Hsp70/Hsp90 peptide binding on Hop conformation. Our results show that Hop global conformation is destabilized by single point mutations in carboxylate clamp positions at pH 5, while the structure of individual TPR domains is unaffected. Binding of peptides corresponding to the C termini of Hsp70 and Hsp90 alters the global conformation of wild-type Hop, whereas peptide binding does not alter conformation of individual TPR domains. These results provide biophysical evidence that Hop-binding pockets are directly involved with domain:domain interactions, both influencing Hop global conformation and Hsp binding, and contributing to proper coordination of Hsp70 and Hsp90 interactions with protein substrates.  相似文献   

10.
Lipidation catalyzed by protein prenyltransferases is essential for the biological function of a number of eukaryotic proteins, many of which are involved in signal transduction and vesicular traffic regulation. Sequence similarity searches reveal that the alpha-subunit of protein prenyltransferases (PTalpha) is a member of the tetratricopeptide repeat (TPR) superfamily. This finding makes the three-dimensional structure of the rat protein farnesyltransferase the first structural model of a TPR protein interacting with its protein partner. Structural comparison of the two TPR domains in protein farnesyltransferase and protein phosphatase 5 indicates that variation in TPR consensus residues may affect protein binding specificity through altering the overall shape of the TPR superhelix. A general approach to evolutionary analysis of proteins with repetitive sequence motifs has been developed and applied to the protein prenyltransferases and other TPR proteins. The results suggest that all members in PTalpha family originated from a common multirepeat ancestor, while the common ancestor of PTalpha and other members of TPR superfamily is likely to be a single repeat protein.  相似文献   

11.
12.
Tetratricopeptide repeat (TPR) domains bind specific peptide ligands and are thought to mediate protein-protein interactions in a variety of biological systems. Here we compare peptide ligand-binding by several different TPR domains. We present specific examples that demonstrate that TPR domains typically undergo little or no structural rearrangement upon ligand binding. Our data suggest that, contrary to a recent proposal, coupled folding and binding is not the common mechanism of ligand recognition by TPR domains.  相似文献   

13.
Reduced-stringency PCR was used to isolate a cDNA encoding a novel human FK506-binding protein (FKBP) homolog. The encoded 38-kDa protein (FKBPr38) contains at its N-terminus a domain that is 33% identical to FKBP12. FKBPr38 is a member of a subclass of immunophilins, whose other members include FKBP52 and CyP40 (cyclophilin 40), that contain a three-unit tetratricopeptide repeat (TPR). In addition, FKBPr38 contains a consensus leucine-zipper repeat. The presence of the TPR domain and leucine zipper suggest that FKBPr38 may form homomultimers or interact with other, as yet unidentified, proteins.  相似文献   

14.
15.
To investigate the relationships between sequence conservation, protein stability, and protein function, we have measured the thermodynamic stability, folding kinetics, and in vitro peptide-binding activity of a large number of single-site substitutions in the hydrophobic core of the Fyn SH3 domain. Comparison of these data to that derived from an analysis of a large alignment of SH3 domain sequences revealed a very good correlation between the distinct pattern of conservation observed at each core position and the thermodynamic stability of mutants. Conservation was also found to correlate well with the unfolding rates of mutants, but not to the folding rates, suggesting that evolution selects more strongly for optimal native state packing interactions than for maximal folding rates. Structural analysis suggests that residue-residue core packing interactions are very similar in all SH3 domains, which provides an explanation for the correlation between conservation and mutant stability effects studied in a single SH3 domain. We also demonstrate a correlation between stability and the in vivo activity of mutants, and between conservation and activity. However, the relationship between conservation and activity was very strong only for the three most conserved hydrophobic core positions. The weaker correlation between activity and conservation seen at the other seven core positions indicates that maintenance of protein stability is the dominant selective pressure at these positions. In general, the pattern of conservation at hydrophobic core positions appears to arise from conserved packing constraints, and can be effectively utilized to predict the destabilizing effects of amino acid substitutions.  相似文献   

16.
17.
Liu Q  Gao J  Chen X  Chen Y  Chen J  Wang S  Liu J  Liu X  Li J 《Molecular biotechnology》2008,40(3):231-240
A large number of tetratricopeptide repeat (TPR)-containing proteins have been shown to interact with the C-terminal domain of the 70 kDa heat-shock protein (Hsp70), especially those with three consecutive TPR motifs. The TPR motifs in these proteins are necessary and sufficient for mediating the interaction with Hsp70. Here, we investigate HBP21, a novel human protein of unknown function having three tandem TPR motifs predicted by computational sequence analysis. We confirmed the high expression of HBP21 in breast cancer and proliferative vitreoretinopathy (PVR) proliferative membrane and examined whether HBP21 could interact with Hsp70 using a yeast two-hybrid system and glutathione S-transferase pull-down assay. Previous studies have demonstrated the importance of Hsp70 C-terminal residues EEVD and PTIEEVD for interaction with TPR-containing proteins. Here, we tested an assortment of truncation and amino acid substitution mutants of Hsp70 to determine their ability to bind to HBP21 using a yeast two-hybrid system. The newly discovered interaction between HBP21 and Hsp70 along with observations from other studies leads to our hypothesis that HBP21 may be involved in the inhibition of progression and metastasis of tumor cells. Qinghuai Liu and Juanyu Gao have contributed equally to this work.  相似文献   

18.
Ankyrin repeats (AR) are 33-residue motifs containing a beta-turn, followed by two alpha-helices connected by a loop. AR occur in tandem arrangements and stack side-by-side to form elongated domains involved in very different cellular tasks. Recently, consensus libraries of AR repeats were constructed. Protein E1_5 represents a member of the shortest library, and consists of only a single consensus repeat flanked by designed N- and C-terminal capping repeats. Here we present a biophysical characterization of this AR domain. The protein is compactly folded, as judged from the heat capacity of the native state and from the specific unfolding enthalpy and entropy. From spectroscopic data, thermal and urea-induced unfolding can be modeled by a two-state transition. However, scanning calorimetry experiments reveal a deviation from the two-state behavior at elevated temperatures. Folding and unfolding at 5 degrees C both follow monoexponential kinetics with k(folding) = 28 sec(-1) and k(unfolding) = 0.9 sec(-1). Kinetic and equilibrium unfolding parameters at 5 degrees C agree very well. We conclude that E1_5 folds in a simple two-state manner at low temperatures while equilibrium intermediates become populated at higher temperatures. A chevron-plot analysis indicates that the protein traverses a very compact transition state along the folding/unfolding pathway. This work demonstrates that a designed minimal ankyrin repeat protein has the thermodynamic and kinetic properties of a compactly folded protein, and explains the favorable properties of the consensus framework.  相似文献   

19.
The hydrophobic core of the GCN4 leucine-zipper dimerization domain is formed by a parallel helical association between nonpolar side chains at the a and d positions of the heptad repeat. Here we report a self-assembling coiled-coil array formed by the GCN4-pAe peptide that differs from the wild-type GCN4 leucine zipper by alanine substitutions at three charged e positions. GCN4-pAe is incompletely folded in normal solution conditions yet self-assembles into an antiparallel tetraplex in crystals by formation of unanticipated hydrophobic seams linking the last two heptads of two parallel double-stranded coiled coils. The GCN4-pAe tetramers in the lattice associate laterally through the identical interactions to those in the intramolecular dimer-dimer interface. The van der Waals packing interaction in the solid state controls extended supramolecular assembly of the protein, providing an unusual atomic scale view of a mesostructure.  相似文献   

20.
Mutational analysis of the hsp70-interacting protein Hip.   总被引:4,自引:1,他引:3       下载免费PDF全文
The hsp70-interacting protein Hip participates in the assembly pathway for progesterone receptor complexes. During assembly, Hip appears at early assembly stages in a transient manner that parallels hsp70 interactions. In this study, a cDNA for human Hip was used to develop various mutant Hip forms in the initial mapping of functions to particular Hip structural elements. Hip regions targeted for deletion and/or truncation included the C-terminal region (which has some limited homology with Saccharomyces cerevisiae Sti1 and its vertebrate homolog p60), a glycine-glycine-methionine-proline (GGMP) tandem repeat, and a tetratricopeptide repeat (TPR). Binding of Hip to hsp70's ATPase domain was lost with deletions from the TPR and from an adjoining highly charged region; correspondingly, these Hip mutant forms were not recovered in receptor complexes. Truncation of Hip's Sti1-related C terminus resulted in Hip binding to hsp70 in a manner suggestive of a misfolded peptide substrate; this hsp70 binding was localized to the GGMP tandem repeat. Mutants lacking either the C terminus or the GGMP tandem repeat were still recovered in receptor complexes. Truncations from Hip's N terminus resulted in an apparent loss of Hip homo-oligomerization, but these mutants retained association with hsp70 and were recovered in receptor complexes. This mutational analysis indicates that Hip's TPR is required for binding of Hip with hsp70's ATPase domain. In addition, some data suggest that hsp70's peptide-binding domain may alternately or concomitantly bind to Hip's GGMP repeat in a manner regulated by Sti1-related sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号