首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M. Amato  A. Pardo 《Plant and Soil》1994,161(2):299-303
Data are presented on the differences in root length density (RLD), dry matter (DM), and root diameter values determined on wheat and faba bean using sieves of different mesh size to separate roots from soil during sample preparation. Screens with 0.2, 1, and 2 mm (0.04, 1, and 4 mm2) aperture were used. Roots collected on the 2-mm sieve represented on average 55% of the weight and only 10% of the total length collected using a 0.2-mm sieve. With a 1-mm sieve 75% of weight was retained, but only 34% of the length. In the 0–20 cm soil layer average RLD and DM values ranged between 1.3 and 2.5 cm cm-3 and 215 and 136 g m-2 for faba bean and wheat respectively with 2 mm screens and 14.6 and 18.1 cm cm-3 and 313 and 202 g m-2 with 0.2 mm sieves. RLD was more affected than weight since losses from coarse screens were largely due to fine root fractions, although the 1-and 2-mm screens retained a small amount of fine roots that were long or attached to main structures. Variability was higher for measurements on coarser screens. The use of screens much coarser than the diameter of fine roots is not recommended for the study of surface-related phenomena in which root length quantification is necessary, while it may be acceptable for gross comparisons of root weight and spatial extent.  相似文献   

2.
Livesley  S.J.  Gregory  P.J.  Buresh  R.J. 《Plant and Soil》2000,227(1-2):149-161
Complementarity in the distribution of tree and crop root systems is important to minimise competition for resources whilst maximising resource use in agroforestry systems. A field study was conducted on a kaolinitic Oxisol in the sub-humid highlands of western Kenya to compare the distribution and dynamics of root length and biomass of a 3-year-old Grevillea robusta A. Cunn. ex R. Br. (grevillea) tree row and a 3-year-old Senna spectabilis DC. (senna) hedgerow grown with Zea mays L. (maize). Tree roots were sampled to a 300 cm depth and 525 cm distance from the tree rows, both before and after maize cropping. Maize roots were sampled at two distances from the tree rows (75–150 cm and 450–525 cm) to a maximum depth of 180 cm, at three developmental stages. The mean root length density (Lrv) of the trees in the upper 15 cm was 0.55 cm cm−3 for grevillea and 1.44 cm cm−3 for senna, at the start of the cropping season. The Lrv of senna decreased at every depth during the cropping season, whereas the Lrv of grevillea only decreased in the crop rooting zone. The fine root length of the trees decreased by about 35% for grevillea and 65% for senna, because of maize competition, manual weeding, seasonal senescence or pruning regime (senna). At anthesis, the Lrv of maize in the upper 15 cm was between 0.8 and 1.5 cm cm−3. Maize root length decreased with greater proximity to the tree rows, potentially reducing its ability to compete for soil resources. However, the specific root length (m g−1) of maize was about twice that of the trees, so may have had a competitive uptake advantage even when tree root length was greater. Differences in maize fine root length and biomass suggest that competition for soil resources and hence fine root length may have been more important for maize grown with senna than grevillea. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Estuarine intertidal soft-bottom macrobenthic infauna of the Tagus estuary was characterised using different mesh size sieves and sediment sampling depth. The study sampled 105 sites using a hand held 0.01 m2 corer. The top layer (0–5 cm) was sieved through nested 1.0 and 0.5 mm meshes whereas the bottom layer (5–20 cm) was through a 1 mm mesh. The total survey took 26 taxa of more than 5800 individuals and a total wet weight biomass of over 650 g. The top layer, using both sieves, gathered 23 taxa (92% of the total), more than 5600 specimens (96%) but less than 8 g of biomass (1%) whereas the 1.0 mm sieve retained 21 taxa (91%), more than 1700 specimens (31%) and almost 7 g of biomass (1%). Abundance was dominated by small annelids, of which Streblospio shrubsolii was 68%, whereas biomass was dominated by molluscs, with the bivalve Scrobicularia plana representing 98%. Multivariate analyses showed an abundance pattern where the top layer data was very similar to that obtained with both layers. The bottom layer data were needed to accurately represent the total biomass pattern. The macrofaunal spatial pattern identified with the 0.5 mm sieve data differed from that identified by the 1.0 mm and was essential to discriminate a faunal assemblage located along the upper part of the shore. It was concluded that in order to characterize the macrofauna community structure, based on the presence/absence of taxa, the top layer and a 1.0 mm sieve would be sufficient. An abundance-based characterization requires the top layer and a 0.5 mm sieve whereas a biomass-based characterization requires data for both layers but it is sufficient to use the 1.0 mm sieve. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
This research adds to the limited data on coarse and fine root biomass for blue oak (Quercus douglasii Hook and Arn.), a California deciduous oak species found extensively throughout the interior foothills surrounding the Central Valley. Root systems of six blue oak trees were analyzed using three methods — backhoe excavation, quantitative pits, and soil cores. Coarse root biomass ranged from 7 to 177 kg per tree. Rooting depth for the main root system ranged from 0.5 to 1.5 m, with an average of 70% of excavated root biomass located above 0.5 m. Of the total biomass in excavated central root systems, primary roots (including burls) accounted for 56% and large lateral roots (> 20 mm diameter) accounted for 36%. Data from cores indicated that most biomass outside of the root crown was located in fine roots and that fine root biomass decreased with depth. At surface depths (0–20 cm), small-fine (< 0.5 mm diameter) roots accounted for 71%, large-fine (0.5–2.0 mm) for 25%, and coarse (> 2 mm) for 4% of total root biomass collected with cores. Mean fine root biomass density in the top 50 cm was 0.43 kg m−3. Fine root biomass did not change with increasing distance from the trees (up to approximately 5 m). Thus, fine roots were not concentrated under the tree canopies. Our results emphasize the importance of the smallest size class of roots (<0.5 mm), which had both higher N concentration and, in the area outside the central root system, greater biomass than large fine (0.5–2.0 mm) or coarse (> 2.0 mm) roots. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Very fine roots (<0.5 mm in diameter) of forest trees may serve as better indicators of root function than the traditional category of <2 mm, but how these roots will exhibit the plasticity of species-specific traits in response to heterogeneous soil nutrients is unknown. Here, we examined the vertical distribution of biomass and morphological and physiological traits of fine roots across three narrow diameter classes (<0.5, 0.5–1.0, and 1.0–2.0 mm) of Quercus serrata and Ilex pedunculosa at five soil depths down to 50 cm in a broad-leaved temperate forest. In both species, biomass and the allocation of very fine roots were higher in the surface soil but lower below 10-cm soil depth compared to values for larger roots (0.5–2.0 mm). When we applied these diameter classes, only very fine roots of Q. serrata exhibited significant changes in specific root length (SRL; m g−1) and root nitrogen (N) concentrations with soil depth, whereas the N concentrations only changed significantly in I. pedunculosa. The SRL and root N concentrations of larger roots in the two species did not significantly differ among soil depths. Thus, very fine roots may exhibit species-specific traits and change their potential for nutrient and water uptake in response to soil depth by plasticity in root biomass, the length, and the N in response to available resources.  相似文献   

6.
Purbopuspito  J.  Van Rees  K.C.J. 《Plant and Soil》2002,239(2):313-320
Efficient fertilizer application requires an understanding of the distribution of roots and soil nutrients in the soil profile. Cultural practices for clove trees in Indonesia has resulted in phosphorus (P) fertilizer being applied at the canopy edge; however, in these high P fixing soils efficient P fertilizer application should occur with the highest root densities. The objective of this study, therefore, was to determine the rooting distribution at various distances from the tree and soil depths for clove (Eugenia aromatica OK; variety Zanzibar) trees growing on an Andosol soil at Modoinding, Indonesia. Root distributions were determined to a 100-cm soil depth using soil cores at 0.5, 1.0 and 1.5 times the canopy radius for five 10-year-old clove trees grown on either level terrain or 23% slopes. Clove root length and weight densities decreased with soil depth and distance from the tree base. Fine clove roots (1 mm dia) comprised 72% of the total root length and was three to five times higher underneath the canopy than that outside the canopy. Roots were concentrated in the upper soil horizons; however, up to 36% of the total root length was found at a depth of 50–100 cm. Clove roots for trees growing at the level landscape position had the highest root length densities. Intercropped species root length densities were higher than clove root length densities at 1.5 times the canopy radius whereas intercropped root weight densities were higher than that for clove roots at both 1.5 and 1 times the canopy radius. Results suggest that fertilizer applications should be placed closer to the tree trunk rather than at the canopy edge to maximize P uptake by clove roots.  相似文献   

7.
Differences in plant growth arising from differences in aggregate size in the seedbed are normally atributed to limitations in nutrient or water supply during the early growth period. This study was initiated to determine if these were the only mechanisms by which aggregate size influences plant response. Four different aggregate size fractions (less than 1.6 mm, 1.6 to 3.2 mm, 3.2 to 6.4 mm and 6.4 to 12.8 mm diameter) were sieved from a silt loam soil. Nutrients were added to the soil and maize was grown in the aggregates for eighteen days after seedling emergence. Soil matric potential was maintained between — 3 and −20 kPa. Shoot dry weight declined by 18% as aggregate size increased from less than 1.6 mm to 1.6–3.2 mm. There was little further decline as aggregate size increased to 6.4–12.8 mm. Final leaf area showed a similar decline. The availability of nutrients or water were not limiting. Total root length in the coarsest aggregate system was less than 60% of that in the finest system. Main axes of seminal and nodal roots were longer in the coarser aggregate systems, the length of primary laterals was not affected, and length of secondary laterals was lower in the coarser systems. A greater proportion of the roots penetrated the larger aggregates than the smaller aggregates; however, the larger aggregates offered greater resistance to penetration by a rigid micropenetrometer (150 μ diameter probe). Diameter of the main axes roots were greatest in the largest two aggregate fractions. it is speculated that a combination of increased endogenous ethylene in roots in the finest aggregate system due to entrapment by water and increased mechanical resistance in the coarsest aggregate system accounts for the observed effects on root norphology.  相似文献   

8.
三峡库区马尾松根系生物量的空间分布   总被引:8,自引:0,他引:8  
以三峡库区主要植被马尾松人工林为研究对象,用内径为10 cm的根钻,分别在马尾松中龄林、近熟林和成熟林内,据树干0.5、1.0、1.5 m和2.0 m处设置取样点,各样点按0-10、10-20、20-30、30-40、40-60 cm将土壤分为5个垂直层次,对马尾松根系的空间分布格局进行调查。结果表明:(1)三峡库区马尾松总根系生物量(0-10 mm)为中龄林(4.72 t/hm2)显著高于成熟林(2.94 t/hm2)和近熟林(2.40 t/hm2)(P<0.05)。细根(0-2 mm)生物量随年龄增加而递减,差异不显著(P>0.05);(2)马尾松3个林龄中根系生物量表现出一定的水平分布特征,但具体趋势表现各异,细根生物量最大值均出现在距离样木1.0 m处;(3)细根主要分布在土壤上层,其中47.53%-71.73%的活细根集中在0-20 cm土壤深度内,且随土层的加深,其生物量明显减少。粗根(2-10 mm)则主要分布于20-60 cm土层范围内;(4)根系直径越小,受环境变化越明显。马尾松细根生物量分布主要受土壤深度的影响,树龄和不同水平距离对细根分布格局影响不显著(P>0.05),各因素对粗根生物量的影响均未达到显著水平(P>0.05)。  相似文献   

9.
Abstract We estimated the below‐ground net plant productivity (BNPP) of different biomass components in an intensively and continuously 45‐ha grazed site and in a neighbouring exclosure ungrazed for 16 years for a natural mountain grassland in central Argentina. We measured approximately twice as much dead below‐ground biomass in the grazed site as in the ungrazed site, with a strong concentration of total below‐ground biomass towards the upper 10 cm of the soil layer in both sites. The main contribution to total live biomass was accounted for by very fine (<0.5 mm) and fine roots (0.5–1.0 mm) both at the grazed (79%) and at the ungrazed (81%) sites. We measured more dead biomass for almost all root components, more live biomass of rhizomes, tap roots and bulbs, and less live biomass of thicker roots (>1 mm) in the grazed site. The seasonal variation of total live below‐ground biomass mainly reflected climate, with the growing season being limited to the warmer and wetter portion of the year, but such variation was higher in the grazed site. Using different methods of estimation of BNPP, we estimated maximum values of 1241 and 723 g m?2 year?1 for the grazed and ungrazed sites, respectively. We estimated that very fine root productivity was almost twice as high at the grazed site as at the ungrazed one, despite the fact that both sites had similar total live biomass, and root turnover rate was twofold at the grazed site.  相似文献   

10.
Fine root biomass and C content are critical components in ecosystem C models, but they cannot be directly determined by minirhizotron techniques, and indirect methods involve estimating 3-dimensional values (biomass/ soil volume) from 2-dimensional measurements. To estimate biomass from minirhizotron data, a conversion factor for length to biomass must be developed, and assumptions regarding depth of view must be made. In a scrub-oak ecosystem in central Florida, USA, root length density (RLD) was monitored for 10 years in a CO2 manipulation experiment using minirhizotron tubes. In the seventh year of the study, soil cores were removed from both ambient and elevated CO2 chambers. Roots from those cores were used to determine specific root length values (m/g) that were applied to the long-term RLD data for an estimation of root biomass over 10 years of CO2 manipulation. Root length and biomass estimated from minirhizotron data were comparable to determinations from soil cores, suggesting that the minirhizotron biomass model is valid. Biomass estimates from minirhizotrons indicate the <0.25 mm diameter roots accounted for nearly 95% of the total root length in 2002. The long-term trends for this smallest size class (<0.25 mm diameter) mirrored the RLD trends closely, particularly in relation to suspected root closure in this system. Elevated CO2 did not significantly affect specific root length as determined by the soil cores. A significant treatment effect indicated smallest diameter fine roots (<0.25 mm) were greater under elevated CO2 during the early years of the study and the largest (2–10 mm) had greater biomass under elevated CO2 during the later years of the study. Overall, this method permits long-term analysis of the effects of elevated CO2 on fine root biomass accumulation and provides essential information for carbon models.  相似文献   

11.
Vanlauwe  B.  Sanginga  N  Merckx  R. 《Plant and Soil》2001,231(2):201-210
Crop and tree roots are crucial in the nutrient recycling hypotheses related to alley cropping systems. At the same time, they are the least understood components of these systems. The biomass, total N content and urea-derived N content of the Senna and maize roots in a Senna-maize alley cropping system were followed for a period of 1.5 years (1 maize-cowpea rotation followed by 1 maize season) to a depth of 90 cm, after the application of 15N labeled urea. The highest maize root biomass was found in the 0–10 cm layer and this biomass peaked at 38 and 67 days after planting the 1994 maize (DAP) between the maize rows (112 kg ha–1, on average) and at 38, 67 and 107 DAP under the maize plants (4101 kg ha–1, on average). Almost no maize roots were found below 60 cm at any sampling date. Senna root biomass decreased with time in all soil layers (from 512 to 68 kg ha–1 for the 0–10 cm layer between 0 and 480 DAP). Below 10 cm, at least 62% of the total root biomass consisted of Senna roots and this value increased to 87% between 60 and 90 cm. Although these observations support the existence of a Senna root `safety net' between the alleys which could reduce nutrient leaching losses, the depth of such a net may be limited as the root biomass of the Senna trees in the 60–90 cm layer was below 100 kg ha–1, equivalent to a root length density of only < 0.05 cm cm–3. The proportion of maize root N derived from the applied urea (%Ndfu) decreased significantly with time (from 21% at 21 DAP to 8% at 107 DAP), while %Ndfu of the maize roots at the second harvest (480 DAP) was only 0.6%. The %Ndfu of the Senna roots never exceeded 4% at any depth or sampling time, but decreased less rapidly compared to the %Ndfu of the maize roots. The higher %Ndfu of the maize roots indicates that maize is more efficient in retrieving urea-derived N. The differences in dynamics of the %Ndfu also indicate that the turnover of N through the maize roots is much faster than the turnover of N through the Senna roots. The recovery of applied urea-N by the maize roots was highest in the top 0–10 cm of soil and never exceeded 0.4% (at 38 DAP) between the rows and 7.1% (at 67 DAP) under the rows. Total urea N recovery by the maize roots increased from 1.8 to 3.2% during the 1994 maize season, while the Senna roots never recovered more than 0.8% of the applied urea-N at any time during the experimental period. These values are low and signify that the roots of both plants will only marginally affect the total recovery of the applied urea-N. Measurement of the dynamics of the biomass and N content of the maize and Senna roots helps to explain the observed recovery of applied urea-N in the aboveground compartments of the alley cropping system.  相似文献   

12.
The study of fine roots growing under field conditions is limited by the techniques currently available for separating these roots from soil. This study had two objectives: to measure the total root length of field grown corn (Zea mays L.) by root diameter class, and to develop an inexpensive and efficient root washing device that would effectively capture all of the roots in a field soil sample. An inexpensive Fine Root Extraction Device (FRED) was constructed from readily available materials and was successful at extracting all roots, including very fine diameter roots (0.025 mm), from field soil samples. Greater than 99.7% of marked roots introduced to the FRED were recaptured by the device. Soil samples from three depths, and on three dates, from field grown corn were placed in the FRED. We found that more than 56% of total root length occurred in roots whose diameters were smaller than 0.175 mm, and more than 35% of root length occurred in roots smaller than 0.125 mm in diameter. Corn roots of the diameters described here have not been reported in field soils prior to this study. Root researchers who fail to measure these very fine roots will significantly underestimate root length density. Widespread use of the FRED should improve our understanding of root distribution in field soils.  相似文献   

13.
Elevated CO2 can increase fine root biomass but responses of fine roots to exposure to increased CO2 over many years are infrequently reported. We investigated the effect of elevated CO2 on root biomass and N and P pools of a scrub-oak ecosystem on Merritt Island in Florida, USA, after 7 years of CO2 treatment. Roots were removed from 1-m deep soil cores in 10-cm increments, sorted into different categories (<0.25 mm, 0.25–1 mm, 1–2 mm, 2 mm to 1 cm, >1 cm, dead roots, and organic matter), weighed, and analyzed for N, P and C concentrations. With the exception of surface roots <0.25 mm diameter, there was no effect of elevated CO2 on root biomass. There was little effect on C, N, or P concentration or content with the exception of dead roots, and <0.25 mm and 1–2 mm diameter live roots at the surface. Thus, fine root mass and element content appear to be relatively insensitive to elevated CO2. In the top 10 cm of soil, biomass of roots with a diameter of <0.25 mm was depressed by elevated CO2. Elevated CO2 tended to decrease the mass and N content of dead roots compared to ambient CO2. A decreased N concentration of roots <0.25 mm and 1–2 mm in diameter under elevated CO2 may indicate reduced N supply in the elevated CO2 treatment. Our study indicated that elevated CO2 does not increase fine root biomass or the pool of C in fine roots. In fact, elevated CO2 tends to reduce biomass and C content of the most responsive root fraction (<0.25 mm roots), a finding that may have more general implications for understanding C input into the soil at higher atmospheric CO2 concentrations.  相似文献   

14.
The Faroe-Shetland Channel, located in the NE Atlantic, ranges in depth from 0-1700 m and is an unusual deep-sea environment because of its complex and dynamic hydrographic regime, as well as having numerous different seafloor habitats. Macrofaunal samples have been collected on a 0.5 mm mesh sieve from over 300 stations in a wide area survey and on nested 0.5 and 0.25 mm mesh sieves along a specific depth transect. Contrary to general expectation, macrofauanl biomass in the Channel did not decline with increasing depth. When examined at phylum level, two main biomass patterns with depth were apparent: (a) polychaetes showed little change in biomass on the upper slope then increased markedly below 500 m to a depth of 1100 m before declining; and (b) other phyla showed enhanced biomass between 300-500 m. The polychaete response may be linked with a seafloor environment change to relatively quiescent hydrodynamic conditions and an increasing sediment mud content that occurs at c. 500 m. In contrast, the mid-slope enhancement of other phyla biomass may reflect the hydrodynamically active interface between the warm and cold water masses present in the Channel at c. 300-500 m. Again contrary to expectation, mean macrofaunal body size did not decline with depth, and the relative contribution of smaller (>0.25 mm<0.5 mm) to total (>0.25 mm) macrobenthos did not increase with depth. Overall our total biomass and average individual biomass estimates appear to be greater than those predicted from global analyses. It is clear that global models of benthic biomass distribution may mask significant variations at the local and regional scale.  相似文献   

15.
This study confirmed the considerable effect of polycyclic aromatic hydrocarbon fluoranthene (FLT; 0.01, 0.1, 1, 4 and 7 mg/l) exposure on the germination of seeds, growth and root morphology of seedlings in Zea mays and Pisum sativum. Seed germination was significantly inhibited at FLT≥0.01 mg/l in maize and at ≥1 mg/l in pea. The amount of released ethylene after 3 days of germination was significantly increased in both species at FLT≥0.1 mg/l. After 7 days of seedling cultivation a significant decrease in the dry weight of roots and shoots occurred in maize at FLT≥0.1 mg/l while in pea similar effect was observed at ≥1 mg/l. The total length of primary and lateral roots was significantly reduced by FLT≥1 mg/l in maize and by 4 and 7 mg/l in pea. The length of the non-branched part of the primary root was significantly reduced by FLT≥0.1 mg/l in maize and ≥0.01 mg/l in pea. In both species the number of lateral roots was significantly increased at FLT≤1 mg/l and inhibited at concentrations of 4 and 7 mg/l. Fluoranthene content in roots and shoots of both species positively correlated with the FLT treatment.  相似文献   

16.
不同分类系统下油松幼苗根系特征的差异与联系   总被引:3,自引:0,他引:3       下载免费PDF全文
植物根序和径级不仅反映细根的形态结构, 而且能反映根系的一些生理特征, 如细根寿命和周转等。该文以二年生油松(Pinus tabulaeformis)幼苗根系为研究对象, 系统比较了根序分类方法和径级分类方法在描述根系特征上的优缺点, 探索了两者之间的内在联系。结果表明: 二年生油松幼苗最多可包括6级根序, 直径的变化范围为0.169-3.877 mm。按根序划分, I-VI级根序的总根长和总根表面积主要集中在前3级根序, 这3级根序的根占总根长的78.77%和总根表面积的62.72%。前3级根序的比根长是后3级根序比根长的1.3-3.0倍, 比根面积是后3级比根面积的1.0-1.5倍。按常用的径级(以0.5、1.0、1.5和2.0 mm为阈值)划分方法, 油松幼苗大部分根系直径≤1.5 mm, 此区间细根的根长和根表面积占总根长的93.76%和总根表面积的84.35%。直径≤1.5 mm的细根平均比根长是>1.5 mm细根比根长的3-7倍, 比根面积的1.5-3.0倍。由于油松根序和径级之间有显著的指数关系, 依据径级最大程度反映根序的原则, 提出了新的径级划分方法, 即以0.4、0.8、1.3和2.0 mm为阈值对油松幼苗根系径级重新进行划分。此时, 上述区间可分别包括I级、II级、III级、IV级、V级根序中根尖数的93.22%、86.37%、75.96%、70.47%和76.67%。同时也可分别涵盖各径级根长的89.34%-70.83%、根面积的86.01%-76.12%以及体积的87.73%-76.12%。此时, 根系不同径级与根序之间可以建立起良好的对应关系。这些结果表明, 通过合理划分径级区间可以较好地反映根序 特征。  相似文献   

17.
Root development in simple and complex tropical successional ecosystems   总被引:8,自引:0,他引:8  
Fine and coarse root mass and fine root surface area were studied during 5 yr following the felling and burning of a tropical forest near Turrialba, Costa Rica. Five experimental ecosystems were established: 1) natural successional vegetation, 2) successional vegetation enriched by seed applications, 3) imitation of succession (built by substituting investigator-selected species for natural colonizers), 4) monocultures (two maize crops followed by cassava andCordia alliodora), and 5) a bare plot. Fine roots grew rapidly in all treatments during the first 15 wk, at which time there were 75 gm−2 in the monoculture and 140 gm−2 in the enriched and natural successions. Subsequent growth was slower, and fine-root mass decreased during the first dry season. After 5 yr coarse root mass to a depth of 85 cm was about 800, 1370, and 1530 gm−2 in the succession, enriched succession and imitation of succession, respectively. At the final harvest, the 3.5 yr-oldC. alliodora plantation had 1000 g m−2 of coarse-root biomass. Roots <1 mm in diameter were concentrated in the upper 5 cm of soil and accounted for most fine-root surface area. Total fine-root surface area was greatest in the enriched successional vegetation and usually lowest in the monoculture.  相似文献   

18.
Root distribution and interactions between intercropped species   总被引:28,自引:0,他引:28  
Li L  Sun J  Zhang F  Guo T  Bao X  Smith FA  Smith SE 《Oecologia》2006,147(2):280-290
Even though ecologists and agronomists have considered the spatial root distribution of plants to be important for interspecific interactions in natural and agricultural ecosystems, few experimental studies have quantified patterns of root distribution dynamics and their impacts on interspecific interactions. A field experiment was conducted to investigate the relationship between root distribution and interspecific interactions between intercropped plants. Roots were sampled twice by auger and twice by the monolith method in wheat (Triticum aestivum L.)/maize (Zea mays L.) and faba bean (Vicia faba L.)/maize intercropping and in sole wheat, maize, and faba bean up to 100 cm depth in the soil profile. The results showed that the roots of intercropped wheat spread under maize plants, and had much greater root length density (RLD) at all soil depths than sole wheat. The roots of maize intercropped with wheat were limited laterally, but had a greater RLD than sole-cropped maize. The RLD of maize intercropped with faba bean at different soil depths was influenced by intercropping to a smaller extent compared to maize intercropped with wheat. Faba bean had a relatively shallow root distribution, and the roots of intercropped maize spread underneath them. The results support the hypotheses that the overyielding of species showing benefit in the asymmetric interspecific facilitation results from greater lateral deployment of roots and increased RLD, and that compatibility of the spatial root distribution of intercropped species contributes to symmetric interspecific facilitation in the faba bean/maize intercropping. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

19.
青杨人工林根系生物量、表面积和根长密度变化   总被引:6,自引:1,他引:5  
燕辉  刘广全  李红生 《应用生态学报》2010,21(11):2763-2768
在植物生长季节,采用钻取土芯法对秦岭北坡50年生青杨人工林根径≤2 mm和2~5 mm根系的生物量、表面积和根长密度进行测定.结果表明:在青杨人工林根系(<5 mm)中,根径≤2 mm根系占总生物量的77.8%,2~5 mm根系仅占22.2%;根径≤2 mm根系表面积和根长密度占根系总量的97%以上,而根径2~5 mm根系不足3%.随着土层的加深,根径≤2 mm根系生物量、表面积和根长密度数量减少,根径2~5 mm根系生物量、表面积和根长密度最小值均分布在20~30 cm土层.≤2 mm根系生物量、表面积和根长密度与土壤有机质、有效氮呈极显著相关,而根径2~5 mm根系的相关性不显著.  相似文献   

20.
Root effects on soil water and hydraulic properties   总被引:1,自引:0,他引:1  
Plants can affect soil moisture and the soil hydraulic properties both directly by root water uptake and indirectly by modifying the soil structure. Furthermore, water in plant roots is mostly neglected when studying soil hydraulic properties. In this contribution, we analyze effects of the moisture content inside roots as compared to bulk soil moisture contents and speculate on implications of non-capillary-bound root water for determination of soil moisture and calibration of soil hydraulic properties. In a field crop of maize (Zea mays) of 75 cm row spacing, we sampled the total soil volumes of 0.7 m × 0.4 m and 0.3 m deep plots at the time of tasseling. For each of the 84 soil cubes of 10 cm edge length, root mass and length as well as moisture content and soil bulk density were determined. Roots were separated in 3 size classes for which a mean root porosity of 0.82 was obtained from the relation between root dry mass density and root bulk density using pycnometers. The spatially distributed fractions of root water contents were compared with those of the water in capillary pores of the soil matrix. Water inside roots was mostly below 2–5% of total soil water content; however, locally near the plant rows it was up to 20%. The results suggest that soil moisture in roots should be separately considered. Upon drying, the relation between the soil and root water may change towards water remaining in roots. Relations depend especially on soil water retention properties, growth stages, and root distributions. Gravimetric soil water content measurement could be misleading and TDR probes providing an integrated signal are difficult to interpret. Root effects should be more intensively studied for improved field soil water balance calculations. Presented at the International Conference on Bioclimatology and Natural Hazards, Pol’ana nad Detvou, Slovakia, 17–20 September 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号