首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Livesley  S.J.  Stacey  C.L.  Gregory  P.J.  Buresh  R.J. 《Plant and Soil》1999,207(2):183-193
The purpose of this study was to investigate the effects of different mesh sizes on the recovery of root length and biomass and to determine whether the degree of recovery was influenced by plant species and sample location. Sieves of 2.0, 1.0, 0.5 and 0.25 mm (4.0, 1.0, 0.25 and 0.06 mm2) mesh sizes were used to recover and measure the root length and biomass of Zea mays L. (maize) at 0–15 cm and 30–45 cm depths and of Grevillea robusta A. Cunn. ex R. Br. (grevillea) at the same depths 1.0 m and 4.5 m from a line of grevillea trees. At 0–15 cm, the coarser sieves (sum collected with 2.0 and 1.0 mm sieves) recovered approximately 80% of the total root biomass measured, but only 60% of the root length. The proportion of total maize root length and biomass recovered by the coarser sieves decreased with soil depth. The proportion of total grevillea root length recovered by the coarser sieves was similar at the two soil depths, but increased slightly with distance from the tree line. The ≥ 0.5 mm sieves recovered between 93 and 96% of grevillea and maize root biomass and between 73 and 98% of their root length, depending on the sample location. Roots passing through the 0.5 mm sieve, but recovered by the 0.25 mm sieve were about 20% of total maize root length and grevillea root length at 1.0 m from the tree line but < 5% of the total grevillea root length at 4.5 m from the tree. Roots passing through the 0.5 mm sieve but recovered by the 0.25 mm sieve contributed only slightly to root biomass. Although the ≥ 0.5 mm sieves provided adequate measurements of root biomass, the ≥ 0.25 mm sieves were required for accurate measurement of fine root length. There was no universal correction for root length and biomass underestimation when large sieve sizes were used because the proportions of length and biomass recovered depended on the plant species and on soil depth and distance from the plant. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
3.
The Faroe-Shetland Channel, located in the NE Atlantic, ranges in depth from 0-1700 m and is an unusual deep-sea environment because of its complex and dynamic hydrographic regime, as well as having numerous different seafloor habitats. Macrofaunal samples have been collected on a 0.5 mm mesh sieve from over 300 stations in a wide area survey and on nested 0.5 and 0.25 mm mesh sieves along a specific depth transect. Contrary to general expectation, macrofauanl biomass in the Channel did not decline with increasing depth. When examined at phylum level, two main biomass patterns with depth were apparent: (a) polychaetes showed little change in biomass on the upper slope then increased markedly below 500 m to a depth of 1100 m before declining; and (b) other phyla showed enhanced biomass between 300-500 m. The polychaete response may be linked with a seafloor environment change to relatively quiescent hydrodynamic conditions and an increasing sediment mud content that occurs at c. 500 m. In contrast, the mid-slope enhancement of other phyla biomass may reflect the hydrodynamically active interface between the warm and cold water masses present in the Channel at c. 300-500 m. Again contrary to expectation, mean macrofaunal body size did not decline with depth, and the relative contribution of smaller (>0.25 mm<0.5 mm) to total (>0.25 mm) macrobenthos did not increase with depth. Overall our total biomass and average individual biomass estimates appear to be greater than those predicted from global analyses. It is clear that global models of benthic biomass distribution may mask significant variations at the local and regional scale.  相似文献   

4.
M. Amato  A. Pardo 《Plant and Soil》1994,161(2):299-303
Data are presented on the differences in root length density (RLD), dry matter (DM), and root diameter values determined on wheat and faba bean using sieves of different mesh size to separate roots from soil during sample preparation. Screens with 0.2, 1, and 2 mm (0.04, 1, and 4 mm2) aperture were used. Roots collected on the 2-mm sieve represented on average 55% of the weight and only 10% of the total length collected using a 0.2-mm sieve. With a 1-mm sieve 75% of weight was retained, but only 34% of the length. In the 0–20 cm soil layer average RLD and DM values ranged between 1.3 and 2.5 cm cm-3 and 215 and 136 g m-2 for faba bean and wheat respectively with 2 mm screens and 14.6 and 18.1 cm cm-3 and 313 and 202 g m-2 with 0.2 mm sieves. RLD was more affected than weight since losses from coarse screens were largely due to fine root fractions, although the 1-and 2-mm screens retained a small amount of fine roots that were long or attached to main structures. Variability was higher for measurements on coarser screens. The use of screens much coarser than the diameter of fine roots is not recommended for the study of surface-related phenomena in which root length quantification is necessary, while it may be acceptable for gross comparisons of root weight and spatial extent.  相似文献   

5.
《Ecological Indicators》2008,8(5):729-742
A new biomass index for monitoring the impact of marine fish cage farming on the benthic environment was evaluated at seven commercial fish farms in the eastern Mediterranean. At each farm, stations near and further away from the cages were sampled for macrofauna and geochemical variables during July 2001, and March and October 2002. Benthic samples were sequentially sieved through 1.0 and 0.5 mm mesh screens and a biomass fractionation index (BFI) was estimated as follows: biomass having passed through 1.0 mm and retained on 0.5 mm sieve only/total biomass (biomass retained on 1.0 mm + 0.5 mm sieve). BFI was quantitatively assessed and compared with the geochemical faunistic and management practice data. BFI was found to decrease consistently with distance from fish cages and particularly after 10 m from the edge of the cages. At all farms, BFI was found to be significantly correlated with distance, redox potential and organic carbon. Multiple regression analysis showed that BFI incorporates various components of sediment geochemistry (sediment grain size and total organic carbon) as well as distance and feeding rates. Although BFI needs to be further tested in different geographic locations and under different management practices, the results seem to be promising for long-term monitoring programmes since it provides a simple and inexpensive solution for assessing the effects of benthic organic enrichment due to fish farm activities.  相似文献   

6.
唐国  胡雷  宋小艳  李香真  王长庭 《生态学报》2022,42(15):6250-6264
根系是草原生态系统中最重要的碳库之一,分析高寒草甸植物群落生物量和地下不同径级根系碳分配特征及根系的生长特征对降雨变化的响应,有利于了解全球变化背景下高寒草甸植物根系、土壤碳氮循环及其过程。采用微根管技术原位监测5种降雨处理下(增雨50%:1.5P、自然降雨:1.0P、减雨30%:0.7P、减雨50%:0.5P、减雨90%:0.1P)高寒草甸植物群落和根系属性(现存量、生产量、死亡量、根系寿命和周转速率)的变化特征,结果表明:(1)降雨变化对地上植物群落生物量无显著影响,但0.5P和0.1P显著增加禾本科生物量(P<0.05)。(2)总根系现存量在处理间无显著差异,但随着降雨量减少呈先增加后降低的趋势。土层间不同径级根系现存量差异显著,0-10 cm土层1.5P和0.7P1级根现存量显著增加,2级和3级根现存量显著降低;在10-20 cm土层,1.0P2级根系现存量显著高于其余处理(P<0.05)。(3)总根生产量与死亡量随降雨减少而降低,在0-10 cm土层,1.0P总根生产量和死亡量最高,0.1P显著降低了1级根生产量(P<0.05)。(4)0.1P显著增加10-20 cm土层1级根和总根寿命(P<0.05)。(5)根系周转随降雨量减少呈降低趋势,但无显著差异(P>0.05)。(6)结构方程模型进一步表明:根系现存量和生产量受土层和水分的直接影响,土层和养分对根系周转有负效应。综上所述,降雨量的变化并未显著改变地下总根系生物量,但少量降雨变化(0.7P、1.5P)会降低植物对2、3级根生物量的分配,投入更多资源以促进1级根的生长;而水分下降至轻度水分胁迫(0.1P),植物会减少地下各径级根系生物量的分配,保持低根系生物量消耗和低根系生长来维持其正常的生长状态,完成其正常的生态功能。  相似文献   

7.
Summer-winter differences in copepod distribution around South Georgia   总被引:2,自引:0,他引:2  
Atkinson  Angus  Ward  Peter 《Hydrobiologia》1988,167(1):325-334
Zooplankton was sampled on a synoptic grid of stations centered on South Georgia during the austral summer of 1981/82 and winter 1983. Within the top 1000 m layer at oceanic stations, copepods averaged 48% of the total biomass in summer and winter, but outnumbered all other taxa combined by a factor of 10. In winter the mean zooplankton biomass within the top 1000 m was 68% of its summer level. Copepod biomass was 77% of its summer level. During both surveys, the large and abundant Calanoides acutus and Rhincalanus gigas dominated the copepod biomass and, with several other species, showed a marked downwards seasonal migration out of the top 250 m layer in winter. Antarctic epipelagic species predominated around the island during summer but tended to be replaced by sub-Antarctic and cosmopolitan species during the winter. Factors likely to influence our estimates of overall copepods abundance and changes in species composition include seasonality of reproduction, net mesh selection and differences in water mass distribution. The observed trends are attributed mainly to variation in the position of the Polar Front which lay north of the island during the summer survey yet lay across the survey area in winter. This resulted in a greater influence of sub-Antarctic water around South Georgia in winter and the displacement of Antarctic species.  相似文献   

8.
Taxonomic sufficiency has been used mainly to assess benthic condition, based on the assumption that taxa can be identified to a taxonomic level higher than the species level without losing the ability to detect changes related to pollution stress. Identifying taxa to a higher level reduces the expertise and time needed to identify organisms and consequently allows increased spatial and temporal replication. The usefulness of taxonomic sufficiency for typology (identification of water body types) was examined using the benthic communities of the Mondego River estuary (Portugal). Benthic samples were collected seasonally along the Northern branch of the Mondego River estuary from July 2000 to June 2001 and several environmental parameters were measured simultaneously. Cluster analysis of species data indicated three major ecological groups, mainly related to a saline gradient along the estuary. The same groups were found when taxa were aggregated to higher taxonomic levels (genus, family, order, class), except for the phylum level. The overall spatial pattern was driven by: (1) the dominance of bivalves and the occurrence of rare marine species in the Lower Estuary; (2) the dominance of polychaetes in the Middle Estuary; (3) and the dominance of arthropods in the Upper Estuary. The ability of different taxocenes to discriminate the three ecological groups was also examined. Mollusca and Bivalvia were the only taxocenes producing the same groupings, although other taxocenes (Annelida, Polychaeta, Spionidae, Arthropoda) showed a significant ability to discriminate between all three groups. Compared to using all taxa identified to the lowest possible taxonomic level, our results indicate that for typology (1) several higher taxonomic levels were sufficient (2) while few taxocenes alone were sufficient. Electronic supplementary material  The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

9.
During mastication, foods are reduced into particles suitable for swallowing and digestion. Smaller particles possess a greater surface area per unit of volume on which digestive enzymes and bacteria may work than relatively larger particles, and are thus more readily digested. As dental morphology facilitates the breakdown of diets with specific mechanical properties, extensive dental wear and/or tooth loss may impede an individual's ability to break down and exploit foods. We present data demonstrating a relationship between dental impairment and particle size in 43 fecal samples from 33 ring-tailed lemurs at the Beza Mahafaly Special Reserve (BMSR), Madagascar. All fecal samples were sifted through three sieves of decreasing size (11.2 mm, 4.75 mm, and 1.0 mm). The resulting fraction in each sieve was then weighed and assessed in relation to individual dental impairment status. With increasing wear, the percentage of each sample within the 1.0 mm sieve decreases, whereas that in the 11.2 mm sieve increases with increasing postcanine wear, although these effects are not present when limited to individuals without tooth loss. Individuals with tooth loss also demonstrate larger proportions of fecal material 1.0-4.75 mm in size. Dental impairment results in larger food particles and potentially less efficient utilization of foods. When fecal material was examined by leaf vs. fruit content, individuals with tooth loss demonstrated reduced proportions of fruit in the 1.0 mm and 11.2 mm sieves. These data suggest individuals with tooth loss consume less fruit than those without loss, potentially reflecting a reduced ability to process tamarind fruit, a key fallback resource at BMSR.  相似文献   

10.
This work assessed the ability of Lolium perenne and Medicago sativa for extracting lead (Pb) from particulate printed circuit computer boards (PCB) mixed in sand with the following concentrations: 0.5, 1.0 and 1.5 g of PCB, and including a control treatment without PCB. The PCB were obtained from computers, and grinded in two particle sizes: 0.0594 mm (PCB1) and 0.0706 mm (PCB2). The PCB particle sizes at their corresponding concentrations were applied to L. perenne and M. sativa by using three experimental assays. In assay II, PCB2 affected the biomass production for both plants. For assay III, the PCB1 increased the biomass of M. sativa (236.5%) and L. perenne (142.2%) when applying either 0.5 or 1.0 g, respectively. In regards to phytoextraction, assay I showed the highest Pb-extraction by roots of L. perenne (4.7%) when exposed to 1.5 g of PCB1. At assay I, L. perenne showed a Pb-bioconcentration factor higher than 1.0 when growing at 0.5 g of PCB1, and when HNO3 was used as digestion solution; moreover, in assay III both plants showed a Pb-translocation factor higher than 1.0. Therefore, Lolium perenne and Medicago sativa are able to recover Pb from electronic wastes (PCB).  相似文献   

11.
Abstract We estimated the below‐ground net plant productivity (BNPP) of different biomass components in an intensively and continuously 45‐ha grazed site and in a neighbouring exclosure ungrazed for 16 years for a natural mountain grassland in central Argentina. We measured approximately twice as much dead below‐ground biomass in the grazed site as in the ungrazed site, with a strong concentration of total below‐ground biomass towards the upper 10 cm of the soil layer in both sites. The main contribution to total live biomass was accounted for by very fine (<0.5 mm) and fine roots (0.5–1.0 mm) both at the grazed (79%) and at the ungrazed (81%) sites. We measured more dead biomass for almost all root components, more live biomass of rhizomes, tap roots and bulbs, and less live biomass of thicker roots (>1 mm) in the grazed site. The seasonal variation of total live below‐ground biomass mainly reflected climate, with the growing season being limited to the warmer and wetter portion of the year, but such variation was higher in the grazed site. Using different methods of estimation of BNPP, we estimated maximum values of 1241 and 723 g m?2 year?1 for the grazed and ungrazed sites, respectively. We estimated that very fine root productivity was almost twice as high at the grazed site as at the ungrazed one, despite the fact that both sites had similar total live biomass, and root turnover rate was twofold at the grazed site.  相似文献   

12.
The change of mesh size or shape as a management measure to improve selectivity as proposed by the EU should be assessed using actual fishery data, despite being tested experimentally in previous studies. This work was conducted to evaluate the consequences of inserting either a 40‐mm square‐mesh or a 50‐mm diamond‐mesh (instead of the traditional 40‐mm diamond‐mesh) at codends in commercial Spanish trawlers. Landings in terms of biomass, income and catch composition were compared under commercial conditions. Four métiers were identified in the fishery: European hake (Merluccius merluccius), red mullet (Mullus barbatus), red shrimp (Aristeus antennatus) and Norway lobster (Nephrops norvegicus). No significant differences were observed in biomass or income owing to the new mesh in either European hake or red mullet. In contrast, the total biomass of the red shrimp métier and the biomass of the Norway lobster, Nephrops norvegicus, were significantly higher after the selectivity change. Regarding the catch composition, only the European hake métier showed slight – but not significant – changes after using the new mesh. Considering these results, there was no short‐term effect (substantial biological or economic loss) as previous studies had expected. This could possibly be related to a higher performance of the new gear that may compensate for the lower retention of small sizes.  相似文献   

13.
The Water Framework Directive (WFD) strengthened the need for environmental quality assessment with rapid and accurate results. Studies of estuarine benthic macrofauna communities often use 0.5-mm mesh sieves in samples processing. However, this represents a considerable increase in sampling and identification effort compared to the use of 1-mm mesh sieves. Therefore, it is relevant to determine if mesh size matters in environmental quality assessments.The objectives of this study were as follows: (i) to test whether sieves with different mesh sizes provided different environmental status assessments in transitional systems, (ii) to compare the performance of different ecological indicators based on data from 0.5- and 1-mm mesh sieves and (iii) to compare the costs involved in using these two mesh sizes.Data were collected in the fall of 2007 and winter of 2008 at four sampling stations located in the Mondego Estuary, Portugal. The relative performance of Margalef and Shannon–Wiener indices, AMBI—AZTI Marine Biotic Index, Pielou, Eco-Exergy and Specific Eco-Exergy indices was analysed. Additionally, the multimetric Benthic Assessment Tool (BAT) was applied. The samples from the 1-mm mesh sieve were processed 2.9 times faster than the samples from the 0.5-mm mesh sieves. As expected, the density, biomass and number of species retained in the 0.5-mm mesh sieve were significantly higher in both seasons than the density, biomass and number of species retained in the 1-mm mesh sieve. All indicators were significantly different for the two mesh sizes in at least one season. The Pielou index was significantly different for the two mesh sizes in both seasons. Most indices showed that the 0.5-mm mesh sieve captured more information from the study system. The first BAT analysis provided different Ecological Quality Status (EQS) assessments for the two mesh sizes. To use the EQS obtained from the 1-mm mesh sieve as a proxy for the EQS for the 0.5-mm mesh sieve, further modifications were done in terms of reference conditions and class boundary thresholds. Regarding the Mondego Estuary, the use of a 1-mm mesh sieve appeared to be advantageous on routine environmental quality assessment, giving unbiased results with relatively less effort. Nevertheless, the methodology needs further validation and additional tests.  相似文献   

14.
Teste FP  Simard SW 《Oecologia》2008,158(2):193-203
The distribution of dry Douglas-fir forests in western North America is expected to shift northward with climate change and disappear from the grassland interface in the southern interior of British Columbia. This shift may be accentuated by clearcutting, a common harvesting practice that aims to reduce the competitive effects of residual mature trees on new regeneration, but in so doing, ignores their facilitative effects. In this study, we investigated the net effects of competition from and facilitation by mature trees retained on harvested sites on seedling establishment in the dry interface Douglas-fir forests. We demonstrate that access to a mycorrhizal network (MN) and proximity to trees have important influences on seedling performance. On six sites, we established trenched plots around 24 mature Pseudotsuga menziesii var. glauca (Douglas-fir) trees, then planted Douglas-fir seedlings into four mesh treatments that served to restrict MN access (i.e., planted into mesh bags with 0.5-, 35-, or 250-μm pores, or without mesh) or into impermeable bags (grown in isolation) at four distances (0.5, 1.0, 2.5, or 5.0 m). Seedling survival tended to be greater and water stress lower where seedlings had full access to the MN. Seedling height, shoot biomass, needle biomass, and nutrient uptake peaked at 2.5–5.0 m from mature trees. Seedlings 0.5 m from mature trees had lower CO2 assimilation rates and wood δ13C compared to seedlings 5.0 m away. Competition for soil resources was highest near mature trees but facilitation was relatively greater at further distances, resulting in a zone of net benefit for seedlings. These results show that intraspecific tree-seedling interactions are both competitive and facilitative in dry Douglas-fir forests, and that they are spatially dependent. After disturbance, maintaining residual mature trees may be important for their beneficial regeneration zones. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Very fine roots (<0.5 mm in diameter) of forest trees may serve as better indicators of root function than the traditional category of <2 mm, but how these roots will exhibit the plasticity of species-specific traits in response to heterogeneous soil nutrients is unknown. Here, we examined the vertical distribution of biomass and morphological and physiological traits of fine roots across three narrow diameter classes (<0.5, 0.5–1.0, and 1.0–2.0 mm) of Quercus serrata and Ilex pedunculosa at five soil depths down to 50 cm in a broad-leaved temperate forest. In both species, biomass and the allocation of very fine roots were higher in the surface soil but lower below 10-cm soil depth compared to values for larger roots (0.5–2.0 mm). When we applied these diameter classes, only very fine roots of Q. serrata exhibited significant changes in specific root length (SRL; m g−1) and root nitrogen (N) concentrations with soil depth, whereas the N concentrations only changed significantly in I. pedunculosa. The SRL and root N concentrations of larger roots in the two species did not significantly differ among soil depths. Thus, very fine roots may exhibit species-specific traits and change their potential for nutrient and water uptake in response to soil depth by plasticity in root biomass, the length, and the N in response to available resources.  相似文献   

16.
The diversity and composition of drift invertebrate assemblages were evaluated along a longitudinal gradient of an altitudinal stream in southeastern Brazil. The main goal of this study was to evaluate the influence of seasonality, stream order, and some abiotic factors on invertebrate drift and the use of drifting invertebrate assemblages to assess aquatic invertebrate diversity. Drift samples were collected over a 24 h period using nets (open area of 0.08 m2; mesh 0.250 mm), partially submerged (60%) in the water column. Taxonomic richness, Pielou evenness (J), Shannon–Wiener diversity (H), and total density of drift invertebrate assemblages were used in unpaired t-tests, Kruskal–Wallis and stepwise multiple regression analysis. The results showed a high taxonomic richness of aquatic invertebrates, with 91 taxa found. Chironomidae and Ephemeroptera represented together c. 80% of the total density of drift organisms. The drift approach allowed the collection of new and rare taxa, besides the knowledge of pupae stage of several chironomid genera. Significant differences in the taxonomic richness and diversity of drift invertebrate assemblages were found between the rainy and dry periods, indicating a significant influence of seasonality. An increase in water flow and electrical conductivity were associated with the increase in the taxonomic richness and diversity in the rainy period. No significant differences were found among the other abiotic variables among the stream orders.  相似文献   

17.
18.
This research adds to the limited data on coarse and fine root biomass for blue oak (Quercus douglasii Hook and Arn.), a California deciduous oak species found extensively throughout the interior foothills surrounding the Central Valley. Root systems of six blue oak trees were analyzed using three methods — backhoe excavation, quantitative pits, and soil cores. Coarse root biomass ranged from 7 to 177 kg per tree. Rooting depth for the main root system ranged from 0.5 to 1.5 m, with an average of 70% of excavated root biomass located above 0.5 m. Of the total biomass in excavated central root systems, primary roots (including burls) accounted for 56% and large lateral roots (> 20 mm diameter) accounted for 36%. Data from cores indicated that most biomass outside of the root crown was located in fine roots and that fine root biomass decreased with depth. At surface depths (0–20 cm), small-fine (< 0.5 mm diameter) roots accounted for 71%, large-fine (0.5–2.0 mm) for 25%, and coarse (> 2 mm) for 4% of total root biomass collected with cores. Mean fine root biomass density in the top 50 cm was 0.43 kg m−3. Fine root biomass did not change with increasing distance from the trees (up to approximately 5 m). Thus, fine roots were not concentrated under the tree canopies. Our results emphasize the importance of the smallest size class of roots (<0.5 mm), which had both higher N concentration and, in the area outside the central root system, greater biomass than large fine (0.5–2.0 mm) or coarse (> 2.0 mm) roots. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Cell size distribution of Solanum chrysotrichum cell suspension cultures was determined using mechanical sieving and an image analysis system. The results were compared using the sieve size (<0.25, 0.25–0.50, 0.5–1.0 and >1.00 mm) as the criterion. Mechanical sieving as well as image analysis showed that S. chrysotrichum cultures developed in shake flasks present a similar tendency to increase in aggregate size as growth persists. However, there are considerable differences in the values of each fraction. Fractions obtained by mechanical sieving were characterized by image analysis demonstrating that an inefficient separation of the cell population exists. The results demonstrate that digital image analysis was more precise than mechanical sieving to describe the cell size distribution changes occurring during cell growth. It was also possible to achieve a total characterization of S. chrysotrichum morphology.  相似文献   

20.
We investigated the effects of seasonal changes in soil moisture on the morphological and growth traits of fine roots (<2?mm in diameter) in a mature Turkey-oak stand (Quercus cerris L.) in the Southern Apennines of Italy. Root samples (diameter:?<0.5, 0.5?C1.0, 1.0?C1.5, and 1.5?C2.0?mm) were collected with the Auger method. Mean annual fine-root mass and length on site was 443?g?m?2 (oak fine roots 321?g?m?2; other species 122?g?m?2) and 3.18?km?m?2 (oak fine roots 1.14?km?m?2; other species 2.04?km?m?2), respectively. Mean specific root length was 8.3?m?g?1. All fine-root traits displayed a complex pattern that was significantly related to season. In the four diameter classes, both fine-root biomass and length peaked in summer when soil water content was the lowest and air temperature the highest of the season. Moreover, both fine-root biomass and length were inversely related with soil moisture (p?<?0.001). The finest roots (<0.5?mm in diameter) constituted an important fraction of total fine-root length (79?%), but only 21?% of biomass. Only in this root class, consequent to change in mean diameter, specific root length peaked when soil water content was lowest showing an inverse relationship (p?<?0.001). Furthermore, fine-root production and turnover decreased with increasing root diameter. These results suggest that changes in root length per unit mass, and pulses in root growth to exploit transient periods of low soil water content may enable trees to increase nutrient and water uptake under seasonal drought conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号