首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The expression of vigilin was followed during chick embryonal development by in situ hybridization. Vigilin mRNA is abundantly expressed in tissues of mesenchymal and ectomesenchymal origin. The mesenchymal primordial cells of cartilage and bone did not show any significant, expression of vigilin. As tissue differentiation proceeded, vigilin mRNA levels increased in hyaline cartilage and in both endochondral as well as intramembranous bone. The results suggest that the expression of vigilin mRNA in cartilage- and bone-forming cells chondrocytes and osteobalsts, is dependent on the stage of development and cellular differentiation, although not a unique process of bone formation. Most striking is the correlation of the maximum vigilin mRNA expression in osteoblasts and hypertrophic chondrocytes to periods when cell-specific genes were highly transcribed and substantially translated, e.g., synthesis of procollagen and formation of extracellular matrix in bone and cartilage.Abbreviations DTT dithiotreitol - PBS phosphate-buffered saline - SSC standard saline citrate buffer  相似文献   

2.
This study describes the precise spatial and temporal patterns of protein distribution for aggrecan, fibromodulin, cartilage oligomeric matrix protein (COMP) and cartilage matrix protein (CMP) in the developing mouse limb with particular attention to those cells destined to form articular chondrocytes in comparison to those cells destined to form a mineralized tissue and become replaced by bone. Mouse glenohumeral joints from fetal mice (12-18 days post coitus (dpc) to the young adult (37 days after birth) were immunostained with antibodies specific for these molecules. Aggrecan staining defined the general chondrocytic phenotype, whether articular or transient. Fibromodulin was associated with prechondrocytic mesenchymal cells in the interzone prior to joint cavitation and with the mesenchymal cells of the perichondrium or the periosteum encapsulating the joint elements of the maturing and young adult limb. Staining was most intense around developing articular chondrocytes and much less abundant or absent in those differentiating cells along the anlage. CMP showed an almost reciprocal staining pattern to fibromodulin and was not detected in the matrix surrounding articular chondrocytes. COMP was not detected in the cells at the articular surface prior to cavitation but by 18 dpc, as coordinated movement of the mouse forelimb intensifies, staining for COMP was most intense around the maturing articular chondrocytes. These results show that the cells that differentiate into articular chondrocytes elaborate an extracellular matrix distinct from those cells that are destined to form bone. Fibromodulin may function in the early genesis of articular cartilage and COMP may be associated with elaboration of a weight-bearing chondrocyte matrix.  相似文献   

3.
STC1, a mammalian homologue of stanniocalcin (STC) which plays a major role in calcium/phosphate homeostasis in fish, has been recently isolated. We have characterized the spatiotemporal distribution of STC1 mRNA and protein during mouse embryonic development generally and osteogenesis specifically. Northern blotting analysis of whole embryos showed that STC1 mRNA is highly and differentially expressed during embryogenesis. By in situ hybridization, STC1 mRNA was detected early in mesenchymal condensations and was then found to be highly expressed in perichondrial cells, periosteal cells, and then osteoblasts during endochondral bone formation. In bones forming by intramembranous ossification, STC1 mRNA was not detected until osteogenic cells appeared. The cellular distribution of STC1 protein closely corresponded to that of its mRNA, but the protein was also detected in hypertrophic chondrocytes. In the MC3T3-E1 osteogenic cell model, STC1 protein and mRNA were detectable throughout proliferation and differentiation stages but levels were relatively higher late during nodule formation/mineralization phases. For comparison, STC1 mRNA was also found in epithelial cells of both embryonic and adult intestine that had not previously been described among tissues responsive to calcium/phosphate transport. These results suggest that STC1 is expressed in a time- and cell-specific manner and may play an autocrine/paracrine role during osteoblast development and bone formation.  相似文献   

4.
5.
Role of CTGF/HCS24/ecogenin in skeletal growth control   总被引:14,自引:0,他引:14  
Connective tissue growth factor/hypertrophic chondrocyte-specific gene product 24 (CTGF/Hcs24) is a multifunctional growth factor for chondrocytes, osteoblasts, and vascular endothelial cells. CTGF/Hcs24 promotes the proliferation and maturation of growth cartilage cells and articular cartilage cells in culture and hypertrophy of growth cartilage cells in culture. The factor also stimulates the proliferation and differentiation of cultured osteoblastic cells. Moreover, CTGF/Hcs24 promotes the adhesion, proliferation, and migration of vascular endothelial cells, as well as induces tube formation by the cells and strong angiogenesis in vivo. Because angiogenesis is critical for the replacement of cartilage with bone at the final stage of endochondral ossification and because gene expression of CTGF/Hcs24 predominates in hypertrophic chondrocytes in the physiological state, a major physiological role for this factor should be the promotion of the entire process of endochondral ossification, with the factor acting on the above three types of cells as a paracrine factor. Thus, CTGF/Hcs24 should be called "ecogenin: endochondral ossification genetic factor." In addition to hypertrophic chondrocytes, osteoblasts activated by various stimuli including wounding also express a significantly high level of CTGF/Hcs24. These findings in conjunction with in vitro findings about osteoblasts mentioned above suggest the involvement of CTGF/Hcs24 in intramembranous ossification and bone modeling/remodeling. Because angiogenesis is also critical for intramembranous ossification and bone remodeling, CTGF/Hcs24 expressed in endothelial cells activated by various stimuli including wounding may also play important roles in direct bone formation. In conclusion, although the most important physiological role of CTGF/Hcs24 is ecogenin action, the factors also play important roles in skeletal growth and modeling/remodeling via its direct action on osteoblasts under both physiological and pathological conditions.  相似文献   

6.
The recessive mutation nanomelia blocks the synthesis of a large aggregating proteoglycan (aggrecan) by avian embryo chondrocytes. Lack of aggrecan is associated with short stature, multiple morphological defects in cartilage, and embryo lethality. Bony defects have also been described, but were assumed to be a secondary consequence of the cartilage defect. However, two lines of evidence presented in this paper indicate that the aggrecan deficiency directly affects intramembranous bone. First, the morphology (i.e. projected area and shape) of certain membranous bones of nanomelia embryos was abnormal. Second, membranous bone from nanomelia embryos proved to be significantly stiffer in biomechanical tests that measured functional properties of the extracellular matrix. These findings were unexpected because intramembranous bones normally develop from mesenchyme and not from a cartilage intermediate, and they prompted a search for evidence of aggrecan expression in the bone of normal chick embryos. We report that: 1) aggrecan mRNA was identified by PCR analysis of total RNA isolated from day-13 chick embryo calvarium, 2) the PCR method successfully amplified aggrecan mRNA from primary chick embryo osteoblasts in culture, 3) in situ hybridization of membranous bone tissue sections demonstrated aggrecan expression by chick embryo osteoblasts in vivo, and 4) the aggrecan message was identified in Northern blots of calvarial mRNA probed at high stringency. The results of the molecular and biomechanical studies provide evidence that aggrecan is indeed expressed in membranous bone as well as cartilage. Altogether, these results suggest that aggrecan may contribute to the functional properties and the normal growth and development of avian membranous bone.  相似文献   

7.
Ovotransferrin expression during chick embryo tibia development has been investigated in vivo by immunocytochemistry and in situ hybridization. Ovotransferrin was first observed in the 7 day cartilaginous rudiment. At later stages, the factor was localized in the articular zone of the bone epiphysis and in the bone diaphysis where it was concentrated in hypertrophic cartilage, in zones of cartilage erosion and in the osteoid at the chondro-bone junction. When the localization of the ovotransferrin receptors was investigated, it was observed that chondrocytes at all stages of differentiation express a low level of the oviduct (tissue) specific receptor. Interestingly, high levels of the receptor were detectable in the 13-d old tibia in the diaphysis collar of stacked-osteoprogenitor cells and in the layer of derived osteoblasts. High levels of oviduct receptor were also observed in the primordia of the menisci. Metabolic labeling of proteins secreted by cultured chondrocytes and osteoblasts and Northern blot analysis of RNA extracted from the same cells confirmed and completed the above information. Ovotransferrin was expressed by in vitro differentiating chondrocytes in the early phase of the culture and, at least when culture conditions allowed extracellular matrix assembly, also by hypertrophic chondrocytes and derived osteoblast-like cells. Osteoblasts directly obtained from bone chips produced ovotransferrin only at the time of culture mineralization. By Western blot analysis, oviduct receptor proteins were detected at a very low level in extract from differentiating and hypertrophic chondrocytes and at a higher level in extract from hypertrophic chondrocytes undergoing differentiation to osteoblast-like cells and from mineralizing osteoblasts. Based on these results, the existence of autocrine and paracrine loops involving ovotransferrin and its receptor during chondrogenesis and endochondral bone formation is discussed.  相似文献   

8.
Expression of the basement membrane heparan sulfate proteoglycan (HSPG), perlecan (Pln), mRNA, and protein has been examined during murine development. Both Pln mRNA and protein are highly expressed in cartilaginous regions of developing mouse embryos, but not in areas of membranous bone formation. Initially detected at low levels in precartilaginous areas of d 12.5 embryos, Pln protein accumulates in these regions through d 15.5 at which time high levels are detected in the cartilage primordia. Laminin and collagen type IV, other basal lamina proteins commonly found colocalized with Pln, are absent from the cartilage primordia. Accumulation of Pln mRNA, detected by in situ hybridization, was increased in d 14.5 embryos. Cartilage primordia expression decreased to levels similar to that of the surrounding tissue at d 15.5. Pln accumulation in developing cartilage is preceded by that of collagen type II. To gain insight into Pln function in chondrogenesis, an assay was developed to assess the potential inductive activity of Pln using multipotential 10T1/2 murine embryonic fibroblast cells. Culture on Pln, but not on a variety of other matrices, stimulated extensive formation of dense nodules reminiscent of embryonic cartilaginous condensations. These nodules stained intensely with Alcian blue and collagen type II antibodies. mRNA encoding chondrocyte markers including collagen type II, aggrecan, and Pln was elevated in 10T1/2 cells cultured on Pln. Human chondrocytes that otherwise rapidly dedifferentiate during in vitro culture also formed nodules and expressed high levels of chondrocytic marker proteins when cultured on Pln. Collectively, these studies demonstrate that Pln is not only a marker of chondrogenesis, but also strongly potentiates chondrogenic differentiation in vitro.  相似文献   

9.
We have cloned and expressed murine osteoclast inhibitory lectin (mOCIL), a 207-amino acid type II transmembrane C-type lectin. In osteoclast formation assays of primary murine calvarial osteoblasts with bone marrow cells, antisense oligonucleotides for mOCIL increased tartrate-resistant acid phosphatase-positive mononucleate cell formation by 3-5-fold, whereas control oligonucleotides had no effect. The extracellular domain of mOCIL, expressed as a recombinant protein in Escherichia coli, dose-dependently inhibited multinucleate osteoclast formation in murine osteoblast and spleen cell co-cultures as well as in spleen cell cultures treated with RANKL and macrophage colony-stimulating factor. Furthermore, mOCIL acted directly on macrophage/monocyte cells as evidenced by its inhibitory action on adherent spleen cell cultures, which were depleted of stromal and lymphocytic cells. mOCIL completely inhibited osteoclast formation during the proliferative phase of osteoclast formation and resulted in 70% inhibition during the differentiation phase. Osteoblast OCIL mRNA expression was enhanced by parathyroid hormone, calcitriol, interleukin-1alpha and -11, and retinoic acid. In rodent tissues, Northern blotting, in situ hybridization, and immunohistochemistry demonstrated OCIL expression in osteoblasts and chondrocytes as well as in a variety of extraskeletal tissues. The overlapping tissue distribution of OCIL mRNA and protein with that of RANKL strongly suggests an interaction between these molecules in the skeleton and in extraskeletal tissues.  相似文献   

10.
Heparanase mRNA expression during fracture repair in mice   总被引:1,自引:1,他引:0  
Bone fracture healing takes place through endochondral ossification where cartilaginous callus is replaced by bony callus. Vascular endothelial growth factor (VEGF) is a requisite for endochondral ossification, where blood vessel invasion of cartilaginous callus is crucial. Heparanase is an endoglucuronidase that degrades heparan sulfate proteoglycans (HSPG) and releases heparin-binding growth factors including VEGF as an active form. To investigate the role of heparanase in VEGF recruitment during fracture healing, the expression of heparanase mRNA and VEGF, and vessel formation were examined in mouse fractured bone. On days 5 and 7 after the fracture, when mesenchymal cells proliferated and differentiated into chondrocytes, heparanase mRNA was detected in osteo(chondro)clasts and their precursors, but not in the inflammatory phase (day 3). On day 10, both VEGF and HSPG were produced by hypertrophic chondrocytes of the cartilaginous callus and by osteoblasts of the bony callus; numerous osteo(chondro)clasts resorbing the cartilage expressed strong heparanase signals. Adjacent to the cartilage resorption sites, angiogenesis with CD31-positive endothelial cells and osteogenesis with osteonectin-positive osteoblasts were observed. On days 14 and 21, osteoclasts in the woven bone tissue expressed heparanase mRNA. These data suggest that by producing heparanase osteo(chondro)clasts contribute to the recruitment of the active form of VEGF. Thus osteo(chondro)clasts may promote local angiogenesis as well as callus resorption in endochondral ossification during fracture healing.  相似文献   

11.
12.
Avascular cartilage is replaced by highly vascularized bone tissue during endochondral ossification, a process involving capillary invasion of calcified hypertrophic cartilage in association with apoptosis of hypertrophic chondrocytes, degradation of cartilage matrix and deposition of bone matrix. All of these events are closely controlled, especially by cytokines and growth factors. Leukaemia inhibitory factor (LIF), a member of the gp130 cytokine family, is involved in osteoarticular tissue metabolism and might participate in osteogenesis. Immunohistochemical staining showed that LIF is expressed in hypertrophic chondrocytes and vascular sprouts of cartilage and bone during rat and human osteogenesis. LIF is also present in osteoblasts but not in osteoclasts. Observations in a rat endochondral ossification model were confirmed by studies of human cartilage biopsies from foetuses with osteogenesis imperfecta. LIF was never detected in adult articular chondrocytes and bone-marrow mesenchymal cells. These results and other data in the literature suggest that LIF is involved in the delicate balance between the rate of formation of calcified cartilage and its vascularization for bone development.  相似文献   

13.
14.
The expression of mRNAs for type I and type II procollagens, transforming growth factor-beta (TGF-beta) and c-fos was studied in developing human long bones by Northern blotting and in situ hybridization. The cells producing bone and cartilage matrix were identified by hybridizations using cDNA probes for types I and II collagen, respectively. Northern blotting revealed that the highest levels of TGF-beta mRNA were associated with the growth plates. By in situ hybridization, this mRNA was localized predominantly in the osteoblasts and osteoclasts of the developing bone, in periosteal fibroblasts and in individual bone marrow cells. These findings are consistent with the view that TGF-beta may have a role in stimulation of type I collagen production and bone formation. Only a low level of TGF-beta mRNA was detected in cartilage where type II collagen mRNA is abundant. In Northern hybridization, the highest levels of c-fos mRNA were detected in epiphyseal cartilage. In situ hybridization revealed two cell types with high levels of c-fos expression: the chondrocytes bordering the joint space and the osteoclasts of developing bone. These differential expression patterns suggest specific roles for TGF-beta and c-fos in osseochondral development.  相似文献   

15.
16.
17.
Extracellular matrix (ECM) remodeling is important during bone development and repair. Because matrix metalloproteinase 13 (MMP13, collagenase-3) plays a role in long bone development, we have examined its role during adult skeletal repair. In this study we find that MMP13 is expressed by hypertrophic chondrocytes and osteoblasts in the fracture callus. We demonstrate that MMP13 is required for proper resorption of hypertrophic cartilage and for normal bone remodeling during non-stabilized fracture healing, which occurs via endochondral ossification. However, no difference in callus strength was detected in the absence of MMP13. Transplant of wild-type bone marrow, which reconstitutes cells only of the hematopoietic lineage, did not rescue the endochondral repair defect, indicating that impaired healing in Mmp13-/- mice is intrinsic to cartilage and bone. Mmp13-/- mice also exhibited altered bone remodeling during healing of stabilized fractures and cortical defects via intramembranous ossification. This indicates that the bone phenotype occurs independently from the cartilage phenotype. Taken together, our findings demonstrate that MMP13 is involved in normal remodeling of bone and cartilage during adult skeletal repair, and that MMP13 may act directly in the initial stages of ECM degradation in these tissues prior to invasion of blood vessels and osteoclasts.  相似文献   

18.
Late development of endochondral ossification occurs at the boundary between the growth cartilage and bone marrow during the formation of long bones in Xenopus laevis. Since the Indian hedgehog (Ihh) is involved in endochondral ossification in mouse, we investigated the expression of Xenopus banded hedgehog (X-bhh), which is a homolog of mouse Ihh. RT-PCR analysis demonstrated that the X-bhh mRNA was detected from an early stage of limb formation to formation of femurs in mature frogs, and it was associated with the expression of Xenopus-ptc1 (X-ptc1), Xenopus-gli1 (X-gli1), Xenopus-type II collagen (X-col II), Xenopus-runx2 (X-runx2), and Xenopus-osteocalcin (X-ocn) mRNAs. In situ hybridization revealed that chondrogenic cells observed at early limb development expressed X-bhh and X-gli1. At later stages of limb development, chondrocytes, located slightly away from the boundary between the cartilage and bone marrow, expressed the X-bhh, X-ptc1, and X-gli1 mRNAs; however, the mesenchymal cells at the boundary failed to express these mRNAs. The X-bhh, X-ptc1, and X-gli1 mRNAs as well as those of X-runx2 and X-ocn were expressed by the mesenchymal cells in the periosteal region at the tip of the cortical bone, indicating an intimate relationship between X-bhh expression and bone formation in this region. Considered collectively, the present study suggests that X-bhh evolutionally acquired the function to induce osteogenesis; however, the expression profile of X-bhh in epiphysis is closely related to the late development of endochondral ossification in X. laevis.  相似文献   

19.
20.
We have investigated the ability of exogenous transforming growth factor-beta (TGF-beta) to induce osteogenesis and chondrogenesis, critical events in both bone formation and fracture healing. Daily injections of TGF-beta 1 or 2 into the subperiosteal region of newborn rat femurs resulted in localized intramembranous bone formation and chondrogenesis. After cessation of the injections, endochondral ossification occurred, resulting in replacement of cartilage with bone. Gene expression of type II collagen and immunolocalization of types I and II collagen were detected within the TGF-beta-induced cartilage and bone. Moreover, injection of TGF-beta 2 stimulated synthesis of TGF-beta 1 in chondrocytes and osteoblasts within the newly induced bone and cartilage, suggesting positive autoregulation of TGF-beta. TGF-beta 2 was more active in vivo than TGF-beta 1, stimulating formation of a mass that was on the average 375% larger at a comparable dose (p less than 0.001). With either TGF-beta isoform, the dose of the growth factor determined which type of tissue formed, so that the ratio of cartilage formation to intramembranous bone formation decreased as the dose was lowered. For TGF-beta 1, reducing the daily dose from 200 to 20 ng decreased the cartilage/intramembranous bone formation ratio from 3.57 to zero (p less than 0.001). With TGF-beta 2, the same dose change decreased the ratio from 3.71 to 0.28 (p less than 0.001). These data demonstrate that mesenchymal precursor cells in the periosteum are stimulated by TGF-beta to proliferate and differentiate, as occurs in embryologic bone formation and early fracture healing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号