首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 772 毫秒
1.
Chronic beta-receptor blockade has been reported to inhibit right ventricular hypertrophy in rats at high altitude. If so, we wanted to determine whether beta-receptor blockade or some other drug action were involved and whether the heart, the lung vessels, or blood alterations were affected. In rats, chronic treatment with DL-propranolol (2 mg/kg ip once daily) reduced right ventricular hypertrophy and polycythemia of chronic high altitude. D-Propranolol and metoprolol did not reduce hypoxia-induced right ventricular hypertrophy or polycythemia. In isolated lungs from low-altitude rats treated chronically with DL-propranolol or with D-propranolol the pressor response to acute hypoxia was blunted. Chronic DL-propranolol blunted the acute hypoxic pressor response and angiotensin II induced vasoconstriction in lungs from high-altitude rats. Two effects of DL-propranolol treatment were seen: 1) blockade of beta 2-adrenergic receptors, which reduced the right ventricular hypertrophy of high altitude through reduction of hematocrit; and 2) a non-beta-effect, which reduced vascular responsiveness to acute hypoxia in the isolated lung preparation.  相似文献   

2.
We investigated the effects of lung injury due to alpha-naphthylthiourea (ANTU) on pulmonary vascular reactivity. Rats were treated with ANTU (10 mg/kg ip) or the vehicle Tween 80. Four hours later, lungs from ANTU-treated rats had increased wet-to-dry weight ratios, bronchial lavage protein concentrations, and perivascular edema. To test vascular reactivity, lungs were isolated and perfused with blood at constant flow rate, while mean pulmonary arterial pressure was monitored. ANTU-treated lungs vasoconstricted earlier than Tween-treated lungs in response to severe airway hypoxia (fractional inspired O2 0%). ANTU-treated lungs vasoconstricted in response to 10% O2, while Tween-treated lungs failed to respond to 10% O2, indicating that the threshold for hypoxic vasoconstriction was decreased by ANTU. ANTU also decreased the threshold for and increased the magnitude of angiotensin II pressor responses, indicating that the increased vasoreactivity was not specific for hypoxia. Addition of meclofenamate to perfusates increased the rate and magnitude of responses to 0% O2 in Tween-treated lungs, but did not change the responses of ANTU-treated lungs. Light microscopy of ANTU-treated lungs showed no pulmonary arterial obstruction, and electron microscopy revealed mild capillary endothelial cell injury. We conclude that enhanced pulmonary vascular reactivity accompanies the increased-permeability pulmonary edema caused by ANTU. A similar increase in vasoreactivity might contribute to pulmonary hypertension observed in patients with the adult respiratory distress syndrome.  相似文献   

3.
We previously reported that Fischer (F) rat lungs developed more extensive injury when challenged with oxidants than age-matched Sprague-Dawley (SD) rat lungs. We now describe a reduced pulmonary vascular response to alveolar hypoxia and angiotensin II (ANG II) in F compared with SD rats. The comparative studies were performed with isolated lungs perfused with salt solution or blood, catheter-implanted awake rats, and isolated main pulmonary arterial rings. Isolated lungs from F rats perfused with either blood or salt solution had reduced vasoconstriction in comparison with lungs from SD rats when exposed to alveolar hypoxia or challenged with ANG II. Instrumented awake F rats had a smaller mean increase in total pulmonary vascular resistance (PVR) than SD rats (35 vs. 94 mmHg.min.l-1, P less than 0.05) when challenged with 8% oxygen. The contractile response of isolated pulmonary artery but not thoracic aortic rings to KCl and ANG II was reduced in F compared with SD rats. In addition, F rats exposed to 4 wk of hypobaric hypoxia developed less pulmonary hypertension and right ventricular hypertrophy (when corrected for the hematocrit) than SD rats. We conclude that the oxidant stress-sensitive inbred F rat strain is characterized by a lung vascular bed that is relatively unresponsive to vasoconstricting stimuli. The mechanism underlying this genetic difference in lung vascular control remains to be defined.  相似文献   

4.
Chronic hypoxia causes pulmonary hypertension and pulmonary vascular remodeling in rats. Because platelet-activating factor (PAF) levels increase in lung lavage fluid and in plasma from chronically hypoxic rats, we examined the effect of two specific, structurally unrelated PAF antagonists, WEB 2170 and BN 50739, on hypoxia-induced pulmonary vascular remodeling. Treatment with either agent reduced hypoxia-induced pulmonary hypertension and right ventricular hypertrophy at 3 wk of hypoxic exposure (simulated altitude 5,100 m) but did not affect cobalt (CoCl2)-induced pulmonary hypertension. The PAF antagonists had no effect on the hematocrit of normoxic or chronically hypoxic rats or CoCl2-treated rats. Hypoxia-induced pulmonary hypertension was associated with an increase in the vessel wall thickness of the muscular arteries and reduction in the number of peripheral arterioles. In WEB 2170-treated rats, these changes were significantly less severe than those observed in untreated chronically hypoxic rats. PAF receptor blockade had no acute hemodynamic effects; i.e., it did not affect pulmonary arterial pressure or cardiac output nor did it affect the magnitude of acute hypoxic pulmonary vasoconstriction in awake normoxic or chronically hypoxic rats. Isolated lungs from chronically hypoxic rats showed a pressor response to the chemotactic tripeptide N-formyl-Met-Leu-Phe (fMLP) and an increase in the number of leukocytes lavaged from the pulmonary circulation. In vivo treatment with WEB 2170 significantly reduced the fMLP-induced pressor response compared with that observed in isolated lungs from untreated chronically hypoxic rats. These results suggest that PAF contributes to the development of chronic pulmonary hypertension induced by chronic hypoxia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Tumor necrosis factor-alpha (TNF-alpha) causes pulmonary hypertension and arterial hypoxemia, but the mechanisms are unknown. We conducted two experiments to test the hypothesis that TNF-alpha alters pulmonary vascular reactivity, which in turn could cause either pulmonary hypertension or arterial hypoxemia. In experiment 1, rats were given acute or long-term injections of TNF-alpha (recombinant human) in vivo. Rats treated acutely received either saline or TNF-alpha (40 micrograms/kg iv in saline) 3 min (TNF-3 min; n = 8), 20 min (TNF-20 min; n = 8), or 24 h (TNF-24 h; n = 5) before the lungs were isolated. Rats treated chronically received injections of either saline or TNF-alpha (250 micrograms/kg ip in saline) two times per day for 7 days (TNF-7 days; n = 9). Lungs were isolated and perfused with Earle's salt solution (+2 g/l NaHCO3 + 4 g/100 ml Ficoll), and vascular reactivity was tested with acute hypoxia (3 min; 3% O2) and angiotensin II (ANG II; 0.025-0.40 micrograms). Pulmonary pressor responses to hypoxia were greater (P less than 0.05) in TNF-20 min and TNF-7 day groups. ANG II responses were increased (P less than 0.05) in TNF-7 day rats. In experiment 2, lungs were isolated and perfused and received direct pulmonary arterial injections of TNF-alpha (0.2, 2.0, and 20 micrograms) or saline, after stable responses to hypoxia and ANG II (0.10 microgram) were attained. Reactivity was not different between control and TNF-alpha rats before the injections, but TNF-alpha increased (P less than 0.05) responses to hypoxia and ANG II.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
It has been postulated that changes in the availability of partially reduced O2 species, such as O2 radicals, could serve as a link between PO2 in the alveolus and pulmonary vascular tone (Herz 11: 127-141, 1986). To assess this hypothesis, the hemodynamic effects of acute changes in the balance between the production of O2 radicals and availability of antioxidant enzymes were studied in the isolated perfused rat lung. Intravascular generation of O2 radicals, by administration of xanthine-xanthine oxidase, decreased the pulmonary vascular pressor response to alveolar hypoxia (-55 +/- 5%) and angiotensin II (-58 +/- 10%, P less than 0.01 for each) in isolated perfused rat lungs without increasing the lung wet-to-dry weight ratio. Decreases in pulmonary vascular reactivity were inhibited by pretreatment of the lung with desferrioxamine or a mixture of catalase and superoxide dismutase. Catalase and superoxide dismutase preserved the hypoxic pressor response whether given in liposomes or in dissolved form. Superoxide dismutase administered free in solution, or combined with catalase in liposomes, increased the normoxic pulmonary arterial pressure and enhanced vascular reactivity to angiotensin II and hypoxia. Lungs treated with antioxidant enzymes in liposomes had 50% higher lung catalase levels than control lungs (P less than 0.05). These findings demonstrate that exogenous partially reduced O2 species can decrease pulmonary vascular reactivity and suggest that endogenous radicals, superoxide radical in particular, might be important in modulating pulmonary vascular tone.  相似文献   

7.
Leukotriene C4 is produced during hypoxic pulmonary vasoconstriction and leukotriene inhibitors preferentially inhibit the hypoxic pressor response in rats. If lipoxygenase products are important in hypoxic vasoconstriction, then an animal deficient in arachidonic acid should have a blunted hypoxic pressor response. We investigated if vascular responsiveness was decreased in vascular rings and isolated perfused lungs from rats raised on an essential fatty acid deficient diet (EFAD) compared to rats raised on a normal diet. Rats raised on the EFAD diet had decreased esterified plasma arachidonic acid and increased 5-, 8-, 11- eicosatrieonic acid compared to rats raised on the normal diet (control). Compared to the time matched responses in control isolated perfused lungs the pressor responses to angiotensin II and alveolar hypoxia were blunted in lungs from the arachidonate deficient rats. This decreased pulmonary vascular responsiveness was not affected by the addition of indomethacin or arachidonic acid to the lung perfusate. Similarly, the pulmonary artery rings from arichidonate deficient rats demonstrated decreased reactivity to norepinephrine compared to rings from control rats. In contrast, the tension increases to norepinephrine were greater in aortic rings from the arachidonate deficient rats compared to control. Stimulated lung tissue from the arachidonate deficient animals produced less slow reacting substance and platelet activating factor like material but the same amount of 6-keto-PGF and TXB2 compared to control lungs. Thus there is an associated between altered vascular responsiveness and impairment of stimulated production of slow reacting substance and platelet activating factor like materiali rat raised on an EFAD diet.  相似文献   

8.

Background

Although both animal and human studies suggested the association between placenta growth factor (PlGF) and chronic obstructive pulmonary disease (COPD), especially lung emphysema, the role of PlGF in the pathogenesis of emphysema remains to be clarified. This study hypothesizes that blocking PlGF prevents the development of emphysema.

Methods

Pulmonary emphysema was induced in PlGF knock-out (KO) and wild type (WT) mice by intra-tracheal instillation of porcine pancreatic elastase (PPE). A group of KO mice was then treated with exogenous PlGF and WT mice with neutralizing anti-VEGFR1 antibody. Tumor necrosis factor alpha (TNF-α), matrix metalloproteinase-9 (MMP-9), and VEGF were quantified. Apoptosis measurement and immuno-histochemical staining for VEGF R1 and R2 were performed in emphysematous lung tissues.

Results

After 4 weeks of PPE instillation, lung airspaces enlarged more significantly in WT than in KO mice. The levels of TNF-α and MMP-9, but not VEGF, increased in the lungs of WT compared with those of KO mice. There was also increased in apoptosis of alveolar septal cells in WT mice. Instillation of exogenous PlGF in KO mice restored the emphysematous changes. The expression of both VEGF R1 and R2 decreased in the emphysematous lungs.

Conclusion

In this animal model, pulmonary emphysema is prevented by depleting PlGF. When exogenous PlGF is administered to PlGF KO mice, emphysema re-develops, implying that PlGF contributes to the pathogenesis of emphysema.  相似文献   

9.

Background

Although both animal and human studies suggested the association between placenta growth factor (PlGF) and chronic obstructive pulmonary disease (COPD), especially lung emphysema, the role of PlGF in the pathogenesis of emphysema remains to be clarified. This study hypothesizes that blocking PlGF prevents the development of emphysema.

Methods

Pulmonary emphysema was induced in PlGF knock-out (KO) and wild type (WT) mice by intra-tracheal instillation of porcine pancreatic elastase (PPE). A group of KO mice was then treated with exogenous PlGF and WT mice with neutralizing anti-VEGFR1 antibody. Tumor necrosis factor alpha (TNF-α), matrix metalloproteinase-9 (MMP-9), and VEGF were quantified. Apoptosis measurement and immuno-histochemical staining for VEGF R1 and R2 were performed in emphysematous lung tissues.

Results

After 4 weeks of PPE instillation, lung airspaces enlarged more significantly in WT than in KO mice. The levels of TNF-α and MMP-9, but not VEGF, increased in the lungs of WT compared with those of KO mice. There was also increased in apoptosis of alveolar septal cells in WT mice. Instillation of exogenous PlGF in KO mice restored the emphysematous changes. The expression of both VEGF R1 and R2 decreased in the emphysematous lungs.

Conclusion

In this animal model, pulmonary emphysema is prevented by depleting PlGF. When exogenous PlGF is administered to PlGF KO mice, emphysema re-develops, implying that PlGF contributes to the pathogenesis of emphysema.  相似文献   

10.
Studies in animal models have shown that, following lobectomy (LBX), there is compensatory growth in the remaining lung. The vascular growth response following right LBX (R-LBX) is poorly understood. To test the hypothesis that arterial growth and remodeling occur in response to LBX, in proportion to the amount of right lung tissue removed, two (24% of lung mass; R-LBX2 group) or three right lobes (52% of lung mass; R-LBX3 group) were removed via thoracotomy from adult rats. Sham control animals underwent thoracotomy only. Arteriograms were generated 3 wk after surgery. The areas of the left lung arteriogram, arterial branching, length of arterial branches, arterial density, and arterial-to-alveolar ratios were measured. To determine whether R-LBX causes vascular remodeling and pulmonary hypertension, muscularization of arterioles and right ventricular hypertrophy were assessed. Lung weight and volume indexes were greater in R-LBX3. Arterial area of the left lung increased 26% in R-LBX2 and 47% in R-LBX3. The length of large arteries increased in R-LBX3 and to a lesser extent in R-LBX2. The ratio of distal pulmonary arteries to alveoli was similar after R-LBX2 compared with sham but was 30% lower in R-LBX3. Muscularization of arterioles increased after R-LBX3, but not in R-LBX2. Right ventricular hypertrophy increased 50-70% in R-LBX3, but not in R-LBX2. Whereas removal of three right lung lobes induced arterial growth in the left lungs of adult rats, which was proportionate to the number of lobes removed, the ratio of distal pulmonary arteries to alveoli was not normal, and vascular remodeling and pulmonary hypertension developed.  相似文献   

11.
Tumor necrosis factor (TNF)-α is a key pro-inflammatory cytokine, thought to be important in the pathogenesis of pulmonary emphysema. TNF-α overexpression in the lung leads to the phenotypic features of pulmonary emphysema, pulmonary hypertension, and right ventricular hypertrophy in mice bred in Denver, 5240 feet/1600 m of altitude. This study hypothesized that the altitude could affect the development of pulmonary emphysema as well as pulmonary hypertension. To investigate the effect of the altitude, TNF-α transgenic mice were bred at sea level, Fukuoka, Japan. The pulmonary physiology and histology demonstrated similar development of pulmonary emphysema, compared to the mice bred in Denver. With respect to pulmonary hypertension, right ventricular hypertrophy was attenuated. Interestingly, mortality rate was significant lower in the mice bred at sea level. In contrast with the results in Denver, a significant decrease of vascular endothelial growth factor (VEGF) and its receptors expression was not found. From these data, we consider that the altitude affects development of pulmonary hypertension through the expression of VEGF and its receptors. In contrast, the effect of altitude was not clear regarding the development of pulmonary emphysema.  相似文献   

12.
The effects of N omega-nitro-L-arginine methyl ester (L-NAME), an inhibitor of endothelium-derived relaxing factor (EDRF) production, on vascular tone and responses were investigated in the pulmonary vascular bed of the intact-chest cat under conditions of controlled blood flow and constant left atrial pressure. When pulmonary vascular tone was elevated with U-46619, intralobar injections of acetylcholine, bradykinin, sodium nitroprusside, isoproterenol, prostaglandin E1 (PGE1), lemakalim, and 8-bromo-guanosine 3',5'-cyclic monophosphate (8-bromo-cGMP) dilated the pulmonary vascular bed. Intravenous administration of L-NAME elevated lobar arterial and systemic arterial pressures without altering left atrial pressure. When U-46619 was infused after L-NAME to raise lobar arterial pressure to levels similar to those attained during the control period, vasodilator responses to acetylcholine and bradykinin were reduced significantly, whereas responses to PGE1, lemakalim, and 8-bromo-cGMP were not altered, and responses to nitroprusside were increased. There was a small effect on the response to the highest dose of isoproterenol, and pressor responses to BAY K 8644 and angiotensin II were not altered. These results are consistent with the hypothesis that EDRF production may involve the formation of nitric oxide or a nitroso compound from L-arginine and that EDRF production may have a role in the regulation of tone and in the mediation of responses to acetylcholine and bradykinin in the pulmonary vascular bed of the cat.  相似文献   

13.
Leukotriene C4 is produced during hypoxic pulmonary vasoconstriction and leukotriene inhibitors preferentially inhibit the hypoxic pressor response in rats. If lipoxygenase products are important in hypoxic vasoconstriction, then an animal deficient in arachidonic acid should have a blunted hypoxic pressor response. We investigated if vascular responsiveness was decreased in vascular rings and isolated perfused lungs from rats raised on an essential fatty acid deficient diet (EFAD) compared to rats raised on a normal diet. Rats raised on the EFAD diet had decreased esterified plasma arachidonic acid and increased 5-, 8-, 11-eicosatrienoic acid compared to rats raised on the normal diet (control). Compared to the time matched responses in control isolated perfused lungs the pressor responses to angiotensin II and alveolar hypoxia were blunted in lungs from the arachidonate deficient rats. This decreased pulmonary vascular responsiveness was not affected by the addition of indomethacin or arachidonic acid to the lung perfusate. Similarly, the pulmonary artery rings from arachidonate deficient rats demonstrated decreased reactivity to norepinephrine compared to rings from control rats. In contrast, the tension increases to norepinephrine were greater in aortic rings from the arachidonate deficient rats compared to control. Stimulated lung tissue from the arachidonate deficient animals produced less slow reacting substance and platelet activating factor like material but the same amount of 6-keto-PGF1 alpha and TXB2 compared to control lungs. Thus there is an association between altered vascular responsiveness and impairment of stimulated production of slow reacting substance and platelet activating factor like material in rats raised on an EFAD diet.  相似文献   

14.

Background

Mast cells (MCs) are implicated in inflammation and tissue remodeling. Accumulation of lung MCs is described in pulmonary hypertension (PH); however, whether MC degranulation and c-kit, a tyrosine kinase receptor critically involved in MC biology, contribute to the pathogenesis and progression of PH has not been fully explored.

Methods

Pulmonary MCs of idiopathic pulmonary arterial hypertension (IPAH) patients and monocrotaline-injected rats (MCT-rats) were examined by histochemistry and morphometry. Effects of the specific c-kit inhibitor PLX and MC stabilizer cromolyn sodium salt (CSS) were investigated in MCT-rats both by the preventive and therapeutic approaches. Hemodynamic and right ventricular hypertrophy measurements, pulmonary vascular morphometry and analysis of pulmonary MC localization/counts/activation were performed in animal model studies.

Results

There was a prevalence of pulmonary MCs in IPAH patients and MCT-rats as compared to the donors and healthy rats, respectively. Notably, the perivascular MCs were increased and a majority of them were degranulated in lungs of IPAH patients and MCT-rats (p < 0.05 versus donor and control, respectively). In MCT-rats, the pharmacological inhibitions of MC degranulation and c-kit with CSS and PLX, respectively by a preventive approach (treatment from day 1 to 21 of MCT-injection) significantly attenuated right ventricular systolic pressure (RVSP) and right ventricular hypertrophy (RVH). Moreover, vascular remodeling, as evident from the significantly decreased muscularization and medial wall thickness of distal pulmonary vessels, was improved. However, treatments with CSS and PLX by a therapeutic approach (from day 21 to 35 of MCT-injection) neither improved hemodynamics and RVH nor vascular remodeling.

Conclusions

The accumulation and activation of perivascular MCs in the lungs are the histopathological features present in clinical (IPAH patients) and experimental (MCT-rats) PH. Moreover, the accumulation and activation of MCs in the lungs contribute to the development of PH in MCT-rats. Our findings reveal an important pathophysiological insight into the role of MCs in the pathogenesis of PH in MCT- rats.  相似文献   

15.
Acetylcholine's effect on the distribution of vascular resistance and compliance in the canine pulmonary circulation was determined under control and elevated vascular tone by the arterial, venous, and double occlusion techniques in isolated blood-perfused dog lungs at both constant flow and constant pressure. Large and small blood vessel resistances and compliances were studied in lungs given concentrations of acetylcholine ranging from 2.0 ng/ml to 200 micrograms/ml. The results of this study indicate that acetylcholine dilates large arteries at low concentrations (less than or equal to 20 ng/ml) and constricts small and large veins at concentrations of at least 2 micrograms/ml. Characterization of acetylcholine's effects at constant pulmonary blood flow indicates that 1) large artery vasodilation may be endothelial-derived relaxing factor-mediated because the dilation is blocked with methylene blue; 2) a vasodilator of the arachidonic acid cascade (blocked by ibuprofen), probably prostacyclin, lessens acetylcholine's pressor effects; 3) when vascular tone was increased, acetylcholine's hemodynamic effects were attenuated; and 4) acetylcholine decreased middle compartment and large vessle compliance under control but not elevated vascular tone. Under constant pressure at control vascular tone acetylcholine increases resistance in all segments except the large artery, and at elevated vascular tone the pressor effects were enhanced, and large artery resistance was increased.  相似文献   

16.
Hypoxic pulmonary hypertension (HPH), which is characterized by pulmonary arteriolar remodeling and right ventricular hypertrophy, is still a life-threatening disease with the current treatment strategies. The underlying molecular mechanisms of HPH remain unclear. Our previously published study showed that Wnt5a, one of the ligands in the Wnt family, was critically involved in the inhibition of hypoxia-induced pulmonary arterial smooth muscle cell proliferation by downregulation of β-catenin/cyclin D1 in vitro. In this study, we investigated the possible functions and mechanisms of Wnt5a in HPH in vivo. Recombinant mouse Wnt5a (rmWnt5a) or phosphate buffered saline (PBS) was administered to male C57/BL6 mice weekly from the first day to the end of the two or four weeks after exposed to hypoxia (10% O2). Hypoxia-induced pulmonary hypertension was associated with a marked increase in β-catenin/cyclin D1 expression in lungs. Right ventricular systolic pressure and right ventricular hypertrophy index were reduced in animals treated with rmWnt5a compared with PBS. Histology showed less pulmonary vascular remodeling and right ventricular hypertrophy in the group treated with rmWnt5a than with PBS. Treatment with rmWnt5a resulted in a concomitant reduction in β-catenin/cyclin D1 levels in lungs. These data demonstrate that Wnt5a exerts its beneficial effects on HPH by regulating pulmonary vascular remodeling and right ventricular hypertrophy in a manner that is associated with reduction in β-catenin/cyclin D1 signaling. A therapy targeting the β-catenin/cyclin D1 signaling pathway might be a potential strategy for HPH treatment.  相似文献   

17.
Nω-nitro-L-arginine methyl ester (L-NAME) treatment induces arteriosclerosis and vascular senescence. Here, we report that the systemic inhibition of nitric oxide (NO) production by L-NAME causes pulmonary emphysema. L-NAME-treated lungs exhibited both the structural (alveolar tissue destruction) and functional (increased compliance and reduced elastance) characteristics of emphysema development. Furthermore, we found that L-NAME-induced emphysema could be attenuated through both genetic deficiency and pharmacological inhibition of plasminogen activator inhibitor-1 (PAI-1). Because PAI-1 is an important contributor to the development of senescence both in vitro and in vivo, we investigated whether L-NAME-induced senescence led to the observed emphysematous changes. We found that L-NAME treatment was associated with molecular and cellular evidence of premature senescence in mice, and that PAI-1 inhibition attenuated these increases. These findings indicate that NO serves to protect and defend lung tissue from physiological aging.  相似文献   

18.
SO2-bronchitis, papaine-emphysema and paraquat fibrosis were induced in Wistar rats. Blood pressure, cardiac index, total peripheral resistance, arterial blood gas values, parameters of acid-base balance were determined. Effects of 0.1 and 0.3 microgram.-1.min-1 isoproterenol iv. infusion were examined. Morphologic alterations of the lungs were verified by histopathological examinations. All the parameters investigated were found to be normal in the control rats. The treated groups differed from the normal ones: an increased blood pressure was observed in emphysema and fibrosis. A decreased cardiac index was characteristic of chronic bronchitis, high cardiac index of emphysema, high TPR of bronchitis and arterial hypoxaemy of fibrosis. The groups reacted differently to beta adrenergic stimulation: in bronchitic and fibrotic rats the cardiac index was augmented, whereas in emphysematous ones the increase proved to be smaller. The effects of isoproterenol infusion can be related to the altered beta-receptor function in the various experimental pulmonary diseases.  相似文献   

19.
This study tested the hypothesis that the polyamines, a family of low-molecular-weight organic cations with documented regulatory roles in cell growth and differentiation, are mediators of chronic hypoxia-induced pulmonary vascular remodeling. Relative to room air controls, chronically hypoxic animals (inspired O2 fraction = 0.1; 21 days) exhibited higher pulmonary arterial pressures (measured in room air), thicker medial layers in pulmonary arteries of 50-100 microns diam, increased hematocrits, and right ventricular hypertrophy. In addition, lung contents of the polyamines, putrescine, spermidine, and spermine were greater in hypoxic animals than in controls. alpha-Difluoromethylornithine (DFMO), an inhibitor of polyamine synthesis, attenuated the hypoxia-induced elevations in lung putrescine and spermidine content and blunted the increases in pulmonary arterial pressure and medial thickness. Neither the increased hematocrit nor right ventricular hypertrophy associated with chronic hypoxia were abrogated by DFMO. In addition, DFMO failed to influence vasoconstrictor responses provoked by acute hypoxic ventilation in isolated, buffer-perfused rat lungs. These observations suggest that depression of polyamine biosynthesis with DFMO blunts the sustained increase in pulmonary arterial pressure by attenuating hypoxia-induced medial thickening.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号