首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Animals are often forced to accommodate disturbance to their territories or nests. When nest relocation becomes necessary, it is important to efficiently evaluate alternative nest sites to choose the one most suitable under current conditions. However, if time is limiting, species may experience a speed-versus-accuracy trade-off when searching for a new home. We examined nest site selection under duress (in the form of flooding) in two species of ants: Linepithema humile and Tapinoma sessile. We predicted that if ants are able to assess and evacuate to the most suitable location, colonies should move to higher elevation, relative to their current nest site, in response to flooding. To test for a speed-versus-accuracy trade-off, we presented colonies with new nest chambers that were either higher, lower, or at the same height as their current nest and examined if their ability to efficiently choose a new site was influenced by the rate of flooding. When flooding rates were slow, both species favored the highest nest site and nearly always moved their entire nest to the same chamber. However, when the rate of flooding was doubled, colonies of T. sessile less often chose the highest nest site and were also more likely to split their nests between two of the available chambers. These results demonstrate a trade-off between speed and accuracy in nest site selection for odorous house ants, while L. humile retained their ability to adequately assess new nest sites under the conditions we presented. These patterns may arise from differences in exploratory behavior and activity between the two species. Despite having identical colony sizes, L. humile had approximately ten times more workers exploring the alternate nest sites 30 min into the experiment than did T. sessile.  相似文献   

2.
Habitat fragmentation is currently the most pervasive anthropogenic disturbance in tropical forests and some species of leaf‐cutting ants of the genus Atta (dominant herbivores in the neotropics) have become hyper‐abundant in forest edges where their nests directly impact up to 6% of the forest area. Yet, their impacts on the regeneration dynamics of fragmented forests remain poorly investigated. Here we examine the potential of Atta cephalotes nests to function as ecological filters impacting tree recruitment. Growth, survival and biomass partitioning of experimentally planted seedlings (six tree species) were examined at eight spatially independent A. cephalotes colonies in a large Atlantic Forest fragment. Seedling performance and fate (leaf numbers and damage) were monitored up to 27 months across three habitats (nest centre, nest edge and forest understorey). Plants at illuminated nest centres showed twice the gross leaf gain as understorey individuals. Simultaneously, seedlings of all species lost many more leaves at nests than in the forest understorey, causing a negative net leaf gain. Net leaf gain in the shaded understorey ranged from zero (Licania and Thyrsodium species) to substantial growth for Copaifera and Virola, and intermediate levels little above zero for Protium and Pouteria. Also seedling survival differed across habitats and species, being typically low in the centre and at the edge of nests where seedlings were often completely defoliated by the ants. Lastly, seedling survival increased strongly with seed size at nest edges while there was no such correlation in the forest. Our results suggest that Atta nests operate as ecological filters by creating a specific disturbance regime that differs from other disturbances in tropical forests. Apparently, Atta nests favour large‐seeded tree species with resprouting abilities and the potential to profit from a moderate, nest‐mediated increase in light availability.  相似文献   

3.
Inter- and intraspecific competition was investigated in ants of the myrmicine genus leptothorax in a deciduous woodland near Würzburg, Germany. The most common species, A. (Myrafant) nylanderi, lives in rotting pine, oak, and elder sticks and may locally reach densities of 10 nests per m2. In the studied sites, only a small fraction of colonies were polydomous, i.e. single colonies typically did not inhabit several nest sites. The home ranges of nylanderi colonies overlap the ranges of other conspecific colonies and colonies of other species, especially L. (s.str.) gredleri. Foragers from different colonies encountering one another in the field back off without exhibiting strong aggression, suggesting that colonies do not defend absolute foraging territories. In laboratory experiments, the frequency and severity of agonistic interactions among workers from different colonies, all living in pine sticks, increased significantly with the distance between their nests. Workers from colonies nesting in different types of wood exhibited significantly more aggression. Experiments in which we transferred colonies from pine sticks into artificial pine or oak nests corroborate the hypothesis that nesting material strongly influences colony odour in L. nylanderi. The evolutionary significance of this apparent dear-enemy phenomenon is discussed.  相似文献   

4.
Ant behaviour and seed morphology: a missing link of myrmecochory   总被引:2,自引:2,他引:0  
Gómez C  Espadaler X  Bas JM 《Oecologia》2005,146(2):244-246
Seed dispersal by ants (myrmecochory) is mediated by the presence of a lipid-rich appendage (elaiosome) on the seed that induces a variety of ants to collect the diaspores. When seeds mature or fall onto the ground, these ant species transport them to their nest. After eating the elaiosome, the seed is discarded in nest galleries or outside, in the midden or farther away, where seeds can potentially germinate. The final location of seeds with their elaiosomes removed was evaluated to assess the importance of possible handles (structures that ants can grasp to carry) in transporting ants during re-dispersal experiments of seeds from nests of six species of ants. The results indicate that seeds remained within the nest because the ants were not able to transport them out of the nest. As a consequence of the elaiosome being removed, small ant species could not take Euphorbia characias seeds out of their nests. Only large ant species could remove E. characias seeds from their nests. Attaching an artificial handle to E. characias seeds allowed small ant species to redistribute the seeds from their nests. On the other hand, Rhamnus alaternus seeds that have a natural handle after the elaiosome removal were removed from the nests by both groups of ant species. If a seed has an element that acts as a handle, it will eventually get taken out of the nest. The ants’ size and their mandible gap can determine the outcome of the interaction (i.e. the pattern of the final seed shadow) and as a consequence, could influence the events that take place after the dispersal process.  相似文献   

5.
To advance our understanding of the causes and the consequences of budding (colony multiplication by fragmentation of main nests), we investigated nest movement in the facultatively polydomous Pharaoh ant, Monomorium pharaonis. Demographic data revealed that Pharaoh ants are highly polygynous and have a relatively low worker to queen ratio of 12.86. Budding experiments demonstrated that the number of available bud nests has a significant effect on colony fragmentation and increasing the number of bud nests resulted in smaller colony fragments. The overall distribution among bud nests was uneven, even though there was no evidence that the different life stages and castes partitioned unevenly among the bud nests and the analysis of individual colonies revealed no evidence of an uneven split in any of the colonies. This demonstrates that Pharaoh ants have the ability to exert social control over colony size and caste proportions during budding, which may contribute to their success as an invasive ant. The intensity of nest disturbance had a significant effect on whether or not the ants migrated into bud nests. Major disturbance resulted in the ants abandoning the source nest and migrating to bud nests and minor disturbance did not stimulate the ants to abandon the source nest. The results of the successive budding experiment which allowed the ants the opportunity to bud into progressively smaller nest fragments demonstrate that Pharaoh ants maintain a preferred minimum group size of 469 ± 28 individuals. Food allocation experiments utilizing protein marking revealed that nest fragmentation in Pharaoh ants has no negative impact on intracolony food distribution. Overall, our results suggest that nest units in the Pharaoh ant behave like cooperative, rather than competitive, entities. Such cooperation is most likely facilitated by the fact that individuals in all bud nests are genetically related, remain in close proximity to each other, and may continue to exchange individuals after budding.  相似文献   

6.
1. Plant communities influence the availability of important resources for ants, such as nest sites and food, as well as environmental conditions. Thus, plants affect the abundance and distribution of ants. 2. In a field experiment, the influence of plant cover on the settlement of nest sites and per‐capita productivity of sexual individuals by the ant Temnothorax crassispinus was analysed. In July 2014, in five areas with patches of alien balsam Impatiens parviflora, and another five of native balsam I. noli‐tangere, transects composed of artificial nests were established; the nest sites were situated inside patches of balsams, and outside of them. Four hundred and forty artificial nests were used. One year later, the nests were collected. 3. Colonies of the ants three times more often inhabited nest sites outside the patches of both balsams. Besides, colonies with queens were more frequently found in nest sites located away from balsams. The per‐capita productivity of sexual individuals was higher in nests collected in patches of balsam, and the colonies from patches of alien balsam produced a more female‐biased sex ratio. 4. In terms of the impact on the ant, no clear differences were found between the alien balsam and the native one. The most important factor affecting the fitness of ants in areas dominated by balsams is the presence of herbaceous plant cover rather than whether the plant is alien or native.  相似文献   

7.
Workers of the temporary parasitic ant Lasius sp. were perfectly compatible with their hosts Lasius fuliginosus. Aggression was never seen between allospecific nestmates in either field or laboratory. In the laboratory, trophallaxis and allogrooming between allospecific nestmates were statistically more frequent than that between conspecifics. These ants were highly aggressive toward individuals of either species from another mixed colony located 1 km away, indicating that they discriminated nestmates and nonnestmates regardless of the species to which they belonged. No aggressive actions, however, were observed between two neighboring mixed nests located 5 m apart. We have not considered, however, the relationship of the two neighboring nests: the two nests may have been two subunits of the same family or sister colonies, or may have been different colonies but discriminated from distant aliens. Gas chromatography analysis on the total cuticular extracts showed that Lasius sp. and L. fuliginosus possess distinct cuticular profiles, even though they were collected from the same mixed colony. Received: December 13, 1999 / Accepted: April 25, 2000  相似文献   

8.
1. The performance of ant colonies depends on different factors such as nest site, colony structure or the presence of pathogens and social parasites. Myrmica ants host various types of social parasites, including the larvae of Maculinea butterflies and Microdonmyrmicae (Schönrogge) hoverfly. How these social parasites affect host colony performance is still unexplored. 2. It was examined how the presence of Maculinea teleius Bergsträsser, Maculinea alcon (Denis & Schiffermüller), and M. myrmicae larvae, representing different feeding and growth strategies inside host colonies, is associated with worker survival, the number of foragers, and colony productivity parameters such as growth and reproduction. 3. It was found that the presence of social parasites is negatively associated with total colony production and the production of ant larvae and gynes. Male production was lower only in nests infested by M. teleius, whereas the number of worker pupae was significantly higher in all types of infested colonies than in uninfested colonies. Laboratory observations indicated that nests infested by Maculinea larvae are characterised by a higher number of foragers compared to uninfested nests but we did not find differences in worker survival among nest types. 4. The observed pattern of social parasite influence on colony productivity can be explained by the feeding strategies of parasitic larvae. The most negative effect was found for M. teleius, which feeds on the largest host brood and eliminates a high number of sexual forms. The strong, adverse influence of all studied parasite species on gyne production may result in low queen production in Myrmica populations exposed to these social parasites.  相似文献   

9.
Many individual decisions are informed by direct comparison of the alternatives. In collective decisions, however, only certain group members may have the opportunity to compare options. Emigrating ant colonies (Temnothorax albipennis) show sophisticated nest-site choice, selecting superior sites even when they are nine times further away than the alternative. How do they do this? We used radio-frequency identification-tagged ants to monitor individual behaviour. Here we show for the first time that switching between nests during the decision process can influence nest choice without requiring direct comparison of nests. Ants finding the poor nest were likely to switch and find the good nest, whereas ants finding the good nest were more likely to stay committed to that nest. When ants switched quickly between the two nests, colonies chose the good nest. Switching by ants that had the opportunity to compare nests had little effect on nest choice. We suggest a new mechanism of collective nest choice: individuals respond to nest quality by the decision either to commit or to seek alternatives. Previously proposed mechanisms, recruitment latency and nest comparison, can be explained as side effects of this simple rule. Colony-level comparison and choice can emerge, without direct comparison by individuals.  相似文献   

10.
Xim Cerdá  Javier Retana 《Oecologia》1998,113(4):577-583
Camponotus foreli (Emery) and Cataglyphis iberica (Emery) are two sympatric, subordinate ant species that have been found to fight in attacks that usually conclude with the death of many workers of both species and with nest abandonment by C. iberica. These harassment episodes have been observed in two different areas and over many years of study. No such attacks of C. foreli were observed in the study areas against any other ant species, nor did any other ants attack C. iberica nests, and laboratory confrontations confirmed this specificity. These attacks neither eliminated C. iberica colonies, nor distanced them from C. foreli nests. Moreover, there was no real competition for food between the species: in an experiment where all C. iberica colonies were eliminated from an area, rates of prey and liquid food collection by C. foreli nests in the exclusion zone were similar to those found in the control zone with C. iberica, and the activity rhythms of C. foreli did not change in the absence of C. iberica. The hypothesis of competition for a nest site is more consistent. Both in the laboratory and the field, the most frequent outcome of these aggressive interactions was the occupation of the C. iberica nest by C. foreli. This behavior may be advantageous for C. foreli, because it is much less skilful at excavating than C. iberica. One of the chief concerns of this study is to show that such interference interactions, typical especially of dominant, very aggressive species, are also found between subordinate, apparently nonaggressive species. Received: 20 March 1997 / Accepted: 29 September 1997  相似文献   

11.
The quantification of ant nest densities is a useful but challenging task given the group’s high abundance and diversity of nesting sites. We present a new application of a distance-sampling method which follows standard distance analytical procedures, but introduces a sampling innovation that is particularly useful for ants; instead of having an observer look for ants we let ants find a bait station and measure the distances covered between nest and station. We test this method by estimating the density of epigaeic ant nests in an Amazon tropical forest site near Manaus, Brazil. We distributed 220 baits of canned sardine mixed with cassava flour among 10, 210-m long transects in old-growth upland forest. Forty-five minutes after baiting, we followed the ants’ trails and measured the linear distance between the bait and each nest’s entrance. We then used the freely available program DISTANCE to estimate the number of nests per unit area while accounting for the effect of distance on the probability that a colony will find a bait. There were found 38 species nesting in 287 different colonies, with an estimated 2.66 nests/m2. This estimate fell within the 95 % confidence bounds of nest density predicted for a similar number of species based on a literature survey of ant species richness and nest density. Our sampling solution, however, takes less than 30 % of the time used by conventional sampling approaches for a similar area, with the advantage that it produces not only a point estimate but also a quantification of uncertainty about density.  相似文献   

12.
During colony relocation, the selection of a new nest involves exploration and assessment of potential sites followed by colony movement on the basis of a collective decision making process. Hygiene and pathogen load of the potential nest sites are factors worker scouts might evaluate, given the high risk of epidemics in group-living animals. Choosing nest sites free of pathogens is hypothesized to be highly efficient in invasive ants as each of their introduced populations is often an open network of nests exchanging individuals (unicolonial) with frequent relocation into new nest sites and low genetic diversity, likely making these species particularly vulnerable to parasites and diseases. We investigated the nest site preference of the invasive pharaoh ant, Monomorium pharaonis, through binary choice tests between three nest types: nests containing dead nestmates overgrown with sporulating mycelium of the entomopathogenic fungus Metarhizium brunneum (infected nests), nests containing nestmates killed by freezing (uninfected nests), and empty nests. In contrast to the expectation pharaoh ant colonies preferentially (84%) moved into the infected nest when presented with the choice of an infected and an uninfected nest. The ants had an intermediate preference for empty nests. Pharaoh ants display an overall preference for infected nests during colony relocation. While we cannot rule out that the ants are actually manipulated by the pathogen, we propose that this preference might be an adaptive strategy by the host to “immunize” the colony against future exposure to the same pathogenic fungus.  相似文献   

13.
J. Zee  D. Holway 《Insectes Sociaux》2006,53(2):161-167
Invasive ants often displace native ants, and published studies that focus on these interactions usually emphasize interspecific competition for food resources as a key mechanism responsible for the demise of native ants. Although less well documented, nest raiding by invasive ants may also contribute to the extirpation of native ants. In coastal southern California, for example, invasive Argentine ants (Linepithema humile) commonly raid colonies of the harvester ant, Pogonomyrmex subnitidus. On a seasonal basis the frequency and intensity of raids vary, but raids occur only when abiotic conditions are suitable for both species. In the short term these organized attacks cause harvester ants to cease foraging and to plug their nest entrances. In unstaged, one-on-one interactions between P. subnitidus and L. humile workers, Argentine ants behaved aggressively in over two thirds of all pair-wise interactions, despite the much larger size of P. subnitidus. The short-term introduction of experimental Argentine ant colonies outside of P. subnitidus nest entrances stimulated behaviors similar to those observed in raids: P. subnitidus decreased its foraging activity and increased the number of nest entrance workers (many of which labored to plug their nest entrances). Raids are not likely to be the result of competition for food. As expected, P. subnitidus foraged primarily on plant material (85% of food items obtained from returning foragers), but also collected some dead insects (7% of food items). In buffet-style choice tests in which we offered Argentine ants food items obtained from P. subnitidus, L. humile only showed interest in dead insects. In other feeding trials L. humile consistently moved harvester ant brood into their nests (where they were presumably consumed) but showed little interest in freshly dead workers. The raiding behavior described here obscures the distinction between interspecific competition and predation, and may well play an important role in the displacement of native ants, especially those that are ecologically dissimilar to L. humile with respect to diet. Received 15 July 2005; revised 19 October 2005; accepted 26 October 2005.  相似文献   

14.
The ponerine ant Pachycondyla goeldii is a monogynous (i.e. one queen per colony) arboreal species that colonizes pioneer areas. Founding queens and first generation workers initiate their own ant garden by building a cardboard-like structure into which epiphyte seeds are integrated. Following the growth of the epiphyte, the colony establishes its nest within the root system. This particular nest-building behavior is crucial in an environment where suitable nest sites are rare. Nevertheless, the slow growing process of ant gardens does not allow this species to readily evacuate and find another refuge in the advent of an attack by a predator or worsening climatic conditions. Previous field studies of P. goeldii were performed after forest destruction and subsequent colonization by P. goeldii. As a result, the colonies studied where relatively young and monodomous (i.e. one nest per colony). Our study of nest composition, worker exchanges between ant gardens in the field, and dyadic encounters shows that mature colonies of P. goeldii are polydomous (i.e. multiple nests per colony). In ants, the association of polydomy with monogyny has infrequently been reported. To our knowledge, P. goeldii represents the first record of a Ponerinae exhibiting both these particular characteristics. Our field and laboratory experiments suggest that polydomy is adaptively advantageous in coping with the microclimatic instability of pioneer areas by providing colonies with easily accessible nests.  相似文献   

15.
Although nests are central to colonial life in social insects, nests are sometimes damaged by predators or natural disasters. After nest destruction, individuals usually construct new nests. In this case, a sophisticated mechanism like the scent trail pheromone used in large insect colonies that recruit individuals to new nest sites would be important for the maintenance of eusociality. In independent-founding Polistes wasps, it is well known that queens enforce workers physiologically on the natal nests even if evidence of trail pheromone use has not been exhibited. We investigated the effect of the queen on an alternative strategy for the maintenance of eusociality by first females after nest destruction in the primitively eusocial wasp Polistes chinensis. We predicted that the first females in queen-absent colonies have various behavioral options after nest destruction. Even if the females construct new nests cooperatively with other individuals, the new nest construction should be conducted more smoothly in queen-present colonies because the queens regulate the behavior of wasps. We made wasps construct new nests by removing the entire brood from existing nests. The presence of the queen did not cause variation in the alternative strategy of the first females, as the first females (workers) usually constructed new nests cooperatively irrespective of the queen-presence. Thus, the workers in the queenpresent colonies affiliated to the new nest construction more smoothly and constructed new nests more efficiently than workers in the queen-absent colonies. Our results suggest that the presence of the queen is important for maintaining eusociality in primitively eusocial wasps after nest destruction. Received 8 February 2005; revised 5 October 2005; accepted 17 October 2005.  相似文献   

16.
Summary Seed dispersal by ants in Polygala vulgaris, Luzula campestris and Viola curtisii was studied in a primary dune valley on the island of Terschelling, The Netherlands. Normally developed seeds of all three species are taken by the ants into their nests. The ants show a distinct preference for the seeds of the specialized myrmecochore Polygala vulgaris, as compared with the two diplochorous species. It could be demonstrated that the elaiosome is the attractive part of the seed. Mapping studies demonstrate that the dispersal of the seeds by ants has a marked effect on the distribution pattern of the standing population of Polygala and Viola. Adult plants are often found on or close to the active nest mounds of all ant species present, while the growing sites of juvenile individuals and seedlings are practically restricted to the nest environment. The nests of two of the seed-dispersing ant species, viz., those of Lasius niger and Tetramorium caespitum, show differences in soil chemistry with the surroundings. The ant nests are significantly richer in some essential plant macronutrients, such as phosphate, potassium and nitrate. The advantage of myrmecochory in the dune area of Terschelling is discussed.  相似文献   

17.
1. Organisms face the difficult task of selecting an optimal new nest from the available options during relocation. Studies on honeybees and ants in their natural habitat indicate that scouts encounter multiple options that vary in their physical and biotic characteristics. 2. Architectural features, location, odour, and the presence of nest mates impact their choice of nest site selection. In order to examine the influence of diverse parameters on final nest site selection we conducted choice experiments on ants in the context of relocation. 3. After controlling for any influence by physical characteristics, we found that the presence of brood, adults, and colony odour acted as attractants with more colonies relocating into these new nests than expected by chance alone. In contrast, the presence of a reproductive female, or familiarity of location had no influence on the choice. New nests containing dead ants evoked cleaning responses from scouts, which may interfere with relocation into these nests. 4. Even although colonies consist of hundreds of adults and brood, colony integrity was maintained in 98.7% of colonies. Furthermore, we found that none of the eight studied colonies relocated when faced with minor flooding in their natural habitat, indicating that the cost of relocation is non‐trivial and that this species is capable of minor damage repairs. 5. These observations highlight the complexity of relocation in general, allow the characterisation of desirable nest attributes in this species, and highlight the need for similar exploration in other social insects.  相似文献   

18.
Summary Observations on the nesting activities ofMicrothurge corumbae, carried out at the University Campus of Ribeirão Preto, São Paulo, Brazil, from 1977 to 1981, indicated that 61.9 % of nests were re-used by succeeding generations. Re-use by one generation was more frequent than by two generations, and re-use by a third was observed only once. Nests were re-used by one or several females. Single females were more frequently in the first re-use. In these cases nest re-use did not differ essentially from the solitary foundation of a new nest, except for the adoption of a pre-existing nest without excavation. In multifemale nests, analysis of relative age (wing wear), ovarian and spermathecal conditions of associated females and the content of nests at excavation indicated that the social pattern in such colonies is communal. There is some evidence that the associated females are relatives. The chalcidoid waspLeucospis was the principal nest parasite, and ants of the genusCrematogaster were nest predators. In multifemale nests, the rate of parasitism was significantly lower than in solitary nests, indicating that nest-sharing resulted in improved nest defense. On the other hand, the absence of predation on immatures of the first generation of M.commbae in multifemale nests suggests that such nests are also more resistant to attack by predators.  相似文献   

19.
Abstract.
  • 1 Caterpillars of the myrmecophilous butterfly Maculinea rebeli showed strong evidence of contest competition when introduced at high densities to laboratory nests of Myrmica ants.
  • 2 This is attributed to the direct feeding of caterpillars by workers, which select a few individuals to nurture when food or ant numbers are limiting. It contrasts with published data for a congener, Maculinea arion, which has predacious larvae and experiences scramble competition in crowded ant nests.
  • 3 Worker ants from two Myrmica rubra colonies (I and II) were used to found the laboratory nests hosting Maculinea rebeli. Nests from each source reared a similar biomass of Maculinea, but whereas those containing M. rubra I workers reared eight to ten lightweight caterpillars each, cultures from colony II reared half as many caterpillars, each of about double the weight.
  • 4 Differences in nest capacity may be due to the different social structures of colonies I and II at the start of the experiment.
  相似文献   

20.
ABSTRACT Although nest predation is often the single largest source of mortality in avian populations, manipulative studies to determine predator impacts on nest survival are rare, particularly studies that examine impacts of mid-size mammalian predators (hereafter, mesopredators) on nest survival of shrub-nesting birds. We quantified nest survival and identified nest predators of shrub-nesting songbirds within 4 large (approx. 40-ha) exclosures and 4 control sites within a longleaf pine (Pinus palustris) ecosystem. During 2003–2006, we located and monitored 535 shrub nests (222 with videography) for 4,804 nest-days to quantify daily nest survival and document predation events. We found no support for a treatment effect, suggesting mesopredators had little impact on daily nest survival (0.9303 in controls and 0.9260 in exclosures) of shrub-nesting songbirds. For the 5 most commonly monitored species, daily nest survival within species was constant. Our analysis suggested that shrub nests were most vulnerable during the nestling stage and presence of cameras on nests increased survival with the increase in survival being more pronounced during the incubation stage. We filmed 107 nest predation events, identifying predators at 88 nests. Of these 88 nests, snakes caused 33%, red imported fire ants (hereafter fire ants, Solenopsis invicta) 28%, raptors 17%, corvids 8%, mesopredators 6%, and small mammals 8% of nest predations. Cause-specific nest predation in controls and exclosures did not differ from expectation, providing evidence that compensatory predation did not occur. Nest predators differed from expectation with regard to nest stage; fire ants and raptors only depredated nests during the nestling stage. Presence of cameras had no effect on nest abandonment. Fire ants were the most prevalent nest predator, and nest predation by fire ants was only observed on nestlings, potentially reducing likelihood of renesting. Magnitude and timing of fire ant predation suggests that fire ants may be the most influential nest predator of shrub-nesting birds within the longleaf pine ecosystem. Our data suggest that controlling mesopredators will have no effect on nest success of shrub-nesting birds within longleaf pine forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号