首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
This study was designed to determine conception rates in dairy cows after timed-insemination and simultaneous treatment with gonadotrophin releasing hormone (GnRH) and/or prostaglandin F2 alpha (PGF2alpha). A total of 2352 cows was randomly assigned to six groups. Cows in Groups 1 to 5 were palpated per rectum to determine the presence of a corpus luteum (CL) on the ovary, and blood samples were obtained for the determination of plasma progesterone (P4) concentrations. Cows with a CL and P4 concentrations >1 ng/ml were treated (Day 0) with PGF2alpha (25 mg, i.m.) and were observed for estrus. Cows in estrus prior to 72 hours after treatment (Group 5, n = 106) were bred, but were not treated. Cows not observed in estrus by 72 hours were divided into four remaining groups, were bred between 72 and 80 hours and were assigned as follows: Cows in Group 1 (n = 203) were not treated; Cows in Group 2 (n = 200) were treated with GnRH (100 ug, i.m.); Cows in Group 3 (n = 201) were treated with PGF2alpha (25 mg, i.m.); and cows in Group 4 (n = 202) were treated with both GnRH and PGF2alpha. Cows in Group 6 (n = 1440) were not treated with PGF2alpha on Day 0 and were estrual cows that were bred on days when cows in Groups 1 to 5 were time-inseminated. The percentage of cows in all groups pregnant at 45 to 50 days after one insemination was compared using analysis of variance (P<0.05). The conception rate of cows in Group 2 was significantly higher than that of cows in Groups 1 to 4. There was a significant group-by-season interaction. Cows treated with GnRH during the spring had a higher conception rate than at other times of the year. Conception rates of cows in Groups 1 to 4 that were inseminated during the summer were low and not significantly different from each other. Conception rates of cows in Groups 5 and 6 inseminated during the summer were not significantly different from each other, but were significantly higher than that of cows in Groups 1 to 4 that were inseminated during the summer.  相似文献   

2.
The objective of this study was to determine the effect of GnRH (100 microg i.m.) treatment 5 and 15 days after timed insemination (TAI) on pregnancy rate and pregnancy loss in lactating dairy cows subjected to synchronization of ovulation. The study included 831 lactating dairy cows subjected to a Presynch-Ovsynch protocol for first service. On the day of TAI (Day 0), cows were randomly assigned to one of four experimental groups. Cows in Group 1 (n = 214) were treated with GnRH on Day 5; cows in Group 2 (n = 209) were treated with GnRH on Day 15; cows in Group 3 (n = 212) were treated with GnRH on both Day 5 and Day 15; cows in Group 4 (n = 196) were not treated. Pregnancy rate was evaluated at Day 27 and Day 45 after TAI. The interestrus interval and the proportion of cows diagnosed not pregnant based on expression of estrus and insemination before pregnancy diagnosis on Day 27 were determined. The results of this study are: (1) GnRH treatment on Day 5 or Day 15 did not increase pregnancy rate, or reduce pregnancy loss between Day 27 and Day 55 after TAI; (2) cows treated with GnRH on both Day 5 and Day 15 had a lower (P < 0.01) proportion of cows diagnosed not pregnant based on expression of estrus before ultrasonography on Day 27 (26.5%) compared to control cows (52.9%), and these cows had an extended (P = 0.05) interestrus interval (23.4 days vs. 21.5 days); and (3) GnRH treatment on both Day 5 and Day 15 after TAI reduced pregnancy rate on Day 27 (36.8% vs. 44.4% for control cows; P < 0.03) and Day 55 (28.3% vs. 36.2% for control cows; P < 0.01). Therefore, strategies to stimulate CL function using multiple doses of GnRH during the luteal phase need to consider potential negative effects.  相似文献   

3.
Anestrous postpartum (PP) Hereford cows (n =20) were used to determine the effects of repeated injections of human chorionic gonadotropin (hCG) on the progesterone (P4) secretion and functional lifespan of gonadotropin-releasing hormone (GnRH)-induced corpora lutea (CL). Suckling was reduced to once a day from Day 21 to Day 25 PP, and all cows received injections of 200 micrograms GnRH at 1500 h on Day 24 PP to induce ovulation. Treated cows (HCG, n = 10) received 200 IU hCG b.i.d. from 1900 h on Day 27 PP to 1900 h on Day 33 PP; control cows (CTRL, n=10) were not injected. Blood was collected on Days 21, 23, 25, and 27 to 33, 35, 37, and 39 PP. Serum P4 concentration was measured by radioimmunoassay and used to classify luteal lifespan and the associated estrous cycle as short (SHORT) or normal (NORM) in duration. Treatment with hCG resulted in more (p less than 0.01) cows with SHORT cycles (7 of 9 vs. 4 of 9). Serum P4 concentrations were similar (p greater than 0.20) between groups from 4 days before until 6 days after GnRH injection. Cows with NORM cycles (n = 7) had greater serum P4 concentrations (p less than 0.05) on Days 7 to 11 after GnRH than cows with SHORT cycles (n = 11). By Day 39 PP, all cows with SHORT cycles appeared to have undergone a second ovulation. Charcoal-stripped serum pools from before (PRE) and during hCG injection (INJ) were assayed for total luteinizing hormone-like bioactivity (LH-BA) using a dispersed mouse-Leydig cell bioassay.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Maternal recognition of pregnancy in the cow requires successful signaling by the conceptus to block luteolysis. Conceptus growth and function depend on an optimal uterine environment, regulated by luteal progesterone. The objective of this study was to test strategies to optimize luteal function, as well as prevent a dominant follicle from initiating luteolysis. Nelore (Bos taurus indicus) beef cows (n=40) were submitted to a GnRH/PGF(2alpha)/GnRH protocol. Cows that ovulated from a dominant ovarian follicle (ovulation=Day 0) were allocated to receive: no additional treatment (G(C); n=7); 3000IU of hCG on Day 5 (G(hCG); n=5); 5mg of estradiol-17beta on Day 12 (G(E2); n=6); or 3000IU of hCG on Day 5 and 5mg of estradiol-17beta on Day 12 (G(hCG/E2); n=5). Ultrasonographic imaging of the ovaries, assessment of plasma progesterone concentration, and detection of estrus were done daily from Day 5 to the day of subsequent ovulation. Treatment with hCG induced an accessory CL, increased CL volume, and plasma progesterone concentration throughout the luteal phase (P<0.01). Estradiol-17beta induced atresia and recruitment of a new wave of follicular growth; it eliminated a potentially estrogen-active, growing ovarian follicle within the critical period for maternal recognition of pregnancy, but it also hastened luteolysis (Days 16 or 17 vs. Days 18 or 19 in non-treated cows). In conclusion, the approaches tested enhanced luteal function (hCG) and altered ovarian follicular dynamics (estradiol-17beta), but were unable to extend the life-span of the CL in Nelore cows.  相似文献   

5.
Our objectives were to compare: (1) conception rates (in early postpartum Japanese Black beef cows) to timed-artificial insemination (timed-AI) among Ovsynch and Ovsynch plus CIDR protocols, and a protocol that used estradiol benzoate (EB) in lieu of the first GnRH of the Ovsynch plus CIDR; and (2) the effects of these protocols on blood concentrations of ovarian steroids. Cows in the control group (Ovsynch; n=35) underwent a standard Ovsynch protocol (GnRH analogue on Day 0, PGF(2 alpha) analogue on Day 7 and GnRH analogue on Day 9), with timed-AI on Day 10, approximately 20 h after the second GnRH treatment. Cows in the Ovsynch+CIDR group (n=31) received a standard Ovsynch protocol plus a CIDR for 7 days (starting on Day 0). Cows in the third treatment group (EB+CIDR+GnRH; n=41) received 2mg of EB on Day 0 in lieu of the first GnRH treatment, followed by the same treatment as in the Ovsynch+CIDR protocol. The conception rate tended to be greater in the Ovsynch+CIDR group (67.7%, P<0.15) and was greater in the EB+CIDR+GnRH (73.2%, P<0.05) and CIDR-combined (both CIDR-treated groups were combined) groups (70.8%, P<0.05) than in the Ovsynch group (48.6%). Plasma progesterone concentrations were higher on Day 7 (P<0.01) and lower on Days 14, 17 and 21 (P<0.001) in the CIDR-combined group than in the Ovsynch group. Plasma estradiol-17beta concentrations were higher on Day 7 in the Ovsynch group of non-pregnant cows than in the CIDR-combined group of non-pregnant cows and in an all-combined group (all treatment groups combined) of pregnant cows (P<0.01). Furthermore, estradiol-17beta concentrations were lower on Day 9 in the Ovsynch and CIDR-combined groups of non-pregnant cows than in the all-combined group of pregnant cows (P<0.05). In conclusion, both protocols using CIDR improved conception rates following timed-AI in early postpartum suckled Japanese Black beef cows relative to the Ovsynch protocol. Treatment with a CIDR may prevent early maturation of follicles observed in non-pregnant cows treated with the Ovsynch protocol, by maintaining elevated blood progesterone concentrations until PGF(2 alpha) treatment.  相似文献   

6.
This study was designed to compare two timed insemination protocols, in which progesterone, GnRH and PGF2alpha were combined, with the Ovsynch protocol in presynchronized, early postpartum dairy cows. Reproductive performance was also evaluated according to whether cows showed high or low plasma progesterone concentration, at the onset of treatment. One hundred and six early postpartum dairy cows were presynchronized with two cloprostenol treatments given 14 days apart, and then assigned to one of the three treatment groups. Treatments for the synchronization of estrus in all three groups started 7 days after the second cloprostenol injection, which was considered Day 0 of the actual treatment regime. Cows in the control group (Ovsynch, n=30) were treated with GnRH on Day 0, PGF2alpha on Day 7, and were given a second dose of GnRH 32 h later. Cows in group PRID (n=45) were fitted with a progesterone releasing intravaginal device (PRID) for 9 days, and were given GnRH at the time of PRID insertion and PGF2alpha on Day 7. In group PRID/GnRH (n=31), cows received the same treatment as in the PRID group, but were given an additional GnRH injection 36 h after PRID removal. Cows were inseminated 16-20 h after the administration of the second GnRH dose in the Ovsynch group, and 56 h after PRID removal in the PRID and PRID/GnRH groups. Ovulation rate was determined on Day 11 postinsemination by detecting the presence of a corpus luteum in the ovaries. Lactation number, milk production, body condition at the onset of treatment and treatment regime were included as potential factors influencing ovulation and pregnancy after synchronization. Logistic regression analysis for cows with high and low progesterone concentration on treatment Day 0 revealed that none of the factors included in the models, except the interaction between progesterone and treatment regime, influenced the risk of ovulation and pregnancy significantly. In cows with high progesterone concentration at treatment onset, Ovsynch treatment resulted in a significantly improved pregnancy rate over values obtained following PRID or PRID/GnRH treatment. In cows with low progesterone concentration, PRID or PRID/GnRH treatment led to markedly increased ovulation and pregnancy rates with respect to Ovsynch treatment. These findings suggest the importance of establishing ovarian status in early postpartum dairy cows before starting a timed AI protocol, in terms of luteal activity assessed by blood progesterone.  相似文献   

7.
In the present study, two new short estrus synchronization methods have been developed for lactating dairy cows. The study was completed in three consecutive phases. In experiment (Exp) 1, 32 cows, that were not detected in estrus since calving between the 50th and 84th post-partum days, were treated with PGF2alpha (PGF, d-cloprostenol, 0.150 mg), estradiol propionate (EP, 2mg) and GnRH (lecirelina, 50 microg) at 24h intervals, respectively, and timed artificial insemination (TAI) was performed 48 h after PGF. Different from Exp 1, EP and GnRH were given at 48 and 60 h, respectively after PGF in Exp 2 (n=20), instead of 24 and 48 h. Ovulations were investigated by ultrasound for 7 days starting from the day of PGF treatment, and ovulation rates were compared with the ones obtained in Exp 1. In Exp 3, cows were given the same treatments as Exp 2, but treatments started at certain estrus stages. Cows detected in estrus and with a confirmed ovulation (n=27) after the second PGF given 11 days apart were assigned to three treatment groups. Treatment was initiated at Day 3 (group metestrus, n=9), Day 12 (group diestrus, n=9) and Day 18 (group proestrus, n=9) after ovulation. All cows included in Exp 3 were TAI between 16 and 20 h after GnRH treatment. In Exp 2 and 3, blood samples were obtained once every 2 days, starting from Day 0 to the 10th day after GnRH injection, and once every 4 days between the 10th and the 22nd days after GnRH to examine post-treatment luteal development. During the study, animals exhibiting natural estrus were inseminated and served as controls (n=85). The rate of estrus was found to be significantly higher in cows with an active corpus luteum (CL) at the start of Exp 1 (72.7% vs. 30.0%, P<0.05) and the pregnancy rate tended to be higher than cows without an active CL (40.9% vs. 10.0%, P=0.08). Compared to those in Exp 1, cows in Exp 2 had higher rates of synchronized ovulation (94.1% vs. 59.1%, P=0.013). In Exp 3, estrus (P<0.001) and pregnancy rates (P=0.01) were found to be significantly higher in cows in the proestrus group than in those in the metestrus group. Comparable pregnancy rates were obtained from the first and second inseminations in Exp 1 and 3 with results from those inseminated at natural estrus (P>0.05). It was concluded from the study that the treatment in Exp 1 and 3 could result in comparable pregnancy rates after timed AI of lactating dairy cows at random stages of the estrus cycle relating to those inseminated at natural estrus, but the stage of the estrus cycle can have significant effects on pregnancy rates.  相似文献   

8.
Pregnancy rates following transfer of an in vitro-produced (IVP) embryo are often lower than those obtained following transfer of an embryo produced by superovulation. The purpose of the current pair of experiments was to examine two strategies for increasing pregnancy rates in heat stressed, dairy recipients receiving an IVP embryo. One method was to transfer two embryos into the uterine horn ipsilateral to the CL, whereas the other method involved injection of GnRH at Day 11 after the anticipated day of ovulation. In Experiment 1, 32 virgin crossbred heifers and 26 lactating crossbred cows were prepared for timed embryo transfer by being subjected to a timed ovulation protocol. Those having a palpable CL were randomly selected to receive one (n = 31 recipients) or two (n = 27 recipients) embryos on Day 7 after anticipated ovulation. At Day 64 of gestation, the pregnancy rate tended to be higher (P = 0.07) for cows than for heifers. Heifers that received one embryo tended to have a higher pregnancy rate than those that received two embryos (41% versus 20%, respectively) while there was no difference in pregnancy rate for cows that received one or two embryos (57% versus 50%, respectively). Pregnancy loss between Day 64 and 127 only occurred for cows that received two embryos (pregnancy rate at Day 127=17%). Between Day 127 and term, one animal (a cow with a single embryo) lost its pregnancy. There was no difference in pregnancy rates at Day 127 or calving rates between cows and heifers, but females that received two embryos had lower Day-127 pregnancy rates and calving rates than females that received one embryo (P < 0.03). Of the females receiving two embryos that calved, 2 of 5 gave birth to twins. For Experiment 2, 87 multiparous, late lactation, nonpregnant Holstein cows were synchronized for timed embryo transfer as in Experiment 1. Cows received a single embryo in the uterine horn ipsilateral to the ovary containing the CL and received either 100 microg GnRH or vehicle at Day 11 after anticipated ovulation (i.e. 4 days after embryo transfer). There was no difference in pregnancy rate for cows that received the GnRH or vehicle treatment (18% versus 17%, respectively). In conclusion, neither unilateral transfer of two embryos nor administration of GnRH at Day 11 after anticipated ovulation improved pregnancy rates of dairy cattle exposed to heat stress.  相似文献   

9.
Cystic ovarian disease is an important cause of reproductive failure and economic loss for the dairy industry. This report describes two consecutive studies. The objective of the first was to evaluate the response of cows with ovarian cysts to two therapeutic treatments. In the second study, we compared the effectiveness of the best treatment established in Study 1 with that of the Ovsynch protocol. For Study 1, cows were considered to have an ovarian cyst if it was possible to observe a single follicular structure with a follicular antrum diameter > 25 min in the absence of a corpus luteum in three ultrasonographic examinations performed at 7 days intervals. At diagnosis (Day 0), cows were assigned to one of two treatment groups. Cows in Group GnRH/CLP (n = 31) were treated with 100 microg GnRH i.m. and 500 microg cloprostenol (CLP) i.m. on Day 14. Cows in Group GnRH-CLP/CLP(n = 32) were treated with 100 microg GnRH i.m. plus 500 microg CLP i.m. on Day 0, and 500 microg CLP i.m. on Day 14. The animals were inseminated at observed estrus and monitored weekly by ultrasonography for 4 weeks or until Al. Cows in the GnRH-CLP/CLP group showed a lower cystic persistence rate (15.6% < 45.2%; P = 0.01); a higher estrus detection rate (84.4% > 41.9%; P < 0.0001); a higher ovulation rate (75% versus 32.3%; P < 0.0001) and a higher early response rate (31% > 3%; P = 0.02) than those in the GnRH/CLP group. For the second study, 128 cows with ovarian cysts were randomly assigned to one of two treatment groups: cows in Group Ovsynch (n = 64) were treated with 100 microg GnRH i.m. on Day 0, 500 microg CLP on Day 7, and 100 microm GnRH i.m. 36 h later. Cows in this group were inseminated 24 h after the second GnRH dose (Ovsynch protocol). Cows in Group GnRH-CLP/CLP/GnRH (n = 64)were treated as those in the GnRH-CLP/CLP group of Study 1 but received GnRH 32 h after the second CLP treatment and were inseminated 24 h after this. A further group of cows without ovarian cysts inseminated at natural estrus served as the Group Control (n = 64). Cows in the GnRH-CLP/CLP/ GnRH group showed a lower cystic persistence rate (10.9% < 46.9%; P < 0.0001); higher ovulation rate (79.7% > 17.2%; P < 0.0001); higher return to estrus rate (34.3% > 12.5%; P < 0.01) and higher pregnancy rate (28.1% > 3.1%; P < 0.01) than those in Ovsynch; and a similar pregnancy rate (28.1% versus 35.9%) to Control cows. These findings indicate that lactating cows with ovarian cysts can be successfully synchronized and time inseminated using a protocol that combines GnRH and CLP, starting treatment by simultaneously administering both products. This protocol also allows the insemination of cows showing estrus within the first week of treatment. Ovarian cysts were less responsive when treatment was started with GnRH alone.  相似文献   

10.
We hypothesized that reducing the size of the ovulatory follicle using aspiration and GnRH would reduce the size of the resulting CL, reduce circulating progesterone concentrations, and alter conception rates. Lactating dairy cows (n=52) had synchronized ovulation and AI by treating with GnRH and PGF2alpha as follows: Day -9, GnRH (100 microg); Day -2, PGF2alpha (25 mg); Day 0, GnRH (100 microg); Day 1, AI. Treated cows (aspirated group; n=29) had all follicles > 4 mm in diameter aspirated on Days -5 or -6 in order to start a new follicular wave. Control cows (nonaspirated group: n=23) had no follicle aspiration. The size of follicles and CL were monitored by ultrasonography. The synchronized ovulation rate (ovulation rate to second GnRH injection: 42/52=80.8%) and double ovulation rate of synchronized cows (6/42=14.3%) did not differ (P > 0.05) between groups. Aspiration reduced the size of the ovulatory follicle (P < 0.0001; 11.5 +/- 0.2 vs 14.5 +/- 0.4 mm), and serum estradiol concentrations at second GnRH treatment (P < 0.0002; 2.5 +/- 0.4 vs 5.7 +/- 0.6 pg/mL). The volume of CL was less (P < 0.05) for aspirated than nonaspirated cows on Day 7 (2,862 +/- 228 vs 5,363 +/- 342 mm3) or Day 14 (4,652 +/- 283 vs 6,526 +/- 373 mm3). Similarly, serum progesterone concentrations were less on Day 7 (P < 0.05) and Day 14 (P < 0.10) for aspirated cows. Pregnancy rate per AI for synchronized cows was lower (P < 0.05) for aspirated (3/21=14.3%) than nonaspirated (10/21=47.6%) cows. In conclusion, ovulation of smaller follicles produced lowered fertility possibly because development of smaller CL decreased circulating progesterone concentrations.  相似文献   

11.
Post-partum acyclic beef cows received continuous long-term treatment with GnRH (200 or 400 ng/kg body wt/h) or the GnRH agonist buserelin (5.5 or 11 ng/kg body wt/h) using s.c. osmotic minipumps which were designed to remain active for 28 days. All treatments increased circulating LH concentrations whereas FSH remained unchanged. Ovulation and corpus luteum (CL) formation as judged by progesterone concentrations greater than or equal to 1 ng/ml occurred in 0/5 control, 4/5 200 ng GnRH, 4/4 400 ng GnRH, 4/5 5.5 ng buserelin and 3/5 11 ng buserelin cows. The outstanding features of the progesterone profiles were the synchrony, both within and across groups, in values greater than or equal to 1 ng/ml around Day 6, and the fact that most CL were short-lived (4-6 days). Only 3 cows, one each from the 400 ng GnRH, 5.5 ng buserelin and 11 ng buserelin groups, showed evidence of extended CL function. Cows failed to show a second ovulation which was anticipated around Day 10 and this could have been due to insufficient FSH to stimulate early follicular development, or the absence of an endogenously driven LH surge. The highest LH concentrations for the respective groups were observed on Days 2 and 6 and by Day 10 LH was declining, although concentrations did remain higher than in controls up to Day 20.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Anestrus is common during the postpartum period in high-producing dairy cows. In a previous investigation, we were able to diagnose persistent follicles of 8 to 12 mm in anestrous cows. This report describes 2 consecutive studies. The objectives of the first were to 1) assess the association of persistent follicles with anestrus; and 2) evaluate 2 therapeutic treatments. In the second study, we compared the effectiveness of the best treatment established in Study 1 with the Ovsynch protocol. For Study 1, anestrous cows were considered to have a persistent follicle if it was possible to observe a single follicular structure > 8 mm in the absence of a corpus luteum or a cyst in 2 ultrasonographic examinations performed at an interval of 7 d. At diagnosis (Day 0), cows were assigned to 1 of 3 treatment groups. Cows in Group GnRH/PGF (n=17) were treated with 100 microg GnRH i.m., and 25 mg PGF2alpha i.m. on Day 14. Cows in Group PRID (n=18) were fitted with a progesterone releasing intravaginal device (PRID, containing 1.55 g of progesterone) for 9 d and were given 100 microg GnRH i.m. at the time of PRID insertion, and 25 mg PGF2alpha i.m. on Day 7. Cows in Group Control (n=18) received no treatment. The animals were inseminated at observed estrus and were monitored weekly by ultrasonography until AI or 5 weeks from diagnosis. Blood samples were also collected on a weekly basis for progesterone determination. The mean size of persistent follicles on Day 0 was 9.4 +/- 0.04 mm. Progesterone levels were < 0.2 ng/mL during the first 35 d in 16 of 18 Control cows. Cows in the PRID group showed a lower persistent follicle rate (16.7% < 70.6% < 88.9%; P < 0.0001; PRID vs GnRH/PGF vs Control, respectively); a higher estrus detection rate (83.3% > 29.4% > 11.1%; P < 0.0001) and a higher pregnancy rate (27.8% > 5.9% > 0%; P = 0.02). For the second study, 145 cows with persistent follicles were randomly assigned to 1 of 2 treatment groups: cows in Group Ovsynch (n=73) were treated with 100 microg GnRH i.m. on Day 0, 25 mg PGF2alpha i.m. on Day 7, and 100 microm GnRH i.m. 32 h later. Cows in this group were inseminated 16 to 20 h after the second GnRH dose (Ovsynch protocol). Cows in Group PRID (n=72) were treated as those in the PRID group of Study 1, and were inseminated 56 h after PRID removal. Cows in the PRID group showed a higher ovulation rate (84.8% > 8.2%: P < 0.0001); a higher pregnancy rate (34.2% > 4.1%; P < 0.0001) and lower follicular persistence rate (22.2% < 63%; P < 0.0001) than those in Ovsynch. Our results indicate that persistent follicles affect cyclic ovarian function in lactating dairy cows. Cows with persistent follicles can be successfully synchronized and time inseminated using progesterone, GnRH and PGF2alpha but show a limited response to treatment with GnRH plus PGF2alpha.  相似文献   

13.
The primary objective was to determine the effect of supplemental progesterone, administered via an intravaginal device (CIDR), on conception rates to timed-artificial insemination (timed-AI) in postpartum suckled Japanese Black beef cows treated with the Ovsynch protocol. A secondary objective was to compare the effects of treatments on plasma concentrations of progesterone and estradiol. Cows in the control group (Ovsynch, n=38) received a standard Ovsynch protocol (100 microg GnRH analogue on Day 0, 500 microg PGF2alpha analogue on Day 7, and 100 microg GnRH analogue on Day 9), with AI on Day 10, approximately 20 h after the second GnRH treatment. Cows in the treatment group (Ovsynch+CIDR; n=40) received a standard Ovsynch protocol plus a CIDR for 7 days (starting on Day 0). Plasma progesterone concentrations were determined on Days 0, 1, 7, 9, 10, and 17 and plasma estradiol-17beta concentrations were determined on Days 7, 9, 10, and 17. The odds ratio for likelihood of conception was 3.29 times greater (P=0.02) in the Ovsynch+CIDR group compared to Ovsynch group. The conception rate was greater (P=0.03) in the Ovsynch+CIDR group than in the Ovsynch group (72.5% versus 47.7%). Insertion of a CIDR device significantly increased plasma progesterone concentrations only on Days 1 and 7 (P<0.001 and P=0.05, respectively), but had no significant effect on plasma estradiol-17beta concentrations. Including a CIDR with the Ovsynch protocol significantly improved conception rates in postpartum suckled Japanese Black beef cows.  相似文献   

14.
The objective of this study was to evaluate protocols for synchronizing ovulation in beef cattle. In Experiment 1, Nelore cows (Bos indicus) at random stages of the estrous cycle were assigned to 1 of the following treatments: Group GP controls (nonlactating, n=7) received GnRH agonist (Day 0) and PGF2alpha (Day 7); while Groups GPG (nonlactating, n=8) and GPG-L (lactating, n=9) cows were given GnRH (Day 0), PGF2alpha (Day 7) and GnRH again (Day 8, 30 h after PGF2alpha). A new follicular wave was observed 1.79+/-0.34 d after GnRH in 19/24 cows. After PGF2alpha, ovulation occurred in 19/24 cows (6/7 GP, 6/8 GPG, 7/9 GPG-L). Most cows (83.3%) exhibited a dominant follicle just before PGF2alpha, and 17/19 ovulatory follicles were from a new follicular wave. There was a more precise synchrony of ovulation (within 12 h) in cows that received a second dose of GnRH (GPG and GPG-L) than controls (GP, ovulation within 48 h; P<0.01). In Experiment 2, lactating Nelore cows with a visible corpus luteum (CL) by ultrasonography were allocated to 2 treatments: Group GPE (n=10) received GnRH agonist (Day 0), PGF2alpha (Day 7) and estradiol benzoate (EB; Day 8, 24 h after PGF2alpha); while Group EPE (n=11), received EB (Day 0), PGF2alpha (Day 9) and EB (Day 10, 24 h after PGF2alpha). Emergence of a new follicular wave was observed 1.6+/-0.31 d after GnRH (Group GPE). After EB injection (Day 8) ovulation was observed at 45.38+/-2.03 h in 7/10 cows within 12 h. In Group EPE the emergence of a new follicular wave was observed later (4.36+/-0.31 d) than in Group GEP (1.6+/-0.31 d; P<0.001). After the second EB injection (Day 10) ovulation was observed at 44.16+/-2.21 h within 12 (7/11 cows) or 18 h (8/11 cows). All 3 treatments were effective in synchronizing ovulation in beef cows. However, GPE and, particularly, EPE treatments offer a promising alternative to the GPG protocol in timed artificial insemination of beef cattle, due to the low cost of EB compared with GnRH agonists.  相似文献   

15.
The objectives of this study were to determine the effect of administration of exogenous GnRH 5days after artificial insemination (AI) on ovarian structures, serum progesterone concentration, and conception rates in lactating dairy cows. In experiment 1, 23 Holstein cows were synchronized using the Ovsynch protocol. Five days after AI (day 0) cows were assigned randomly to receive either saline (saline; n=11) or 100microg GnRH (GnRH; n=12). To examine ovarian structures, ultrasonography was performed on day 1 and every other day beginning on day 5 until day 13. On days 5 and 13 blood samples were obtained to measure serum progesterone concentrations. All cows in the GnRH-treated group developed an accessory corpus luteum (CL), whereas cows in the saline group did not. Mean serum progesterone concentrations did not differ between GnRH and saline groups on day 5 (1.64+/-0.46ng/ml versus 2.04+/-0.48ng/ml). On day 13 serum progesterone concentrations were greater (P<0.05) in the GnRH group compared with saline (5.22+/-0.46ng/ml versus 3.36+/-0.48ng/ml). In experiment 2, 542 lactating cows, at two different commercial dairies, were used to test the effect of administering GnRH 5 days after AI on conception rates. Cows were synchronized and detected for estrus according to tail chalk removal. Cows detected in estrus received AI within 1h after detection of estrus. Five days after AI, cows were assigned randomly to receive either GnRH (n=266) or saline (n=276). Pregnancy status was determined by palpation per rectum of uterine contents approximately 40 days after AI. There was no effect of farm on conception rate. There was no effect of treatment as conception rates did not differ between GnRH and saline groups (26.7% GnRH versus 24.3% saline). Regardless of treatment, days in milk, parity, milk yield, and number of services had no effect on the odds ratio of pregnancy. In summary, the results of this study indicated that GnRH administered 5 days after AI increased serum progesterone by developing an accessory CL but did not improve conception rates in dairy cattle.  相似文献   

16.
The objectives of Experiment 1 were to determine a dose of eCG that would increase total luteal volume and plasma progesterone (P4) concentration on estrous cycle Day 7 in cows. The objectives of Experiment 2 were to determine the effects of treating embryo recipient lactating Holstein cows with eCG on pregnancy per embryo transfer (P/ET). In Experiment 1, lactating dairy cows at 63 ± 3 d postpartum (DIM) received no treatment (control, n = 10), or 600 (eCG6, n = 19), or 800 (eCG8, n = 19) IU of eCG 2 d after the start of the ovulation-synchronization protocol, Day -8 (Day -10 GnRH, Day -3 PGF, Day 0 GnRH). Blood was sampled on Days -10, -8, -3, 0, 7, and 14 for P4 concentration. Ovaries were examined by ultrasound on Days -10, -3, 0, and 7. In Experiment 2, lactating dairy cows were paired according to parity and previous insemination (0 or > 1 insemination) and assigned to receive 800 IU of eCG (eCG8, n = 152) 2 d after the start of the ovulation-synchronization protocol (Day -10 GnRH, Day -3 PGF, Day 0 GnRH) or to receive no treatment (control, n = 162). Blood was sampled on Days -10, -3, 0, 7, and 14 for determination of P4 concentration. Ovaries were examined by ultrasound on Days -10, -3, and 7, and cows with a CL > 20 mm in diameter on Day 7 received an embryo. In Experiment 1, P4 concentration on Day 7 was higher (P < 0.05) for eCG8 cows (2.3 ± 0.3 ng/mL) compared with control (1.2 ± 0.3 ng/mL) and eCG6 (1.1 ± 0.3 ng/mL) cows. In Experiment 2, eCG8 primiparous cows had more (P < 0.01) follicles > 10 mm on Day -3 compared with control primiparous cows (2.5 ± 0.9 vs 1.7 ± 0.5 mm), but multiparous control and eCG8 cows did not differ. A larger (P = 0.03) percentage of control cows received an embryo (87.5 vs 79.1%) compared with eCG8 cows. Among cows that received an embryo, total luteal volume on Day 7 was affected (P = 0.05) by treatment (eCG8 = 8.3 ± 0.4 cm3, control = 6.2 ± 0.4 cm3), but P4 concentration on Day 7 did not differ significantly between treatments. The percentage of cows pregnant 53 d after ET (overall, 24.2%) was not significantly different between control and eCG8 cows. In the current study, no differences in P/ET were observed between control and eCG8 cows and treatment with eCG increased the percentage of cows with asynchronous estrous cycle.  相似文献   

17.
The objectives were to evaluate the pattern of re-insemination, pregnancy outcomes to re-insemination in estrus and at fixed time, and economic outcomes of lactating Holstein cows submitted to three resynchronization protocols. Cows were enrolled in the Experiment at 32 ± 3 d after pre-enrollment Artificial Insemination (AI), 7 d before pregnancy diagnosis, and randomly assigned to three resynchronization protocols. All cows diagnosed not pregnant at 39 ± 3 d after pre-enrollment AI were submitted to the Cosynch72 (Day 0 GnRH, Day 7 prostaglandin F, and Day 10 GnRH and fixed time AI). Cows assigned to the control treatment received no further treatment, cows assigned to the GGPG treatment received a GnRH injection on Day −7, and cows assigned to the CIDR treatment received a controlled internal drug release (CIDR) insert containing 1.38 g of progesterone from Days 0-7. Cows observed in estrus were re-inseminated on the same day. Pregnancy was diagnosed at 39 ± 3 and 67 ± 3 d after re-insemination. Costs of the resynchronization protocols were calculated for individual cows enrolled in the study and pregnancies generated were given a value of $275. The GGPG treatment resulted in the slowest (P ≤ 0.06) rate of re-insemination. Overall pregnancy per AI (P/AI) at 39 ± 3 (P = 0.50) and 67 ± 3 (P = 0.49) d after re-insemination were not affected by treatment. Although cost of the control protocol was (P < 0.01) the smallest, return per cow resynchronized was (P < 0.01) greater for GGPG and CIDR protocols. We concluded that presynchronizing the estrous cycle of cows with GnRH or treating cows with a CIDR insert during resynchronization altered the pattern of re-insemination and improved the economic return of resynchronized cows.  相似文献   

18.
The benefit of using timed-insemination in lactating dairy cows for the treatment of ovarian cysts lies in the fact that cows do not have to be detected in estrus for insemination and achieving pregnancy. We compared the effectiveness of synchronization of ovulation with timed-insemination and induction of estrus with insemination at estrus in the treatment of bovine ovarian cysts in lactating dairy cows. After Day 65 post partum, a total of 368 lactating dairy cows was divided into 3 groups. Cows in Group 1 (n = 209, normal, noncystic) were treated with 100 ug, i.m. GnRH on Day 0; 25 mg, i.m. PGF2 alpha on Day 7; and 100 ug, i.m. GnRH on Day 9 and then were time-inseminated 16 h later. Cows in Group 2 (n = 76, abnormal, cystic) were treated with 100 ug, i.m. GnRH on Day 0; 25 mg, i.m. PGF2 alpha on Day 7; and 100 ug, i.m. GnRH on Day 9 and time-inseminated 16 h later. Cows in Group 3 (n = 83, abnormal, cystic) were treated with 100 ug, i.m. GnRH on Day 0; 25 mg, i.m. PGF2 alpha on Day 7; and inseminated at induced estrus within 7 d after treatment with PGF2 alpha. Day 0 was the day of initiation of the study. Conception and pregnancy rates among groups were compared using logistic regression and adjusted for parity, time of year and days in milk. Conception and pregnancy rates of Group 1 cows (31.5%) were not significantly different from those of Group 2 cows (23.6%). However, the pregnancy rate in normal cows (Group 1) was higher (P < 0.01) than in cystic cows (Groups 2 and 3). Cows in Group 3 had a higher conception rate than cows in Group 2 (51.7% > 23.6%; P < 0.01). However, pregnancy rates for cows in Groups 2 (23.6%) and 3 (18%) were not significantly different. The finding indicated that synchronization of ovulation and timed-insemination resulted in pregnancy rates similar to those of synchronization of estrus and insemination at an induced estrus within 7 d for the treatment of ovarian cysts in lactating dairy cows.  相似文献   

19.
The objective was to determine the effect of presynchronization with GnRH 7 d prior to the initiation of resynchronization with CO-Synch on pregnancy/AI (P/AI) of resynchronization in lactating dairy cows, and the effect of GnRH on P/AI from previous breeding. All parity Holstein cows (n = 3287) from four dairy farms were enrolled. Cows not detected in estrus by 28 ± 3 d (Day -7) after a previous breeding were assigned to receive either GnRH (100 μg, im; n = 1636) or no GnRH (Control; n = 1651). Cows not detected in estrus during the 7 d after GnRH underwent pregnancy diagnosis (35 ± 3 d after previous breeding, Day 0); non-pregnant cows (n = 1232) in the Control (n = 645) and GnRH (n = 587) groups were resynchronized with a CO-Synch protocol. Briefly, cows received 100 μg GnRH on Day 0, 25 mg PGF on Day 7, and 72 h later (Day 10) were given 100 μg GnRH and concurrently inseminated. Serum progesterone concentrations (n = 55 cows) were elevated in 47.3, 70.9, and 74.5% of cows on Days -7, 0, and 7, respectively. The proportion of cows with high progesterone concentrations on Day -7 and Day 0 were 44.1% and 88.2% (P < 0.003), and 55.2% and 33.2% (P > 0.1), for GnRH and Control groups, respectively. Accounting for significant variables such as locations (P < 0.0001) and parity categories (P < 0.05), the P/AI (35 ± 3 d after AI) for resynchronization was not different between GnRH and Control groups [26.7% (95% CI: 23.2, 30.5; (157/587) vs 28.4% (95% CI: 25.0, 31.9; (183/645); P > 0.1]. There were no significant location by treatment or parity by treatment interactions. Accounting for significant variables such as location (P < 0.0001) and parity categories (P < 0.001), the P/AI was not different between GnRH and Control groups for the previous service [60.2%; 95% CI: 57.9, 62.6; (986/1636) vs 59.1%; 95% CI: 56.7, 61.5; (976/1651); P > 0.1)]. There were no significant location by treatment or parity by treatment interactions. In conclusion, more cows presynchronized with GnRH 7 d prior to resynchronization with CO-Synch had elevated progesterone concentrations at initiation of resynchronization than those not presynchronized. The GnRH treatment 7 d prior to resynchronization with CO-Synch, when given 28 ± 3 d after a previous breeding, did not improve P/AI in lactating dairy cows; furthermore, compared to the control, it did not significantly affect pregnancy rate from the previous breeding.  相似文献   

20.
The objectives of this study were to determine 1) the incidence of abnormal postpartum ovarian function in a large dairy herd in North Central Florida and 2) the effectiveness of gonadotrophin releasing hormone (GnRH) in treating this condition. The study was conducted from April 1988 to June 1989. The internal genitalia of the cows were initially examined per rectum (Day 0) between 19 and 29 (23 +/- 0.25) d after calving and again 14 d later (Day 14) for evidence of uterine involution and ovarian activity. The presence of a palpable corpus luteum (CL) and retrospective determination of plasma progesterone (P4) concentrations > 1 ng/ml were the criteria used to assess ovarian activity. Cows possessing a palpable CL and P4 concentrations > 1 ng/ml on Day 0 were determined to be cycling normally. A total of 1356 cows was used in this study. On Day 0, two groups were formed: Group 1 consisted of normal, cyclic cows, Group 2 of noncyclic cows. On Day 0, alternate cows in Group 2 were treated with GnRH (100ug i.m). On Day 14, the previously nontreated cows in Group 2 were further divided into two groups, forming Group 3, nontreated cows and Group 4, cows treated with GnRH at this time. Group 5 was comprised of cows from Group 2 that did not respond to treatment with GnRH on Day 0; these cows were treated on Day 14 with GnRH (100ug i.m). Group 6 was comprised of nontreated cows from Group 2 that responded spontaneously (presence of a CL) by Day 14. Reproductive parameters evaluated were the percentage of cows pregnant within 180 d after calving and at the end of the study, the number of days open and the number of services per conception. Data were statistically analyzed using Chisquare and survival analysis. The results of this study indicate that the incidence of abnormal postpartum ovarian function in this herd was 30.2% and that the nontreated cows experienced more days open and required more services per conception than the treated cows, those that were cycling normally on the initial examination, and those that responded spontaneously by Day 14.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号