首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Understanding the origin of new species is a central goal in evolutionary biology. Diverging lineages often evolve highly heterogeneous patterns of genetic differentiation; however, the underlying mechanisms are not well understood. We investigated evolutionary processes governing genetic differentiation between the hybridizing campions Silene dioica (L.) Clairv. and S. latifolia Poiret. Demographic modelling indicated that the two species diverged with gene flow. The best‐supported scenario with heterogeneity in both migration rate and effective population size suggested that a small proportion of the loci evolved without gene flow. Differentiation (F ST) and sequence divergence (d XY) were correlated and both tended to peak in the middle of most linkage groups, consistent with reduced gene flow at highly differentiated loci. Highly differentiated loci further exhibited signatures of selection. In between‐species population pairs, isolation by distance was stronger for genomic regions with low between‐species differentiation than for highly differentiated regions that may contain barrier loci. Moreover, differentiation landscapes within and between species were only weakly correlated, suggesting that linked selection due to shared recombination and gene density landscapes is not the dominant determinant of genetic differentiation in these lineages. Instead, our results suggest that divergent selection shaped the genomic landscape of differentiation between the two Silene species, consistent with predictions for speciation in the face of gene flow.  相似文献   

2.
Recently diverged taxa showing marked phenotypic and ecological diversity provide optimal systems to understand the genetic processes underlying speciation. We used genome‐wide markers to investigate the diversification of the Reunion grey white‐eye (Zosterops borbonicus) on the small volcanic island of Reunion (Mascarene archipelago), where this species complex exhibits four geographical forms that are parapatrically distributed across the island and differ strikingly in plumage colour. One form restricted to the highlands is separated by a steep ecological gradient from three distinct lowland forms which meet at narrow hybrid zones that are not associated with environmental variables. Analyses of genomic variation based on single nucleotide polymorphism data from genotyping‐by‐sequencing and pooled RAD‐seq approaches show that signatures of selection associated with elevation can be found at multiple regions across the genome, whereas most loci associated with the lowland forms are located on the Z sex chromosome. We identified TYRP1, a Z‐linked colour gene, as a likely candidate locus underlying colour variation among lowland forms. Tests of demographic models revealed that highland and lowland forms diverged in the presence of gene flow, and divergence has progressed as gene flow was restricted by selection at loci across the genome. This system holds promise for investigating how adaptation and reproductive isolation shape the genomic landscape of divergence at multiple stages of the speciation process.  相似文献   

3.
Recently evolved species typically share genetic variation across their genomes due to incomplete lineage sorting and/or ongoing gene flow. Given only subtle allele frequency differences at most loci and the expectation that divergent selection may affect only a tiny fraction of the genome, distinguishing closely related species based on multi‐locus data requires substantial genomic coverage. In this study, we used ddRAD‐seq to sample the genomes of five recently diverged, New World “mallards” (Anas spp.), a group of dabbling duck species characterized by diagnosable phenotypic differences but minimal genetic differentiation. With increased genomic sampling, we aimed to characterize population structure within this group and identify genomic regions that may have experienced divergent selection during speciation. We analyzed 3,017 autosomal ddRAD‐seq loci and 177 loci from the Z‐chromosome. In contrast to previous studies, the ddRAD‐seq data were sufficient to assign individuals to their respective species or subspecies and to generate estimates of gene flow in a phylogenetic framework. We find limited evidence of contemporary gene flow between the dichromatic mallard and several monochromatic taxa, but find evidence for historical gene flow between some monochromatic species pairs. We conclude that the overall genetic similarity of these taxa likely reflects retained ancestral polymorphism rather than recent and extensive gene flow. Thus, despite recurring cases of hybridization in this group, our results challenge the current dogma predicting the genetic extinction of the New World monochromatic dabbling ducks via introgressive hybridization with mallards. Moreover, ddRAD‐seq data were sufficient to identify previously unknown outlier regions across the Z‐chromosome and several autosomal chromosomes that may have been involved in the diversification of species in this recent radiation.  相似文献   

4.
P G Goicoechea  R J Petit  A Kremer 《Heredity》2012,109(6):361-371
Genome scans are increasingly used to study ecological speciation, providing a useful genome-wide perspective on divergent selection in the presence of gene flow. Here, we compare current approaches to detect footprints of divergent selection in closely related species. We analyzed 192 individuals from two interfertile European temperate oak species using 30 nuclear microsatellites from eight linkage groups. These markers present little intraspecific differentiation and can be used in combination to assign individual genotypes to species. We first show that different outlier detection tests give somewhat different results, possibly due to model constraints. Second, using linkage information for these markers, we further characterize the signature of divergent selection in the presence of gene flow. In particular, we show that recombination estimates for regions with outlier markers are lower than those for a control region, in line with a prediction from ecological speciation theory. Most importantly, we show that analyses at the haplotype level can distinguish between truly divergent (bi-directional) selection and positive selection in one of the two species, offering a new and improved method for characterizing the speciation process.  相似文献   

5.
Anopheles gambiae sensu stricto exists as two often-sympatric races termed the M and S molecular forms, characterized by fixed differences at an X-linked marker. Extreme divergence between M and S forms at pericentromeric "genomic islands" suggested that selection on variants therein could be driving interform divergence in the presence of ongoing gene flow, but recent work has detected much more widespread genomic differentiation. Whether such genomic islands are important in reproductive isolation or represent ancestral differentiation preserved by low recombination is currently unclear. A critical test of these competing hypotheses could be provided by comparing genomic divergence when rates of recent introgression vary. We genotyped 871 single nucleotide polymorphisms (SNPs) in A. gambiae sensu stricto from locations of M and S sympatry and allopatry, encompassing the full range of observed hybridization rates (0-25%). M and S forms were readily partitioned based on genomewide SNP variation in spite of evidence for ongoing introgression that qualitatively reflects hybridization rates. Yet both the level and the heterogeneity of genomic divergence varied markedly in line with levels of introgression. A few genomic regions of differentiation between M and S were common to each sampling location, the most pronounced being two centromere-proximal speciation islands identified previously but with at least one additional region outside of areas expected to exhibit reduced recombination. Our results demonstrate that extreme divergence at genomic islands does not simply represent segregating ancestral polymorphism in regions of low recombination and can be resilient to substantial gene flow. This highlights the potential for islands comprising a relatively small fraction of the genome to play an important role in early-stage speciation when reproductive isolation is limited.  相似文献   

6.
7.
Interpreting the formation of genomic variation landscape, especially genomic regions with elevated differentiation (i.e. islands), is fundamental to a better understanding of the genomic consequences of adaptation and speciation. Edaphic islands provide excellent systems for understanding the interplay of gene flow and selection in driving population divergence and speciation. However, discerning the relative contribution of these factors that modify patterns of genomic variation remains difficult. We analysed 132 genomes from five recently divergent species in Primulina genus, with four species distributed in Karst limestone habitats and the fifth one growing in Danxia habitats. We demonstrated that both gene flow and linked selection have contributed to genome-wide variation landscape, where genomic regions with elevated differentiation (i.e., islands) were largely derived by divergent sorting of ancient polymorphism. Specifically, we identified several lineage-specific genomic islands that might have facilitated adaptation of P. suichuanensis to Danxia habitats. Our study is amongst the first cases disentangling evolutionary processes that shape genomic variation of plant specialists, and demonstrates the important role of ancient polymorphism in the formation of genomic islands that potentially mediate adaptation and speciation of endemic plants in special soil habitats.  相似文献   

8.
Reconstruction of phylogenetic relationships among recently diverged species is complicated by three general problems: segregation of polymorphisms that pre-date species divergence, gene flow during and after speciation, and intra-locus recombination. In light of these difficulties, the Y chromosome offers several important advantages over other genomic regions as a source of phylogenetic information. These advantages include the absence of recombination, rapid coalescence, and reduced opportunity for interspecific introgression due to hybrid male sterility. In this report, we test the phylogenetic utility of Y-chromosomal sequences in two groups of closely related and partially inter-fertile Drosophila species. In the D. bipectinata species complex, Y-chromosomal loci unambiguously recover the phylogeny most consistent with previous multi-locus analysis and with reproductive relationships, and show no evidence of either post-speciation gene flow or persisting ancestral polymorphisms. In the D. simulans species complex, the situation is complicated by the duplication of at least one Y-linked gene region, followed by intrachromosomal recombination between the duplicate genes that scrambles their genealogy. We suggest that Y-chromosomal sequences are a useful tool for resolving phylogenetic relationships among recently diverged species, especially in male-heterogametic organisms that conform to Haldane's rule. However, duplication of Y-linked genes may not be uncommon, and special care should be taken to distinguish between orthologous and paralogous sequences.  相似文献   

9.
Genome‐wide patterns of genetic divergence reveal mechanisms of adaptation under gene flow. Empirical data show that divergence is mostly concentrated in narrow genomic regions. This pattern may arise because differentiated loci protect nearby mutations from gene flow, but recent theory suggests this mechanism is insufficient to explain the emergence of concentrated differentiation during biologically realistic timescales. Critically, earlier theory neglects an inevitable consequence of genetic drift: stochastic loss of local genomic divergence. Here, we demonstrate that the rate of stochastic loss of weak local differentiation increases with recombination distance to a strongly diverged locus and, above a critical recombination distance, local loss is faster than local “gain” of new differentiation. Under high migration and weak selection, this critical recombination distance is much smaller than the total recombination distance of the genomic region under selection. Consequently, divergence between populations increases by net gain of new differentiation within the critical recombination distance, resulting in tightly linked clusters of divergence. The mechanism responsible is the balance between stochastic loss and gain of weak local differentiation, a mechanism acting universally throughout the genome. Our results will help to explain empirical observations and lead to novel predictions regarding changes in genomic architectures during adaptive divergence.  相似文献   

10.
In the past decade the interest surrounding the role of recombination in speciation has been re-kindled by a new generation of chromosomal speciation models that invoke the recombination-suppression properties of some types of chromosomal rearrangement. A common prediction of recombination-suppression models is that gene exchange between diverging populations will be more restricted in regions of the genome that experience low recombination. We carried out a genome scan of three chromosomal races of the grasshopper Vandiemenella viatica (Orthoptera: Morabinae), occurring on Kangaroo Island, South Australia, using 1517 AFLP loci, with a view to elucidating the roles that selection and chromosomal variation have played in the formation of these taxa. An analysis of molecular variance demonstrated that chromosomal race accounted for a significant proportion of the genetic variance in the total dataset, which concurred with the findings of an earlier study. Sampling across one previously-identified hybrid zone, and the identification of outlier loci between parental races allowed us to establish that, in admixed populations, outlier loci which potentially pre-date the isolation of populations of races on Kangaroo Island exhibit higher levels of linkage disequilibrium with each other than putatively neutral loci. In turn this suggests that they might reside within genomic regions of low recombination, or be closely linked with each other.  相似文献   

11.
Ecological speciation proceeds through the accumulation of divergent traits that contribute to reproductive isolation, but in the face of gene flow traits that characterize incipient species may become disassociated through recombination. Heliconius butterflies are well known for bright mimetic warning patterns that are also used in mate recognition and cause both pre- and post-mating isolation between divergent taxa. Sympatric sister taxa representing the final stages of speciation, such as Heliconius cydno and Heliconius melpomene, also differ in ecology and hybrid fertility. We examine mate preference and sterility among offspring of crosses between these species and demonstrate the clustering of Mendelian colour pattern loci and behavioural loci that contribute to reproductive isolation. In particular, male preference for red patterns is associated with the locus responsible for the red forewing band. Two further colour pattern loci are associated, respectively, with female mating outcome and hybrid sterility. This genetic architecture in which ‘speciation genes’ are clustered in the genome can facilitate two controversial models of speciation, namely divergence in the face of gene flow and hybrid speciation.  相似文献   

12.
In the early stages of reproductive isolation, genomic regions of reduced recombination are expected to show greater levels of differentiation, either because gene flow between species is reduced in these regions or because the effects of selection at linked sites within species are enhanced in these regions. Here, we study the patterns of DNA sequence variation at 27 autosomal loci among populations of Mus musculus musculus, M. m. domesticus, and M. m. castaneus, three subspecies of house mice with collinear genomes. We found that some loci exhibit considerable shared variation among subspecies, while others exhibit fixed differences. We used an isolation-with-gene-flow model to estimate divergence times and effective population sizes (N(e) ) and to disentangle ancestral variation from gene flow. Estimates of divergence time indicate that all three subspecies diverged from one another within a very short period of time approximately 350,000 years ago. Overall, N(e) for each subspecies was associated with the degree of genetic differentiation: M. m. musculus had the smallest N(e) and the greatest proportion of monophyletic gene genealogies, while M. m. castaneus had the largest N(e) and the smallest proportion of monophyletic gene genealogies. M. m. domesticus and M. m. musculus were more differentiated from each other than either were from M. m. castaneus, consistent with greater reproductive isolation between M. m. domesticus and M. m. musculus. F(ST) was significantly greater at loci experiencing low recombination rates compared to loci experiencing high recombination rates in comparisons between M. m. castaneus and M. m. musculus or M. m. domesticus. These results provide evidence that genomic regions with less recombination show greater differentiation, even in the absence of chromosomal rearrangements.  相似文献   

13.
The genic species concept implies that while most of the genome can be exchanged somewhat freely between species through introgression, some genomic regions remain impermeable to interspecific gene flow. Hence, interspecific differences can be maintained despite ongoing gene exchange within contact zones. This study assessed the heterogeneous patterns of introgression at gene loci across the hybrid zone of an incipient progenitor–derivative species pair, Picea mariana (black spruce) and Picea rubens (red spruce). The spruce taxa likely diverged in geographic isolation during the Pleistocene and came into secondary contact during late Holocene. A total of 300 SNPs distributed across the 12 linkage groups (LG) of black spruce were genotyped for 385 individual trees from 33 populations distributed across the allopatric zone of each species and within the zone of sympatry. An integrative framework combining three population genomic approaches was used to scan the genomes, revealing heterogeneous patterns of introgression. A total of 23 SNPs scattered over 10 LG were considered impermeable to introgression and putatively under diverging selection. These loci revealed the existence of impermeable genomic regions forming the species boundary and are thus indicative of ongoing speciation between these two genetic lineages. Another 238 SNPs reflected selectively neutral diffusion across the porous species barrier. Finally, 39 highly permeable SNPs suggested ancestral polymorphism along with balancing selection. The heterogeneous patterns of introgression across the genome indicated that the speciation process between black spruce and red spruce is young and incomplete, albeit some interspecific differences are maintained, allowing ongoing species divergence even in sympatry. The approach developed in this study can be used to track the progression of ongoing speciation processes.  相似文献   

14.
Kai Zeng  Pádraic Corcoran 《Genetics》2015,201(4):1539-1554
It is well known that most new mutations that affect fitness exert deleterious effects and that natural populations are often composed of subpopulations (demes) connected by gene flow. To gain a better understanding of the joint effects of purifying selection and population structure, we focus on a scenario where an ancestral population splits into multiple demes and study neutral diversity patterns in regions linked to selected sites. In the background selection regime of strong selection, we first derive analytic equations for pairwise coalescent times and FST as a function of time after the ancestral population splits into two demes and then construct a flexible coalescent simulator that can generate samples under complex models such as those involving multiple demes or nonconservative migration. We have carried out extensive forward simulations to show that the new methods can accurately predict diversity patterns both in the nonequilibrium phase following the split of the ancestral population and in the equilibrium between mutation, migration, drift, and selection. In the interference selection regime of many tightly linked selected sites, forward simulations provide evidence that neutral diversity patterns obtained from both the nonequilibrium and equilibrium phases may be virtually indistinguishable for models that have identical variance in fitness, but are nonetheless different with respect to the number of selected sites and the strength of purifying selection. This equivalence in neutral diversity patterns suggests that data collected from subdivided populations may have limited power for differentiating among the selective pressures to which closely linked selected sites are subject.  相似文献   

15.
Wang J  Abbott RJ  Peng YL  Du FK  Liu JQ 《Heredity》2011,107(4):362-370
It remains unclear how speciation history might contribute to species-specific variation and affect species delimitation. We examined concordance between cytoplasmic genetic variation and morphological taxonomy in two fir species, Abies chensiensis and A. fargesii, with overlapping distributions in central China. Range-wide genetic variation was investigated using mitochondrial (mt) and plastid (pt) DNA sequences, which contrast in their rates of gene flow. Four mtDNA haplotypes were recovered and showed no obvious species' bias in terms of relative frequency. In contrast, a high level of ptDNA variation was recorded in both species with 3 common ptDNA haplotypes shared between them and 21 rare ptDNA haplotypes specific to one or other species. We argue that the lack of concordance between morphological and molecular variation between the two fir species most likely reflects extensive ancestral polymorphism sharing for both forms of cytoplasmic DNA variation. It is feasible that a relatively fast mutation rate for ptDNA contributed to the production of many species-specific ptDNA haplotypes, which remained rare due to insufficient time passing for their spread and fixation in either species, despite high levels of intraspecific ptDNA gene flow. Our phylogeographic analyses further suggest that polymorphisms in both organelle genomes most likely originated during and following glacial intervals preceding the last glacial maximum, when species distributions became fragmented into several refugia and then expanded in range across central China.  相似文献   

16.
Over the last decade, surveys of DNA sequence variation in natural populations of several Drosophila species and other taxa have established that polymorphism is reduced in genomic regions characterized by low rates of crossing over per physical length. Parallel studies have also established that divergence between species is not reduced in these same genomic regions, thus eliminating explanations that rely on a correlation between the rates of mutation and crossing over. Several theoretical models (directional hitchhiking, background selection, and random environment) have been proposed as population genetic explanations. In this study samples from an African population (n = 50) and a European population (n = 51) were surveyed at the su(s) (1955 bp) and su(w(a)) (3213 bp) loci for DNA sequence polymorphism, utilizing a stratified SSCP/DNA sequencing protocol. These loci are located near the telomere of the X chromosome, in a region of reduced crossing over per physical length, and exhibit a significant reduction in DNA sequence polymorphism. Unlike most previously surveyed, these loci reveal substantial skews toward rare site frequencies, consistent with the predictions of directional hitchhiking and random environment models and inconsistent with the general predictions of the background selection model (or neutral theory). No evidence for excess geographic differentiation at these loci is observed. Although linkage disequilibrium is observed between closely linked sites within these loci, many recombination events in the genealogy of the sampled alleles can be inferred and the genomic scale of linkage disequilibrium, measured in base pairs between sites, is the same as that observed for loci in regions of normal crossing over. We conclude that gene conversion must be high in these regions of low crossing over.  相似文献   

17.
As populations diverge many processes can shape genomic patterns of differentiation. Regions of high differentiation can arise due to divergent selection acting on selected loci, genetic hitchhiking of nearby loci, or through repeated selection against deleterious alleles (linked background selection); this divergence may then be further elevated in regions of reduced recombination. Atlantic salmon (Salmo salar) from Europe and North America diverged >600,000 years ago and despite some evidence of secondary contact, the majority of genetic data indicate substantial divergence between lineages. This deep divergence with potential gene flow provides an opportunity to investigate the role of different mechanisms that shape the genomic landscape during early speciation. Here, using 184,295 single nucleotide polymorphisms (SNPs) and 80 populations, we investigate the genomic landscape of differentiation across the Atlantic Ocean with a focus on highly differentiated regions and the processes shaping them. We found evidence of high (mean FST = 0.26) and heterogeneous genomic differentiation between continents. Genomic regions associated with high trans‐Atlantic differentiation ranged in size from single loci (SNPs) within important genes to large regions (1–3 Mbp ) on four chromosomes (Ssa06, Ssa13, Ssa16 and Ssa19). These regions showed signatures consistent with selection, including high linkage disequilibrium, despite no significant reduction in recombination. Genes and functional enrichment of processes associated with differentiated regions may highlight continental differences in ocean navigation and parasite resistance. Our results provide insight into potential mechanisms underlying differences between continents, and evidence of near‐fixed and potentially adaptive trans‐Atlantic differences concurrent with a background of high genome‐wide differentiation supports subspecies designation in Atlantic salmon.  相似文献   

18.
Nosil P  Feder JL 《Molecular ecology》2012,21(12):2829-2832
Genetic differentiation during adaptive divergence and speciation is heterogeneous among genomic regions. Some regions can be highly differentiated between populations, for example, because they harbour genes under divergent selection or those causing reproductive isolation and thus are resistant to gene flow. Other regions might be homogenized by gene flow and thus weakly differentiated. Debates persist about the number of differentiated regions expected under divergence with gene flow, and their causes, size, and genomic distribution. In this issue of Molecular Ecology, a study of freshwater stickleback used next-generation sequencing to shed novel insight into these issues (Roesti et al. 2012). Many genomic regions distributed across the genome were strongly differentiated, indicating divergence with gene flow can involve a greater number of loci than often thought. Nonetheless, differentiation of some regions, such as those near the centre of chromosomes where recombination is reduced, was strongly accentuated over others. Thus, divergence was widespread yet highly heterogeneous across the genome. Moreover, different population pairs varied in patterns of differentiation, illustrating how genomic divergence builds up across stages of the speciation process. The study demonstrates how variation in different evolutionary processes, such as selection and recombination rate, can combine to result in similar genomic patterns. Future work could focus on teasing apart the contributions of different processes for causing differentiation, a task facilitated by experimental manipulations.  相似文献   

19.
Chromosomal inversions impact genetic variation and facilitate speciation in part by reducing recombination in heterokaryotypes. We generated multiple whole-genome shotgun sequences of the parapatric species pair Drosophila pseudoobscura and Drosophila persimilis and their sympatric outgroup (Drosophila miranda) and compared the average pairwise differences for neutral sites within, just outside and far outside of the three large inversions. Divergence between D. pseudoobscura and D. persimilis is high inside the inversions and in the suppressed recombination regions extending 2.5 Mb outside of inversions, but significantly lower in collinear regions further from the inversions. We observe little evidence of decreased divergence predicted to exist in the centre of inversions, suggesting that gene flow through double crossovers or gene conversion is limited within the inversion, or selection is acting within the inversion to maintain divergence in the face of gene flow. In combination with past studies, we provide evidence that inversions in this system maintain areas of high divergence in the face of hybridization, and have done so for a substantial period of time. The left arm of the X chromosome and chromosome 2 inversions appear to have arisen in the lineage leading to D. persimilis approximately 2 Ma, near the time of the split of D. persimilis-D. pseudoobscura-D. miranda, but likely fixed within D. persimilis much more recently, as diversity within D. persimilis is substantially reduced inside and near these two inversions. We also hypothesize that the inversions in D. persimilis may provide an empirical example of the 'mixed geographical mode' theory of inversion origin and fixation, whereby allopatry and secondary contact both play a role.  相似文献   

20.
Speciation is generally viewed as an irreversible process, although habitat alterations can erase reproductive barriers if divergence between ecologically differentiated species is recent. Reversed speciation might also occur if geographical contact is established between species that have evolved the same reproductive isolating barrier in parallel. Here, we demonstrate a loss of intrinsic reproductive isolation in a clade of scincid lizards as a result of parallel body size evolution, which has allowed for gene flow where large-bodied lineages are in secondary contact. An mtDNA phylogeny confirms the monophyly of the Plestiodon skiltonianus species complex, but rejects that of two size-differentiated ecomorphs. Mate compatibility experiments show that the high degree of body size divergence imposes a strong reproductive barrier between the two morphs; however, the strength of the barrier is greatly diminished between parallel-evolved forms. Since two large-bodied lineages are in geographical contact in the Sierra Nevada Mountains of California, we were also able to test for postzygotic isolation under natural conditions. Analyses of amplified fragment length polymorphisms show that extensive gene exchange is occurring across the contact zone, resulting in an overall pattern consistent with isolation by distance. These results provide evidence of reversed speciation between clades that diverged from a common ancestor more than 12Myr ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号