首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Local extinctions in habitat patches and asymmetric dispersal between patches are key processes structuring animal populations in heterogeneous environments. Effective landscape conservation requires an understanding of how habitat loss and fragmentation influence demographic processes within populations and movement between populations. 2. We used patch occupancy surveys and molecular data for a rainforest bird, the logrunner (Orthonyx temminckii), to determine (i) the effects of landscape change and patch structure on local extinction; (ii) the asymmetry of emigration and immigration rates; (iii) the relative influence of local and between-population landscapes on asymmetric emigration and immigration; and (iv) the relative contributions of habitat loss and habitat fragmentation to asymmetric emigration and immigration. 3. Whether or not a patch was occupied by logrunners was primarily determined by the isolation of that patch. After controlling for patch isolation, patch occupancy declined in landscapes experiencing high levels of rainforest loss over the last 100 years. Habitat loss and fragmentation over the last century was more important than the current pattern of patch isolation alone, which suggested that immigration from neighbouring patches was unable to prevent local extinction in highly modified landscapes. 4. We discovered that dispersal between logrunner populations is highly asymmetric. Emigration rates were 39% lower when local landscapes were fragmented, but emigration was not limited by the structure of the between-population landscapes. In contrast, immigration was 37% greater when local landscapes were fragmented and was lower when the between-population landscapes were fragmented. Rainforest fragmentation influenced asymmetric dispersal to a greater extent than did rainforest loss, and a 60% reduction in mean patch area was capable of switching a population from being a net exporter to a net importer of dispersing logrunners. 5. The synergistic effects of landscape change on species occurrence and asymmetric dispersal have important implications for conservation. Conservation measures that maintain large patch sizes in the landscape may promote asymmetric dispersal from intact to fragmented landscapes and allow rainforest bird populations to persist in fragmented and degraded landscapes. These sink populations could form the kernel of source populations given sufficient habitat restoration. However, the success of this rescue effect will depend on the quality of the between-population landscapes.  相似文献   

2.
局域种群的Allee效应和集合种群的同步性   总被引:3,自引:0,他引:3  
从包含Allee效应的局域种群出发,建立了耦合映像格子模型,即集合种群模型.通过分析和计算机模拟表明:(1)当局域种群受到Allee效应强度较大时,集合种群同步灭绝;(2)而当Allee效应强度相对较弱时,通过稳定局域种群动态(减少混沌)使得集合种群发生同步波动,而这种同步波动能够增加集合种群的灭绝风险;(3)斑块间的连接程度对集合种群同步波动的发生有很大的影响,适当的破碎化有利于集合种群的续存.全局迁移和Allee效应结合起来增加了集合种群同步波动的可能,从而增加集合种群的灭绝风险.这些结果对理解同步性的机理、利用同步机理来制定物种保护策略和害虫防治都有重要的意义.  相似文献   

3.
Natural populations are becoming increasingly fragmented which is expected to affect their viability due to inbreeding depression, reduced genetic diversity and increased sensitivity to demographic and environmental stochasticity. In small and highly inbred populations, the introduction of only a few immigrants may increase vital rates significantly. However, very few studies have quantified the long‐term success of immigrants and inbred individuals in natural populations. Following an episode of natural immigration to the isolated, severely inbred Scandinavian wolf (Canis lupus) population, we demonstrate significantly higher pairing and breeding success for offspring to immigrants compared to offspring from native, inbred pairs. We argue that inbreeding depression is the underlying mechanism for the profound difference in breeding success. Highly inbred wolves may have lower survival during natal dispersal as well as competitive disadvantage to find a partner. Our study is one of the first to quantify and compare the reproductive success of first‐generation offspring from migrants vs. native, inbred individuals in a natural population. Indeed, our data demonstrate the profound impact single immigrants can have in small, inbred populations, and represent one of very few documented cases of genetic rescue in a population of large carnivores.  相似文献   

4.
Fragmentation can strongly influence population persistence and expression of life-history strategies in spatially-structured populations. In this study, we directly estimated size-specific dispersal, growth, and survival of stream-dwelling brook trout in a stream network with connected and naturally-isolated tributaries. We used multiple-generation, individual-based data to develop and parameterize a size-class and location-based population projection model, allowing us to test effects of fragmentation on population dynamics at local (i.e., subpopulation) and system-wide (i.e., metapopulation) scales, and to identify demographic rates which influence the persistence of isolated and fragmented populations. In the naturally-isolated tributary, persistence was associated with higher early juvenile survival ( approximately 45% greater), shorter generation time (one-half) and strong selection against large body size compared to the open system, resulting in a stage-distribution skewed towards younger, smaller fish. Simulating barriers to upstream migration into two currently-connected tributary populations caused rapid (2-6 generations) local extinction. These local extinctions in turn increased the likelihood of system-wide extinction, as tributaries could no longer function as population sources. Extinction could be prevented in the open system if sufficient immigrants from downstream areas were available, but the influx of individuals necessary to counteract fragmentation effects was high (7-46% of the total population annually). In the absence of sufficient immigration, a demographic change (higher early survival characteristic of the isolated tributary) was also sufficient to rescue the population from fragmentation, suggesting that the observed differences in size distributions between the naturally-isolated and open system may reflect an evolutionary response to isolation. Combined with strong genetic divergence between the isolated tributary and open system, these results suggest that local adaptation can 'rescue' isolated populations, particularly in one-dimensional stream networks where both natural and anthropogenically-mediated isolation is common. However, whether rescue will occur before extinction depends critically on the race between adaptation and reduced survival in response to fragmentation.  相似文献   

5.
The negative fitness consequences of close inbreeding are widely recognized, but predicting the long-term effects of inbreeding and genetic drift due to limited population size is not straightforward. As the frequency and homozygosity of recessive deleterious alleles increase, selection can remove (purge) them from a population, reducing the genetic load. At the same time, small population size relaxes selection against mildly harmful mutations, which may lead to accumulation of genetic load. The efficiency of purging and the accumulation of mutations both depend on the rate of inbreeding (i.e., population size) and on the nature of mutations. We studied how increasing levels of inbreeding affect offspring production and extinction in experimental Drosophila littoralis populations replicated in two sizes, N = 10 and N = 40. Offspring production and extinction were measured over 25 generations concurrently with a large control population. In the N = 10 populations, offspring production decreased strongly at low levels of inbreeding, then recovered only to show a consistent subsequent decline, suggesting early expression and purging of recessive highly deleterious alleles and subsequent accumulation of mildly harmful mutations. In the N = 40 populations, offspring production declined only after inbreeding reached higher levels, suggesting that inbreeding and genetic drift pose a smaller threat to population fitness when inbreeding is slow. Our results suggest that highly deleterious alleles can be purged in small populations already at low levels of inbreeding, but that purging does not protect the small populations from eventual genetic deterioration and extinction.  相似文献   

6.
Habitat fragmentation is one of the major threats to species diversity. In this review, we discuss how the genetic and demographic structure of fragmented populations of herbaceous forest plant species is affected by increased genetic drift and inbreeding, reduced mate availability, altered interactions with pollinators, and changed environmental conditions through edge effects. Reported changes in population genetic and demographic structure of fragmented plant populations have, however, not resulted in large-scale extinction of forest plants. The main reason for this is very likely the long-term persistence of small and isolated forest plant populations due to prolonged clonal growth and long generation times. Consequently, the persistence of small forest plant populations in a changing landscape may have resulted in an extinction debt, that is, in a distribution of forest plant species reflecting the historical landscape configuration rather than the present one. In some cases, fragmentation appears to affect ecosystem integrity rather than short-term population viability due to the opposition of different fragmentation-induced ecological effects. We finally discuss extinction and colonization dynamics of forest plant species at the regional scale and suggest that the use of the metapopulation concept, both because of its heuristic power and conservation applications, may be fruitful.  相似文献   

7.
Increased dispersal of individuals among discrete habitat patches should increase the average number of species present in each local habitat patch. However, experimental studies have found variable effects of dispersal on local species richness. Priority effects, predators, and habitat heterogeneity have been proposed as mechanisms that limit the effect of dispersal on species richness. However, the size of a habitat patch could affect how dispersal regulates the number of species able to persist. We investigated whether habitat size interacted with dispersal rate to affect the number of species present in local habitats. We hypothesized that increased dispersal rates would positively affect local species richness more in small habitats than in large habitats, because rare species would be protected from demographic extinction. To test the interaction between dispersal rate and habitat size, we factorially manipulated the size of experimental ponds and dispersal rates, using a model community of freshwater zooplankton. We found that high‐dispersal rates enhanced local species richness in small experimental ponds, but had no effect in large experimental ponds. Our results suggest that there is a trade‐off between patch connectivity (a mediator of dispersal rates) and patch size, providing context for understanding the variability observed in dispersal effects among natural communities, as well as for developing conservation and management plans in an increasingly fragmented world.  相似文献   

8.
Habitat fragmentation is one of the major contributors to the loss of biodiversity worldwide. However, relatively little is known about its more immediate impacts on within-patch population processes such as social structure and mating systems, whose alteration may play an important role in extinction risk. We investigated the impacts of habitat fragmentation due to the establishment of an exotic softwood plantation on the social kin structure and breeding system of the Australian marsupial carnivore, Antechinus agilis. Restricted dispersal by males in fragmented habitat resulted in elevated relatedness among potential mates in populations in fragments, potentially increasing the risk of inbreeding. Antechinus agilis nests communally in tree hollows; these nests are important points for social contact between males and females in the mating season. In response to elevated relatedness among potential mates in fragmented habitat, A. agilis significantly avoided sharing nests with opposite-sex relatives in large fragment sites (but not in small ones, possibly due to limited nest locations and small population sizes). Because opposite-sex individuals shared nests randomly with respect to relatedness in unfragmented habitat, we interpreted the phenomenon in fragmented habitat as a precursor to inbreeding avoidance via mate choice. Despite evidence that female A. agilis at high inbreeding risk selected relatively unrelated mates, there was no overall increased avoidance of related mates by females in fragmented habitats compared to unfragmented habitats. Simulations indicated that only dispersal, and not nonrandom mating, contributed to inbreeding avoidance in either habitat context. However, habitat fragmentation did influence the mating system in that the degree of multiple paternity was reduced due to the reduction in population sizes and population connectivity. This, in turn, reduced the number of males available to females in the breeding season. This suggests that in addition to the obvious impacts of reduced recruitment, patch recolonization and increased genetic drift, the isolation of populations in habitat patches may cause changes in breeding behaviour that contribute to the negative impacts of habitat fragmentation.  相似文献   

9.
Animal translocations are human-induced colonizations that can represent opportunities to contribute to the knowledge on the behavioral and demographic processes involved in the establishment of animal populations. Habitat selection behaviors, such as social cueing, have strong implications on dispersal and affect the establishment success of translocations. Using modeling simulations with a two-population network model (a translocated population and a remnant population), we investigated the consequences of four habitat selection strategies on post-translocation establishment probabilities in short- and long-lived species. Two dispersal strategies using social cues (conspecific attraction and habitat copying) were compared to random and quality-based strategies. We measured the sensitivity of local extinctions to dispersal strategies, life cycles, release frequencies, remnant population and release group sizes, the proportion of breeders and the connectivity between populations. Our results indicate that social behaviors can compromise establishment as a result of post-release dispersal, particularly in long-lived species. This behavioral mechanism, the "vacuum effect", arises from increased emigration in populations that are small relative to neighboring populations, reducing their rate of population growth. The vacuum effect can drive small remnant populations to extinction when a translocated group is large. In addition, the magnitude of the vacuum effect varies non-linearly with connectivity. The vacuum effect represents a novel form of the behaviorally mediated Allee effect that can cause unexpected establishment failures or population extinctions in response to social cueing. Accounting for establishment probabilities as a conditional step to the persistence of populations would improve the accuracy of predicting the fates of translocated or natural (meta)populations.  相似文献   

10.
Continuous animal populations often become fragmented due to anthropogenic habitat alterations. These small, fragmented populations are fragile due to demographic and genetic factors, whereas immigration can enhance their long‐term viability. Previously, we showed that high philopatry affected the local dynamics of three small and remnant subpopulations of Northern Wheatears in The Netherlands. Here, we show that these three populations together with an additional larger population in the European lowlands are highly genetically differentiated based on 22 microsatellite markers. In contrast, we found no evidence for differentiation using two mitochondrial DNA markers. An IMa2 analysis indicates that gene flow has occurred regularly among our sampled populations. As immigration of colour‐ringed birds among our sampled populations is rare at best, our results suggest that the populations have recently become isolated from one another. Low dispersal rates in highly mobile birds may occur when suitable habitat becomes highly fragmented, and will accentuate stochastic demographic processes and inbreeding, both reducing population viability. As dispersal rates are low among populations of Northern Wheatears in The Netherlands, there is only a small probability of recolonization of habitat patches where populations have become locally extinct.  相似文献   

11.
The effect of genetic drift in spatially distributed dispersal-linked and density-regulated populations is studied in a classical one-locus two-allele system. We analyse emergence of genetic differentiation assuming random drift only, where the noise-like variability is due to demographic stochasticity. We find emergence of clusters of sub-units with local allele fixation and persistence of both alleles in lengthy simulations. We demonstrate that local allele fixation (extending over a number of adjoining spatial sub-units) – without global loss of alleles – may occur when the carrying capacities of local patches are small, under a full range population dynamic regimes, when dispersal rate is small, and when redistribution (through dispersal) does not act as global mixer. These results are novel. The key to the observations is that drift is simultaneously influenced by distance-dependent dispersal, demographic stochasticity and autocorrelated population fluctuations due to delayed-density dependence. These are standard elements of contemporary population models in spatially structured context. With stable large populations, no stochasticity and dispersal limited to neighbours only, our model collapses to the stepping-stone model, while with dispersal being random and global, the model collapses to Wright's island model.  相似文献   

12.
Chybicki IJ  Oleksa A  Burczyk J 《Heredity》2011,107(6):589-600
Habitat fragmentation can have severe genetic consequences for trees, such as increased inbreeding and decreased effective population size. In effect, local populations suffer from reduction of genetic variation, and thus loss of adaptive capacity, which consequently increases their risk of extinction. In Europe, Taxus baccata is among a number of tree species experiencing strong habitat fragmentation. However, there is little empirical data on the population genetic consequences of fragmentation for this species. This study aimed to characterize local genetic structure in two natural remnants of English yew in Poland based on both amplified fragment length polymorphism (AFLP) and microsatellite (SSR) markers. We introduced a Bayesian approach that estimates the average inbreeding coefficient using AFLP (dominant) markers. Results showed that, in spite of high dispersal potential (bird-mediated seed dispersal and wind-mediated pollen dispersal), English yew populations show strong kinship structure, with a spatial extent of 50–100 m, depending on the population. The estimated inbreeding levels ranged from 0.016 to 0.063, depending on the population and marker used. Several patterns were evident: (1) AFLP markers showed stronger kinship structure than SSRs; (2) AFLP markers provided higher inbreeding estimates than SSRs; and (3) kinship structure and inbreeding were more pronounced in denser populations regardless of the marker used. Our results suggest that, because both kinship structure and (bi-parental) inbreeding exist in populations of English yew, gene dispersal can be fairly limited in this species. Furthermore, at a local scale, gene dispersal intensity can be more limited in a dense population.  相似文献   

13.
Whether and how habitat fragmentation and population size jointly affect adaptive genetic variation and adaptive population differentiation are largely unexplored. Owing to pronounced genetic drift, small, fragmented populations are thought to exhibit reduced adaptive genetic variation relative to large populations. Yet fragmentation is known to increase variability within and among habitats as population size decreases. Such variability might instead favour the maintenance of adaptive polymorphisms and/or generate more variability in adaptive differentiation at smaller population size. We investigated these alternative hypotheses by analysing coding-gene, single-nucleotide polymorphisms associated with different biological functions in fragmented brook trout populations of variable sizes. Putative adaptive differentiation was greater between small and large populations or among small populations than among large populations. These trends were stronger for genetic population size measures than demographic ones and were present despite pronounced drift in small populations. Our results suggest that fragmentation affects natural selection and that the changes elicited in the adaptive genetic composition and differentiation of fragmented populations vary with population size. By generating more variable evolutionary responses, the alteration of selective pressures during habitat fragmentation may affect future population persistence independently of, and perhaps long before, the effects of demographic and genetic stochasticity are manifest.  相似文献   

14.
The process of population extinction due to inbreeding depression with constant demographic disturbances every generation is analysed using a population genetic and demographic model. The demographic disturbances introduced into the model represent loss of population size that is induced by any kind of human activities, e.g. through hunting and destruction of habitats. The genetic heterozygosity among recessive deleterious genes and the population size are assumed to be in equilibrium before the demographic disturbances start. The effects of deleterious mutations are represented by decreases in the growth rate and carrying capacity of a population. Numerical simulations indicate rapid extinction due to synergistic interaction between inbreeding depression and declining population size for realistic ranges of per-locus mutation rate, equilibrium population size, intrinsic rate of population growth, and strength of demographic disturbances. Large populations at equilibrium are more liable to extinction when disturbed due to inbreeding depression than small populations. This is a consequence of the fact that large populations maintain more recessive deleterious mutations than small populations. The rapid extinction predicted in the present study indicates the importance of the demographic history of a population in relation to extinction due to inbreeding depression.  相似文献   

15.
A multilocus stochastic model is developed to simulate the dynamics of mutational load in small populations of various sizes. Old mutations sampled from a large ancestral population at mutation-selection balance and new mutations arising each generation are considered jointly, using biologically plausible lethal and deleterious mutation parameters. The results show that inbreeding depression and the number of lethal equivalents due to partially recessive mutations can be partly purged from the population by inbreeding, and that this purging mainly involves lethals or detrimentals of large effect. However, fitness decreases continuously with inbreeding, due to increased fixation and homozygosity of mildly deleterious mutants, resulting in extinctions of very small populations with low reproductive rates. No optimum inbreeding rate or population size exists for purging with respect to fitness (viability) changes, but there is an optimum inbreeding rate at a given final level of inbreeding for reducing inbreeding depression or the number of lethal equivalents. The interaction between selection against partially recessive mutations and genetic drift in small populations also influences the rate of decay of neutral variation. Weak selection against mutants relative to genetic drift results in apparent overdominance and thus an increase in effective size (Ne) at neutral loci, and strong selection relative to drift leads to a decrease in Ne due to the increased variance in family size. The simulation results and their implications are discussed in the context of biological conservation and tests for purging.  相似文献   

16.
Dispersal is a central process to almost all species on earth, as it connects spatially structured populations and thereby increases population persistence. Dispersal is subject to (rapid) evolution and local patch extinctions are an important selective force in this context. In contrast to the randomly distributed local extinctions considered in most theoretical studies, habitat fragmentation or other anthropogenic interventions will lead to spatially correlated extinction patterns. Under such conditions natural selection is thought to lead to more long‐distance dispersal, but this theoretical prediction has not yet been verified empirically. We test this prediction in experimental spatially structured populations of the spider mite Tetranychus urticae and supplement these empirical results with insights from an individual‐based evolutionary model. We demonstrate that the spatial correlation of local extinctions changes the entire distribution of dispersal distances (dispersal kernel) and selects for overall less emigration but more long‐distance dispersal.  相似文献   

17.
It has been long known that immigrants from surrounding populations might prevent the extinction of small populations, a process known as the 'rescue effect'. This focuses on the demographic effects of migration through the direct positive influence that immigrants have on abundance of the recipient population. Now, two recent papers have indicated another potentially important way that migration might rescue populations from extinction - replenishing genetic variation and reducing inbreeding depression, or what has been termed 'genetic rescue'.  相似文献   

18.
Loral extinction along the intrinsic isolation gradient within metapopulations is reviewed with particular reference to a study of the pool frog ( Rana lessonaé ) on the northern periphery of its geographical range. As in the pool frog, many other different tax a show significantly increased extinction probabilities with increased interpopulation distance. Present data imply that the relative impact of demographic and genetic factors in such stochastic extinctions depends on the genetic history of the metapopulation; data also imply that populations fluctuate more greatly in size than predicted from demographic models which have been commonly referred to. By mitigating such fluctuations and inbreeding, and compensating for emigration, immigration undoubtedly 'rescues' local populations from extinction. In this way, and not just in terms of recolonization, connectivity is concluded to be a key to metapopulation persistence. Implications for conservation are also presented.  相似文献   

19.
While habitat fragmentation is a central issue in forest conservation studies in the face of broad-scale anthropogenic changes to the environment, its effects on contemporary mating patterns remain controversial. This is partly because of the inherent variation in mating patterns which may exist within species and the fact that few studies have replication at the landscape level. To study the effect of forest fragmentation on contemporary mating patterns, including effective pollen dispersal, we compared four native populations of the Australian forest tree, Eucalyptus globulus . We used six microsatellite markers to genotype 1289 open-pollinated offspring from paired fragmented and continuous populations on the island of Tasmania and in Victoria on mainland Australia. The mating patterns in the two continuous populations were similar, despite large differences in population density. In contrast, the two fragmented populations were variable and idiosyncratic in their mating patterns, particularly in their pollen dispersal kernels. The continuous populations showed relatively high outcrossing rates (86–89%) and low correlated paternity (0.03–0.06) compared with the fragmented populations (65–79% and 0.12–0.20 respectively). A greater proportion of trees contributed to reproduction in the fragmented ( de/d ≥ 0.5) compared with the continuous populations ( de/d  =   0.03–0.04). Despite significant inbreeding in the offspring of the fragmented populations, there was little evidence of loss of genetic diversity. It is argued that enhanced medium- and long-distance dispersal in fragmented landscapes may act to partly buffer the remnant populations from the negative effects of inbreeding and drift.  相似文献   

20.
The metapopulation framework considers that the spatiotemporal distribution of organisms results from a balance between the colonization and extinction of populations in a suitable and discrete habitat network. Recent spatially realistic metapopulation models have allowed patch dynamics to be investigated in natural populations but such models have rarely been applied to plants. Using a simple urban fragmented population system in which favourable habitat can be easily mapped, we studied patch dynamics in the annual plant Crepis sancta (Asteraceae). Using stochastic patch occupancy models (SPOMs) and multi‐year occupancy data we dissected extinction and colonization patterns in our system. Overall, our data were consistent with two distinct metapopulation scenarios. A metapopulation (sensu stricto) dynamic in which colonization occurs over a short distance and extinction is lowered by nearby occupied patches (rescue effect) was found in a set of patches close to the city centre, while a propagule rain model in which colonization occurs from a large external population was most consistent with data from other networks. Overall, the study highlights the importance of external seed sources in urban patch dynamics. Our analysis emphasizes the fact that plant distributions are governed not only by habitat properties but also by the intrinsic properties of colonization and dispersal of species. The metapopulation approach provides a valuable tool for understanding how colonization and extinction shape occupancy patterns in highly fragmented plant populations. Finally, this study points to the potential utility of more complex plant metapopulation models than traditionally used for analysing ecological and evolutionary processes in natural metapopulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号