首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Nucleotide excision repair (NER) is a highly conserved DNA repair mechanism present in all kingdoms of life. UvrB is a central component of the bacterial NER system, participating in damage recognition, strand excision and repair synthesis. None of the three presently available crystal structures of UvrB has defined the structure of domain 2, which is critical for the interaction with UvrA. We have solved the crystal structure of the UvrB Y96A variant, which reveals a new fold for domain 2 and identifies highly conserved residues located on its surface. These residues are restricted to the face of UvrB important for DNA binding and may be critical for the interaction of UvrB with UvrA. We have mutated these residues to study their role in the incision reaction, formation of the pre-incision complex, destabilization of short duplex regions in DNA, binding to UvrA and ATP hydrolysis. Based on the structural and biochemical data, we conclude that domain 2 is required for a productive UvrA-UvrB interaction, which is a pre-requisite for all subsequent steps in nucleotide excision repair.  相似文献   

2.
Nucleotide excision repair (NER) is responsible for the recognition and removal of numerous structurally unrelated DNA lesions. In prokaryotes, the proteins UvrA, UvrB and UvrC orchestrate the recognition and excision of aberrant lesions from DNA. Despite the progress we have made in understanding the NER pathway, it remains unclear how the UvrA dimer interacts with DNA to facilitate DNA damage recognition. The purpose of this study was to define amino acid residues in UvrA that provide binding energy to DNA. Based on conservation among approximately 300 UvrA sequences and 3D-modeling, two positively charged residues, Lys680 and Arg691, were predicted to be important for DNA binding. Mutagenesis and biochemical analysis of Bacillus caldontenax UvrA variant proteins containing site directed mutations at these residues demonstrate that Lys680 and Arg691 make a significant contribution toward the DNA binding affinity of UvrA. Replacing these side chains with alanine or negatively charged residues decreased UvrA binding 3-37-fold. Survival studies indicated that these mutant proteins complemented a WP2 uvrA(-) strain of bacteria 10-100% of WT UvrA levels. Further analysis by DNase I footprinting of the double UvrA mutant revealed that the UvrA DNA binding defects caused a slower rate of transfer of DNA to UvrB. Consequently, the mutants initiated the oligonucleotide incision assay nearly as well as WT UvrA thus explaining the observed mild phenotype in the survival assay. Based on our findings we propose a model of how UvrA binds to DNA.  相似文献   

3.
Nucleotide excision repair (NER) is distinguished from other DNA repair pathways by its ability to process various DNA lesions. In bacterial NER, UvrA is the key protein that detects damage and initiates the downstream NER cascade. Although it is known that UvrA preferentially binds to damaged DNA, the mechanism for damage recognition is unclear. A β-hairpin in the third Zn-binding module (Zn3hp) of UvrA has been suggested to undergo a conformational change upon DNA binding, and proposed to be important for damage sensing. Here, we investigate the contribution of the dynamics in the Zn3hp structural element to various activities of UvrA during the early steps of NER. By restricting the movement of the Zn3hp using disulfide crosslinking, we showed that the movement of the Zn3hp is required for damage-specific binding, UvrB loading and ATPase activities of UvrA. We individually inactivated each of the nucleotide binding sites in UvrA to investigate its role in the movement of the Zn3hp. Our results suggest that the conformational change of the Zn3hp is controlled by ATP hydrolysis at the distal nucleotide binding site. We propose a bi-phasic damage inspection model of UvrA in which movement of the Zn3hp plays a key role in damage recognition.  相似文献   

4.
Bacterial DNA can be damaged by reactive nitrogen and oxygen intermediates (RNI and ROI) generated by host immunity, as well as by antibiotics that trigger bacterial production of ROI. Thus a pathogen's ability to repair its DNA may be important for persistent infection. A prominent role for nucleotide excision repair (NER) in disease caused by Mycobacterium tuberculosis (Mtb) was suggested by attenuation of uvrB-deficient Mtb in mice. However, it was unknown if Mtb's Uvr proteins could execute NER. Here we report that recombinant UvrA, UvrB, and UvrC from Mtb collectively bound and cleaved plasmid DNA exposed to ultraviolet (UV) irradiation or peroxynitrite. We used the DNA incision assay to test the mechanism of action of compounds identified in a high-throughput screen for their ability to delay recovery of M. smegmatis from UV irradiation. 2-(5-Amino-1,3,4-thiadiazol-2-ylbenzo[f]chromen-3-one) (ATBC) but not several closely related compounds inhibited cleavage of damaged DNA by UvrA, UvrB, and UvrC without intercalating in DNA and impaired recovery of M. smegmatis from UV irradiation. ATBC did not affect bacterial growth in the absence of UV exposure, nor did it exacerbate the growth defect of UV-irradiated mycobacteria that lacked uvrB. Thus, ATBC appears to be a cell-penetrant, selective inhibitor of mycobacterial NER. Chemical inhibitors of NER may facilitate studies of the role of NER in prokaryotic pathobiology.  相似文献   

5.
Nucleotide excision repair (NER) is a major DNA repair mechanism that recognizes a broad range of DNA damages. In Escherichia coli, damage recognition in NER is accomplished by the UvrA and UvrB proteins. We have analysed the structural properties of the different protein-DNA complexes formed by UvrA, UvrB and (damaged) DNA using atomic force microscopy. Analysis of the UvrA(2)B complex in search of damage revealed the DNA to be wrapped around the UvrB protein, comprising a region of about seven helical turns. In the UvrB-DNA pre-incision complex the DNA is wrapped in a similar way and this DNA configuration is dependent on ATP binding. Based on these results, a role for DNA wrapping in damage recognition is proposed. Evidence is presented that DNA wrapping in the pre-incision complex also stimulates the rate of incision by UvrC.  相似文献   

6.
7.
Despite three decades of biochemical and structural analysis of the prokaryotic nucleotide excision repair (NER) system, many intriguing questions remain with regard to how the UvrA, UvrB, and UvrC proteins detect, verify and remove a wide range of DNA lesions. Single-molecule techniques have begun to allow more detailed understanding of the kinetics and action mechanism of this complex process. This article reviews how atomic force microscopy and fluorescence microscopy have captured new glimpses of how these proteins work together to mediate NER.  相似文献   

8.
UV irradiation damages DNA and activates expression of genes encoding proteins helpful for survival under DNA stress. These proteins are often deleterious in the absence of DNA damage. Here, we investigate mechanisms used to regulate the levels of DNA-repair proteins during recovery by studying control of the nucleotide excision repair (NER) protein UvrA. We show that UvrA is induced after UV irradiation and reaches maximum levels between ∼20 and 120 min post UV. During post-UV recovery, UvrA levels decrease principally as a result of ClpXP-dependent protein degradation. The rate of UvrA degradation depends on the amount of unrepaired pyrimidine dimers present; this degradation rate is initially slow shortly after UV, but increases as damage is repaired. This increase in UvrA degradation as repair progresses is also influenced by protein–protein interactions. Genetic and in vitro experiments support the conclusion that UvrA–UvrB interactions antagonize degradation. In contrast, Mfd appears to act as an enhancer of UvrA turnover. Thus, our results reveal that a complex network of interactions contribute to tuning the level of UvrA in the cell in response to the extent of DNA damage and nicely mirror findings with excision repair proteins from eukaryotes, which are controlled by proteolysis in a similar manner.  相似文献   

9.
Base excision repair (BER) is a very important repair mechanism to remove oxidative DNA damage. A major oxidative DNA damage after exposure to ionizing radiation is 7,8-dihydro-8-oxoguanine (8oxoG). 8oxoG is a strong mutagenic lesion, which may cause G:C to T:A transversions if not repaired correctly. Formamidopyrimidine-DNA glycosylase (Fpg), a repair enzyme which is part of BER, is the most important enzyme to repair 8oxoG. In the past years, evidence evolved that nucleotide excision repair (NER), a repair system originally thought to repair only bulky DNA lesions, can also repair some oxidative DNA damages. Examples of DNA damages which are recognized by NER are thymine glycol and abasic sites (AP sites). The main objective of this study is to determine if NER can act as a backup system for the repair of spontaneous and gamma-radiation-induced damages when Fpg is deficient. For that purpose, the effect of a NER-deficiency on the spontaneous and gamma-radiation-induced mutation spectrum in the lacZ gene was determined, using double-stranded (ds) M13 DNA, with the lacZalpha gene inserted as mutational target sequence. Subsequently the DNA was transfected into a fpg(-)uvrA(-) Escherichia coli strain (BH420) and the mutational spectra were compared with the spectra of a fpg(-) E. coli strain (BH410) and a wild type E. coli strain (JM105), which were determined in an earlier study. Furthermore, to examine effects which are caused by UvrA-deficiency, and not by Fpg-deficiency, the spontaneous and gamma-radiation-induced mutation spectra of an E. coli strain in which only UvrA is deficient (BH430) were also determined and compared with a wild type E. coli strain (JM105). The results of this study indicate that if only UvrA is deficient, there is an increase in spontaneous G:C to T:A transversions as compared to JM105 and a decrease in A:T to G:C transitions. The gamma-radiation-induced mutation spectrum of BH420 (fpg(-)uvrA(-)) shows a significant decrease in G:C to A:T and G:C to T:A mutations, as compared to BH410 where only Fpg is deficient. Based on these results, we conclude that in our experiments NER is not acting as a backup system if Fpg is deficient. Instead, NER seems to make mistakes, leading to the formation of mutations.  相似文献   

10.
11.
Nucleotide excision repair (NER) is a universal DNA repair mechanism found in all three kingdoms of life. Its ability to repair a broad range of DNA lesions sets NER apart from other repair mechanisms. NER systems recognize the damaged DNA strand and cleave it 3', then 5' to the lesion. After the oligonucleotide containing the lesion is removed, repair synthesis fills the resulting gap. UvrB is the central component of bacterial NER. It is directly involved in distinguishing damaged from undamaged DNA and guides the DNA from recognition to repair synthesis. Recently solved structures of UvrB from different organisms represent the first high-resolution view into bacterial NER. The structures provide detailed insight into the domain architecture of UvrB and, through comparison, suggest possible domain movements. The structure of UvrB consists of five domains. Domains 1a and 3 bind ATP at the inter-domain interface and share high structural similarity to helicases of superfamilies I and II. Not related to helicase structures, domains 2 and 4 are involved in interactions with either UvrA or UvrC, whereas domain 1b was implicated for DNA binding. The structures indicate that ATP binding and hydrolysis is associated with domain motions. UvrB's ATPase activity, however, is not coupled to the separation of long DNA duplexes as in helicases, but rather leads to the formation of the preincision complex with the damaged DNA substrate. The location of conserved residues and structural comparisons with helicase-DNA structures suggest how UvrB might bind to DNA. A model of the UvrB-DNA interaction in which a beta-hairpin of UvrB inserts between the DNA double strand has been proposed recently. This padlock model is developed further to suggest two distinct consequences of domain motion: in the UvrA(2)B-DNA complex, domain motions lead to translocation along the DNA, whereas in the tight UvrB-DNA pre-incision complex, they lead to distortion of the 3' incision site.  相似文献   

12.
Gu C  Zhang Q  Yang Z  Wang Y  Zou Y  Wang Y 《Biochemistry》2006,45(35):10739-10746
Nucleotide excision repair (NER) is a repair pathway that removes a variety of bulky DNA lesions in both prokaryotic and eukaryotic cells. The perturbation of DNA helix structure caused by the oxidative intrastrand lesions could render them good substrates for the NER pathway. Here we employed Escherichia coli NER enzymes, i.e., UvrA, UvrB, and UvrC, to examine the incision efficiency of duplex DNA carrying three different oxidative intrastrand cross-link lesions, that is, G[8-5]C, G[8-5m]mC, and G[8-5m]T, and two dithymine photoproducts, namely, the cis,syn-cyclobutane pyrimidine dimer (T[c,s]T) and the pyrimidine(6-4)pyrimidone product (T[6-4]T). Our results showed that T[6-4]T was the best substrate for UvrA binding, followed by G[8-5]C, G[8-5m]mC, and G[8-5m]T, and then by T[c,s]T. The efficiencies of the UvrABC incisions of these lesions were consistent with their UvrA binding affinities: the stronger the binding to UvrA, the higher the rate of incision. In addition, flanking DNA sequences appeared to have little effect on the binding affinity of UvrA for G[8-5]C as AG[8-5]CA was only slightly preferred over CG[8-5]CG. Consistently, these two sequences exhibited almost no difference in incision rates. Furthermore, we investigated the thermal stability of dodecameric duplexes containing G[8-5m]mC or G[8-5m]T, and our results revealed that these two lesions destabilized the duplex, due to an increase in the free energy for duplex formation at 37 degrees C, by approximately 5.4 and 3.6 kcal/mol, respectively. The destabilizations to the DNA helix caused by those lesions, for the most part, are correlated with the binding affinities of UvrA and incision rates of UvrABC. Taken together, the results from this study suggest that oxidative intrastrand lesions might be substrates for NER enzymes in vivo.  相似文献   

13.
DNA polymerase I (PolI) functions both in nucleotide excision repair (NER) and in the processing of Okazaki fragments that are generated on the lagging strand during DNA replication. Escherichia coli cells completely lacking the PolI enzyme are viable as long as they are grown on minimal medium. Here we show that viability is fully dependent on the presence of functional UvrA, UvrB, and UvrD (helicase II) proteins but does not require UvrC. In contrast, delta polA cells grow even better when the uvrC gene has been deleted. Apparently UvrA, UvrB, and UvrD are needed in a replication backup system that replaces the PolI function, and UvrC interferes with this alternative replication pathway. With specific mutants of UvrC we could show that the inhibitory effect of this protein is related to its catalytic activity that on damaged DNA is responsible for the 3' incision reaction. Specific mutants of UvrA and UvrB were also studied for their capacity to support the PolI-independent replication. Deletion of the UvrC-binding domain of UvrB resulted in a phenotype similar to that caused by deletion of the uvrC gene, showing that the inhibitory incision activity of UvrC is mediated via binding to UvrB. A mutation in the N-terminal zinc finger domain of UvrA does not affect NER in vivo or in vitro. The same mutation, however, does give inviability in combination with the delta polA mutation. Apparently the N-terminal zinc-binding domain of UvrA has specifically evolved for a function outside DNA repair. A model for the function of the UvrA, UvrB, and UvrD proteins in the alternative replication pathway is discussed.  相似文献   

14.
Although the biochemical pathways that repair DNA-protein cross-links have not been clearly elucidated, it has been proposed that the partial proteolysis of cross-linked proteins into smaller oligopeptides constitutes an initial step in removal of these lesions by nucleotide excision repair (NER). To test the validity of this repair model, several site-specific DNA-peptide and DNA-protein cross-links were engineered via linkage at (1) an acrolein-derived gamma-hydroxypropanodeoxyguanosine adduct and (2) an apurinic/apyrimidinic site, and the initiation of repair was examined in vitro using recombinant proteins UvrA and UvrB from Bacillus caldotenax and UvrC from Thermotoga maritima. The polypeptides cross-linked to DNA were Lys-Trp-Lys-Lys, Lys-Phe-His-Glu-Lys-His-His-Ser-His-Arg-Gly-Tyr, and the 16 kDa protein, T4 pyrimidine dimer glycosylase/apurinic/apyrimidinic site lyase. For the substrates examined, DNA incision required the coordinated action of all three proteins and occurred at the eighth phosphodiester bond 5' to the lesion. The incision rates for DNA-peptide cross-links were comparable to or greater than that measured on fluorescein-adducted DNA, an excellent substrate for UvrABC. Incision rates were dependent on both the site of covalent attachment on the DNA and the size of the bound peptide. Importantly, incision of a DNA-protein cross-link occurred at a rate approximately 3.5-8-fold slower than the rates observed for DNA-peptide cross-links. Thus, direct evidence has been obtained indicating that (1) DNA-peptide cross-links can be efficiently incised by the NER proteins and (2) DNA-peptide cross-links are preferable substrates for this system relative to DNA-protein cross-links. These data suggest that proteolytic degradation of DNA-protein cross-links may be an important processing step in facilitating NER.  相似文献   

15.
Reed SH 《DNA Repair》2011,10(7):734-742
In an earlier review of our understanding of the mechanism of nucleotide excision repair (NER) we examined the process with respect to how it occurs in chromatin [1]. We described how much of our mechanistic understanding of NER was derived from biochemical studies that analysed the repair reaction in DNA substrates not representative of that which exists in the living cell. We pointed out that our efforts to understand how NER operates in chromatin had been hampered in part because of the well-known inhibition of NER that occurs when DNA is assembled into nucleosomes and used as the substrate to examine the repair reaction in vitro. Despite this technical bottleneck, we summarized the biochemical, genetic and cell-based studies which have provided insights into the molecular mechanism of NER in the cellular context. More recently, we revisited the topic of how UV induced DNA damage is repaired in chromatin. In this review we examined the commonly held view that depicts a struggle in which the DNA repair machinery battles to overcome the inhibitory effect of chromatin during the repair process. We suggested that in this interpretation of events, the DNA repair mechanisms might be described as 'tilting at windmills': fighting an imaginary foe [2]. We surmised that this scenario was overly simplistic, and we described an emerging picture in which the DNA repair process and chromatin remodeling were mechanistically linked and were in fact functioning cooperatively to organize the efficient removal of DNA damage from the genome. Here we discuss the latest findings, which contribute to the idea that DNA damage induced changes to chromatin represent an important way in which the DNA repair process is initiated and organized throughout the genome to promote the efficient removal of damage in response to UV radiation.  相似文献   

16.
Y Zou  B Van Houten 《The EMBO journal》1999,18(17):4889-4901
Repair proteins alter the local DNA structure during nucleotide excision repair (NER). However, the precise role of DNA melting remains unknown. A series of DNA substrates containing a unique site-specific BPDE-guanine adduct in a region of non-complementary bases were examined for incision by the Escherichia coli UvrBC endonuclease in the presence or absence of UvrA. UvrBC formed a pre-incision intermediate with a DNA substrate containing a 6-base bubble structure with 2 unpaired bases 5' and 3 unpaired bases 3' to the adduct. Formation of this bubble served as a dynamic recognition step in damage processing. UvrB or UvrBC may form one of three stable repair intermediates with DNA substrates, depending upon the state of the DNA surrounding the modified base. The dual incisions were strongly determined by the distance between the adduct and the double-stranded-single-stranded DNA junction of the bubble, and required homologous double-stranded DNA at both incision sites. Remarkably, in the absence of UvrA, UvrBC nuclease can make both 3' and 5' incisions on substrates with bubbles of 3-6 nucleotides, and an uncoupled 5' incision on bubbles of >/=>/=10 nucleotides. These data support the hypothesis that the E.coli and human NER systems recognize and process DNA damage in a highly conserved manner.  相似文献   

17.
Nucleotide excision repair (NER) is an important prokaryotic and eukaryotic defense mechanism that removes a large variety of structurally distinct lesions in cellular DNA. While the proteins involved are completely different, the mode of action of these two repair systems is similar, involving a cut-and-patch mechanism in which an oligonucleotide sequence containing the lesion is excised. The prokaryotic and eukaryotic NER damage-recognition factors have common structural features of β-hairpin intrusion between the two DNA strands at the site of the lesion. In the present study, we explored the hypothesis that this common β-hairpin intrusion motif is mirrored in parallel NER incision efficiencies in the two systems. We have utilized human HeLa cell extracts and the prokaryotic UvrABC proteins to determine their relative NER incision efficiencies. We report here comparisons of relative NER efficiencies with a set of stereoisomeric DNA lesions derived from metabolites of benzo[a]pyrene and equine estrogens in different sequence contexts, utilizing 21 samples. We found a general qualitative trend toward similar relative NER incision efficiencies for ~65% of these substrates; the other cases deviate mostly by ~30% or less from a perfect correlation, although several more distant outliers are also evident. This resemblance is consistent with the hypothesis that lesion recognition through β-hairpin insertion, a common feature of the two systems, is facilitated by local thermodynamic destabilization induced by the lesions in both cases. In the case of the UvrABC system, varying the nature of the UvrC endonuclease, while maintaining the same UvrA/B proteins, can markedly affect the relative incision efficiencies. These observations suggest that, in addition to recognition involving the initial modified duplexes, downstream events involving UvrC can also play a role in distinguishing and processing different lesions in prokaryotic NER.  相似文献   

18.
19.
Zou Y  Luo C  Geacintov NE 《Biochemistry》2001,40(9):2923-2931
DNA damage recognition plays a central role in nucleotide excision repair (NER). Here we present evidence that in Escherichia coli NER, DNA damage is recognized through at least two separate but successive steps, with the first focused on distortions from the normal structure of the DNA double helix (initial recognition) and the second specifically recognizing the type of DNA base modifications (second recognition), after an initial local separation of the DNA strands. DNA substrates containing stereoisomeric (+)- or (-)-trans- or (+)- or (-)-cis-BPDE-N(2)-dG lesions in DNA duplexes of known conformations were incised by UvrABC nuclease with efficiencies varying by up to 3-fold. However, these stereoisomeric adducts, when positioned in an opened, single-stranded DNA region, were all incised with similar efficiencies and with enhanced rates (by factors of 1.4-6). These bubble substrates were also equally and efficiently incised by UvrBC nuclease without UvrA. Furthermore, removal of the Watson-Crick partner cytosine residue (leaving an abasic site) in the complementary strand opposite a (+)-cis-BPDE-N(2)-dG lesion led to a significant reduction in both the binding of UvrA and the incision efficiency of UvrABC by a factor of 5. These data suggest that E. coli NER features a dynamic two-stage recognition mechanism.  相似文献   

20.
Nucleotide excision repair in chromatin: the shape of things to come   总被引:3,自引:0,他引:3  
Reed SH 《DNA Repair》2005,4(8):909-918
Much of our mechanistic understanding of nucleotide excision repair (NER) has been derived from biochemical studies that have analysed the reaction as it occurs on DNA substrates that are not representative of DNA as it exists in the living cell. These studies have been extremely useful in deciphering the core mechanism of the NER reaction, but efforts to understand how NER operates in chromatin have been hampered in part because assembling DNA into nucleosomes, the first level of chromatin compaction, is inhibitory to NER in vitro. However, recent research using biochemical, genetic and cell-based studies is now providing us with the first insights into the molecular mechanism of NER as it occurs in the cellular context. A number of recent studies have provided glimpses of a chromatin--NER connection. Here I review this literature and evaluate how it might aid our understanding, and shape our future research into NER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号