首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Octopamine plays an important role in mediating reward signals in olfactory learning and memory formation in insect. However, its target molecules and signaling pathways are still unknown. In this study, we investigated the effects of octopamine on the voltage-activated Ca2+ channels expressed in native Kenyon cells isolated from the mushroom body of the cricket (Gryllus bimaculatus) brain. The cell-attached patch clamp recordings with 100 mM Ba2+ outside showed the presence of dihydropyridine (DHP) sensitive L-type Ca2+ channels with a single channel conductance of approximately 21 ± 2 pS (n = 12). The open probability (NPo) of single Ca2+ channel currents decreased by about 29 ± 7% (n = 6) by bath application of 10 μM octopamine. Octopamine-induced decrease in Po was imitated by bath application of 8-Br-cAMP, a membrane-permeable cAMP analog. Pre-treatment of Kenyon cells with the octopamine receptor antagonist phentolamine blocked the inhibitory effect of octopamine on Ca2+ channels. Pre-treatment of Kenyon cells with H-89, a selective inhibitor of cAMP-dependent protein kinase (PKA) attenuated the inhibitory effect of bath applied octopamine on Ca2+ channels. These results indicate that DHP-sensitive L-type Ca2+ channel is a target protein for octopamine and its modulation is mediated via cAMP and PKA-dependent signaling pathways in freshly isolated Kenyon cell in the cricket G. bimaculatus.  相似文献   

2.
Potassium channels belong to the largest and the most diverse super-families of ion channels. Among them, Ca2 +-activated K+ channels (KCa) comprise many members. Based on their single channel conductance they are divided into three subfamilies: big conductance (BKCa), intermediate conductance (IKCa) and small conductance (SKCa; SK1, SK2 and SK3). Ca2 + channels are divided into two main families, voltage gated/voltage dependent Ca2 + channels and non-voltage gated/voltage independent Ca2 + channels. Based on their electrophysiological and pharmacological properties and on the tissue where there are expressed, voltage gated Ca2 + channels (Cav) are divided into 5 families: T-type, L-type, N-type, P/Q-type and R-type Ca2 +. Non-voltage gated Ca2 + channels comprise the TRP (TRPC, TRPV, TRPM, TRPA, TRPP, TRPML and TRPN) and Orai (Orai1 to Orai3) families and their partners STIM (STIM1 to STIM2). A depolarization is needed to activate voltage-gated Ca2 + channels while non-voltage gated Ca2 + channels are activated by Ca2 + depletion of the endoplasmic reticulum stores (SOCs) or by receptors (ROCs). These two Ca2 + channel families also control constitutive Ca2 + entries. For reducing the energy consumption and for the fine regulation of Ca2 +, KCa and Ca2 + channels appear associated as complexes in excitable and non-excitable cells. Interestingly, there is now evidence that KCa–Ca2 + channel complexes are also found in cancer cells and contribute to cancer-associated functions such as cell proliferation, cell migration and the capacity to develop metastases. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   

3.
Channel functions of the neuronal α4β2 nicotinic acetylcholine receptor (nAChR), one of the most widely expressed subtypes in the brain, can be inhibited by volatile anesthetics. Our Na+ flux experiments confirmed that the second transmembrane domains (TM2) of α4 and β2 in 2:3 stoichiometry, (α4)2(β2)3, could form pentameric channels, whereas the α4 TM2 alone could not. The structure, topology, and dynamics of the α4 TM2 and (α4)2(β2)3 TM2 in magnetically aligned phospholipid bicelles were investigated using solid-state NMR spectroscopy in the absence and presence of halothane and isoflurane, two clinically used volatile anesthetics. 2H NMR demonstrated that anesthetics increased lipid conformational heterogeneity. Such anesthetic effects on lipids became more profound in the presence of transmembrane proteins. PISEMA experiments on the selectively 15N-labeled α4 TM2 showed that the TM2 formed transmembrane helices with tilt angles of 12° ± 1° and 16° ± 1° relative to the bicelle normal for the α4 and (α4)2(β2)3 samples, respectively. Anesthetics changed the tilt angle of the α4 TM2 from 12° ± 1° to 14° ± 1°, but had only a subtle effect on the tilt angle of the (α4)2(β2)3 TM2. A small degree of wobbling motion of the helix axis occurred in the (α4)2(β2)3 TM2. In addition, a subset of the (α4)2(β2)3 TM2 exhibited counterclockwise rotational motion around the helix axis on a time scale slower than 10- 4 s in the presence of anesthetics. Both helical tilting and rotational motions have been identified computationally as critical elements for ion channel functions. This study suggested that anesthetics could alter these motions to modulate channel functions.  相似文献   

4.
The contraction of adult mammalian ventricular cardiomyocytes is triggered by the influx of Ca2+ ions through sarcolemmal L-type Ca2+ channels (LCCs). However, the gating properties of unitary LCCs under physiologic conditions have remained elusive. Towards this end, we investigated the voltage-dependence of the gating kinetics of unitary LCCs, with a physiologic concentration of Ca2+ ions permeating the channel. Unitary LCC currents were recorded with 2 mM external Ca2+ ions (in the absence of LCC agonists), using cell-attached patches on K-depolarized adult rat ventricular myocytes. The voltage-dependence of the peak probability of channel opening (Po vs. Vm) displayed a maximum value of 0.3, a midpoint of −12 mV, and a slope factor of 8.5. The maximum value for Po of the unitary LCC was significantly higher than previously assumed, under physiologic conditions. We also found that the mean open dwell time of the unitary LCC increased twofold with depolarization, ranging from 0.53 ± 0.02 ms at −30 mV to 1.08 ± 0.03 ms at 0 mV. The increase in mean LCC open time with depolarization counterbalanced the decrease in the single LCC current amplitude; the latter due to the decrease in driving force for Ca2+ ion entry. Thus, the average amount of Ca2+ ions entering through an individual LCC opening (∼300-400 ions) remained relatively constant over this range of potentials. These novel results establish the voltage-dependence of unitary LCC gating kinetics using a physiologic Ca2+ ion concentration. Moreover, they provide insight into local Ca2+-induced Ca2+ release and a more accurate basis for mathematical modeling of excitation-contraction coupling in cardiac myocytes.  相似文献   

5.
Several types of structurally homologous high voltage-gated Ca2+ channels (L-, P-and N-type) have been identified via biochemical, pharmacological and electrophysiological techniques. Among these channels, the cardiac L-type and the brain BI-2 Ca2+ channel display significantly different biophysical properties. The BI-2 channel exhibits more rapid voltage-dependent current activation and inactivation and smaller single-channel conductance compared to the L-type Ca2+ channel. To examine the molecular basis for the functional differences between the two structurally related Ca2+ channels, we measured macroscopic and single-channel currents from oocytes injected with wild-type and various chimeric channel 1 subunit cRNAs. The results show that a chimeric channel in which the segment between S5-SS2 in repeat IV of the cardiac L-type Ca2+ channel, was replaced by the corresponding region of the BI-2 channel, exhibited macroscopic current activation and inactivation time-courses and single-channel conductance, characteristic of the BI-2 Ca2+ channel. The voltage-dependence of steady-state inactivation was not affected by the replacement. Chimeras, in which the SS2-S6 segment in repeat III or IV of the cardiac channel was replaced by the corresponding BI-2 sequence, exhibited altered macroscopic current kinetics without changes in single-channel conductance. These results suggest that part of the S5-SS2 segment plays a critical role in determining voltage-dependent current activation and inactivation and single-channel conductance and that the SS2-S6 segment may control voltage-dependent kinetics of the Ca2+ channel.  相似文献   

6.
The delivery of Ca2+ into cells by CaV channels provides the trigger for many cellular actions, such as cardiac muscle contraction and neurotransmitter release. Thus, a full understanding of Ca2+ permeation through these channels is critical. Using whole-cell voltage-clamp recordings, we recently demonstrated that voltage modulates the apparent affinity of N-type (CaV2.2) channels for permeating Ca2+ and Ba2+ ions. While we took many steps to ensure the high fidelity of our recordings, problems can occur when CaV currents become large and fast, or when currents run down. Thus, we use here single channel recordings to further test the hypothesis that permeating ions interact with N-type channels in a voltage-dependent manner. We also examined L-type (CaV1.2) channels to determine if these channels also exhibit voltage-dependent permeation. Like our whole-cell data, we find that voltage modulates N-channel affinity for Ba2+ at voltages > 0 mV, but has little or no effect at voltages < 0 mV. Furthermore, we demonstrate that permeation through L-channel is also modulated by voltage. Thus, voltage-dependence may be a common feature of divalent cation permeation through CaV1 and CaV2 channels (i.e. high-voltage activated CaV channels). The voltage dependence of CaV1 channel permeation is likely a mechanism mediating sustained Ca2+ influx during the plateau phase of the cardiac action potential.  相似文献   

7.
The delivery of Ca2+ into cells by CaV channels provides the trigger for many cellular actions, such as cardiac muscle contraction and neurotransmitter release. Thus, a full understanding of Ca2+ permeation through these channels is critical. Using whole-cell voltage-clamp recordings, we recently demonstrated that voltage modulates the apparent affinity of N-type (CaV2.2) channels for permeating Ca2+ and Ba2+ ions. While we took many steps to ensure the high fidelity of our recordings, problems can occur when CaV currents become large and fast, or when currents run down. Thus, we use here single channel recordings to further test the hypothesis that permeating ions interact with N-type channels in a voltage-dependent manner. We also examined L-type (CaV1.2) channels to determine if these channels also exhibit voltage-dependent permeation. Like our whole-cell data, we find that voltage modulates N-channel affinity for Ba2+ at voltages > 0 mV, but has little or no effect at voltages < 0 mV. Furthermore, we demonstrate that permeation through L-channel is also modulated by voltage. Thus, voltage-dependence may be a common feature of divalent cation permeation through CaV1 and CaV2 channels (i.e. high-voltage activated CaV channels). The voltage dependence of CaV1 channel permeation is likely a mechanism mediating sustained Ca2+ influx during the plateau phase of the cardiac action potential.  相似文献   

8.
This study was undertaken to elucidate the effect of the essential oil from Alpinia speciosa (EOAs) on cardiac contractility and the underlying mechanisms. The essential oil was obtained from Alpinia speciosa leaves and flowers and the oil was analyzed by GC-MS method. Chemical analysis revealed the presence of at least 18 components. Terpinen-4-ol and 1,8-cineole corresponded to 38% and 18% of the crude oil, respectively. The experiments were conducted on spontaneously-beating right atria and on electrically stimulated left atria isolated from adult rats. The effect of EOAs on the isometric contractions and cardiac frequency in vitro was examined. EOAs decreased rat left atrial force of contraction with an EC50 of 292.2 ± 75.7 μg/ml. Nifedipine, a well known L-type Ca2+ blocker, inhibited in a concentration-dependent manner left atrial force of contraction with an EC50 of 12.1 ± 3.5 μg/ml. Sinus rhythm was diminished by EOAs with an EC50 of 595.4 ± 56.2 μg/ml. Whole-cell L-type Ca2+ currents were recorded by using the patch-clamp technique. EOAs at 25 μg/ml decreased ICa,L by 32.6 ± 9.2% and at 250 μg/ml it decreased by 89.3 ± 7.4%. Thus, inhibition of L-type Ca2+ channels is involved in the cardiodepressive effect elicited by the essential oil of Alpinia speciosa in rat heart.  相似文献   

9.
L-type voltage gated Ca2+ channels are considered to be the primary source of calcium influx during the myogenic response. However, many vascular beds also express T-type voltage gated Ca2+ channels. Recent studies suggest that these channels may also play a role in autoregulation. At low pressures (40–80 mmHg) T-type channels affect myogenic responses in cerebral and mesenteric vascular beds. T-type channels also seem to be involved in skeletal muscle autoregulation. This review discusses the expression and role of T-type voltage gated Ca2+ channels in the autoregulation of several different vascular beds. Lack of specific pharmacological inhibitors has been a huge challenge in the field. Now the research has been strengthened by genetically modified models such as mice lacking expression of T-type voltage gated Ca2+ channels (CaV3.1 and CaV3.2). Hopefully, these new tools will help further elucidate the role of voltage gated T-type Ca2+ channels in autoregulation and vascular function.  相似文献   

10.
The rise in intracellular Ca2+ mediated by AMPA subtype of glutamate receptors has been implicated in the pathogenesis of motor neuron disease, but the exact route of Ca2+ entry into motor neurons is not clearly known. In the present study, we examined the role of voltage gated calcium channels (VGCCs) in AMPA induced Ca2+ influx and subsequent intracellular signaling events responsible for motor neuron degeneration. AMPA stimulation caused sodium influx in spinal neurons that would depolarize the plasma membrane. The AMPA induced [Ca2+]i rise in motor neurons as well as other spinal neurons was drastically reduced when extracellular sodium was replaced with NMDG, suggesting the involvement of voltage gated calcium channels. AMPA mediated rise in [Ca2+]i was significantly inhibited by L-type VGCC blocker nifedipine, whereas ω-agatoxin-IVA and ω-conotoxin-GVIA, specific blockers of P/Q type and N-type VGCC were not effective. 1-Napthyl-acetyl spermine (NAS), an antagonist of Ca2+ permeable AMPA receptors partially inhibited the AMPA induced [Ca2+]i rise but selectively in motor neurons. Measurement of AMPA induced currents in whole cell voltage clamp mode suggests that a moderate amount of Ca2+ influx occurs through Ca2+ permeable AMPA receptors in a subpopulation of motor neurons. The AMPA induced mitochondrial calcium loading [Ca2+]m, mitochondrial depolarization and neurotoxicity were also significantly reduced in presence of nifedipine. Activation of VGCCs by depolarizing concentration of KCl (30 mM) in extracellular medium increased the [Ca2+]i but no change was observed in mitochondrial Ca2+ and membrane potential. Our results demonstrate that a subpopulation of motor neurons express Ca2+ permeable AMPA receptors, however the larger part of Ca2+ influx occurs through L-type VGCCs subsequent to AMPA receptor activation and consequent mitochondrial dysfunction is the trigger for motor neuron degeneration. Nifedipine is an effective protective agent against AMPA induced mitochondrial stress and degeneration of motor neurons.  相似文献   

11.
TheShakerBK+ channel was used as a modelvoltage-gated channel to probe the interaction of volatile generalanesthetics with gating mechanisms. The effects of three anesthetics,chloroform (CHCl3), isoflurane,and halothane, were studied using recombinant native and mutantShaker channels expressed inXenopus oocytes. Gating currents andmacroscopic ionic currents were recorded with the cut-open oocytevoltage-clamp technique. The effects ofCHCl3 and isoflurane on gatingkinetics of noninactivating mutants were opposite, whereas halothanehad no effect. The effects on ionic currents were also agent dependent:CHCl3 and halothane produced areduction of the macroscopic conductance, whereas isoflurane increasedit. The results indicate that the gating machinery of the channel ismostly insensitive to the anesthetics during activation until near theopen state. The effects on the conductance are mainly due to changes inthe transitions in and out of the open state. The data give support todirect protein-anesthetic interactions. The magnitude and nature of theeffects invite reconsideration ofShaker-likeK+ channels as important sites ofaction of general anesthetics.

  相似文献   

12.
Volatileanesthetics have multiple actions on intracellular Ca2+homeostasis, including activation of the ryanodine channel (RyR) andsensitization of this channel to agonists such as caffeine andryanodine. Recently it has been described that the nucleotide cADP-ribose (cADPR) is the endogenous regulator of the RyR in manymammalian cells, and cADPR has been proposed to be a second messengerin many signaling pathways. I investigated the effect of volatileanesthetics on the cADPR signaling system, using sea urchin egghomogenates as a model of intracellular Ca2+ stores.Ca2+ uptake and release were monitored in sea urchin egghomogenates by using the fluo-3 fluorescence technique. Activity of theADP-ribosyl cyclase was monitored by using a fluorometricmethod using nicotinamide guanine dinucleotide as a substrate.Halothane in concentrations up to 800 µM did not induceCa2+ release by itself in sea urchin egg homogenates.However, halothane potentiates the Ca2+ release mediated byagonists of the ryanodine channel, such as ryanodine. Furthermore,other volatile anesthetics such as isoflurane and sevoflurane had noeffect. Halothane also potentiated the activation of the ryanodinechannel mediated by the endogenous nucleotide cADPR. The half-maximalconcentration for cADPR-induced Ca2+ release was decreasedabout three times by addition of 800 µM halothane. The reverse wasalso true: addition of subthreshold concentrations of cADPR sensitizedthe homogenates to halothane. In contrast, all the volatile anestheticsused had no effect on the activity of the enzyme that synthesizescADPR. I propose that the complex effect of volatile anesthetics onintracellular Ca2+ homeostasis may involve modulation ofthe cADPR signaling system.

  相似文献   

13.
There is evidence that the complex process of sarcopenia in human aged skeletal muscle is linked to the modification of mechanisms controlling Ca2+ homeostasis. To further clarify this issue, we assessed the changes in the kinetics of activation and inactivation of T- and L-type Ca2+ currents in in vitro differentiated human myotubes, derived from satellite cells of healthy donors aged 2, 12, 76 and 86 years. The results showed an age-related decrease in the occurrence of T- and L-type currents. Moreover, significant age-dependent alterations were found in L-(but not T) type current density, and activation and inactivation kinetics, although an interesting alteration in the kinetics of T-current inactivation was observed. The T- and L-type Ca2+ currents play a crucial role in regulating Ca2+ entry during satellite cells differentiation and fusion into myotubes. Also, the L-type Ca2+ channels underlie the skeletal muscle excitation–contraction coupling mechanism. Thus, our results support the hypothesis that the aging process could negatively affect the Ca2+ homeostasis of these cells, by altering Ca2+ entry through T- and L-type Ca2+ channels, thereby putting a strain on the ability of human satellite cells to regenerate skeletal muscle in elderly people.  相似文献   

14.
The question of optimization of ion channel function to surrounding temperatures in poikilothermic organisms remains largely uninvestigated. Here, we addressed it by studying the temperature-dependence of L-type Ca2+ channels (LTCCs) in Drosophila larval muscles in the context of their modulation by protein kinase A (PKA). LTCC currents were recorded between 4 and 30 °C. Different aspects of LTCC function reached maxima between 15 and 25 °C: conductance, tail current amplitude, inactivation rate, and the level of basal up-regulation by PKA (26% at 21 °C). Anomalous temperature-dependencies of LTCC conductance and kinetics were similar in control and in the presence of the PKA inhibitor H-89. Analysis of deactivation kinetics revealed excessive tail currents at lower temperatures (up to 15 °C), indicative of voltage-dependent facilitation of LTCCs. Tail current magnitude gradually decreased with temperature from a maximum at 15 °C until a nearly complete disappearance at 30 °C. Elimination of excessive tail currents at higher temperatures coincided with unusual slowing of inactivation, suggesting disruption of the facilitation by rising temperature, possibly through depletion of the pool of contributing channels. Overall, these results suggest the presence of a physiological plasticity optimum of LTCC function in the temperature range of normal Drosophila development.  相似文献   

15.
V. A. Bouryi 《Neurophysiology》1998,30(4-5):301-304
Barium currents through ion channels formed by α1-subunit of L-type Ca2+ channel (I α1) were recorded from cultured chinese hamster ovary (CHO) cells. The cells were stably transfected with either a cardiac or a smooth muscle (SM) variant of α1-subunit. TheI α1 in both cases exhibited similar fast voltage-dependent activation kinetics and slow apparent inactivation kinetics. With 10 mM Ba2+ in the bath solution,I α1 was activated at potentials more positive than −40 mV, peaked between 0 and +10 mV, and reversed at about +50 mV. In addition to slow apparent inactivation of inward current, both subunits provided an extremely slow voltage-dependent inactivation at potentials more positive than −100 mV, with half-maximum inactivation at −43.4 mV for cardiac and −41.4 mV for SM α1-subunits. The onset of inactivation as well as recovery from this process were within a time range of minutes. The voltage dependence of steady-state inactivation could be fitted by the sum of two Boltzmann's equations with slope factors of about 12 mV and 5 mV. A less sloped component has its midpoints at −75.6 and −63.7 mV, and a steeper component has its midpoints at −42.8 and −37.7 mV for cardiac and SM α1-subunits, respectively. Relative contribution of the steeper component was higher in both subunits (0.86 and 0.66 for cardiac and SM subunits, respectively). For comparison, the inactivation curves for 5-sec-long conditioning prepulses could be fitted by single Boltzmann's distribution with a 20 mV more positive midpoint and a slope factor of about 13 mV. In contrast to the steady-state inactivation curves, they showed considerable overlap with the steady-state activation curve. Our results reflect functional consequences of known sequence differences between α1-subunits of the cardiac and SM L-type Ca2+ channels and could be used in structural modeling of Ca2+ channel gating. In addition, they show that depolarization-induced window current has a transient nature and decays with the development of extremely slow inactivation. This is the first demonstration that slow inactivation of the L-type Ca2+ channel is an intrinsic property of its α1-subunits.  相似文献   

16.
The vitamin B1 (thiamine) structural analogue 3-decyloxycarbonylmethyl-4-methyl-5-(β-hydroxyethyl) thiazole chloride (DMHT) (0.1 mM) reversibly reduced transmembrane currents in CaCl2 and KCl solutions via ionic channels produced by latrotoxins (α-latrotoxin (α-LT) and α-latroinsectotoxin (α-LIT)) from black widow spider venom and sea anemone toxin (RTX) in the bilayer lipid membranes (BLMs). Introduction of DMHT from the cis-side of BLM bathed in 10 mM CaCl2 inhibited transmembrane current by 31.6 ± 3% and by 61.8 ± 3% from the trans-side of BLM for α-LT channels. Application of DMHT in the solution of 10 mM CaCl2 to the cis-side of BLM decreased the current through the α-LIT and RTX channels by 52 ± 4% and 50 ± 5%, respectively. Addition of Cd2+ (1 mM) to the cis- or trans-side of the membrane after the DMHT-induced depression of Ca2+-current across the α-LT channels caused its further decrease by 85 ± 5% that coincides favorably with the intensity of Cd2+ blocking in control experiments without DMHT. These data suggest that DMHT inhibiting is not specific for latrotoxin channels only and DMHT may exert its action on α-LT channels without considerable influence on the ionogenic groups of Ca2+-selective site inside the channel cavity. The binding kinetics of DMHT with the α-LT channel shows no cooperativity and allows to expect that the DMHT binding site of the toxin is formed by one ionogenic group as the slopes of inhibition rate determined in log-log coordinates are 1.25 on the trans-side and 0.68 on the cis-side. Similar pK of binding (5.4 on the trans-side and 5.7 on the cis-side) also suggest that DMHT may interact with the same high affinity site of α-LT channel on either side of the BLM. The comparative analysis of effective radii measured for α-LT, α-LIT and RTX channels on the cis-side (0.9 nm, 0.53 nm and 0.55 nm, correspondingly) and for α-LT channel on the trans-side (0.28 ± 0.18 nm) with the intensity of DMHT inhibitory action obtained on these channels allowed to conclude that the potency of DMHT inhibition increased on toxin pores of smaller lumen.  相似文献   

17.
The effects of trifluoperazine hydrochloride (TFP), a calmodulin antagonist, on L-type Ca2+ currents (L-type ICa2+) and their Ca2+-dependent inactivation, were studied in identifiedHelix aspersa neurons, using two microelectrode voltage clamp. Changes in [Ca2+]i were measured in unclamped fura-2 loaded neurons. Bath applied TFP produced a reversible and dose-dependent reduction in amplitude of L-type ICa2+ (IC50=28 μM). Using a double-pulse protocol, we found that TFP enhances the efficacy of Ca2+-dependent inactivation of L-type ICa2+. Trifluoperazine sulfoxide (50 μM), a TFP derivative with low calmodulin-antagonist activity, did not have any effects on either amplitude or inactivation of L-type ICa2+. TFP (20 μM) increased basal [Ca2+]i from 147±37 nM to 650±40nM (N=7). The increase in [Ca2+]i was prevented by removal of external Ca2+ and curtailed by depletion of caffeine-sensitive intracellular Ca2+ stores. Since TFP may also block protein kinase C (PKC), we tested the effect of a PKC activator (12-O-tetradecanoyl-phorbol-13-acetate) on L-type Ca2+ currents. This compound produced an increase in L-type ICa2+ without enhancing Ca2+-dependent inactivation. The results show that 1) TFP reduces L-type ICa2+ while enhancing the efficacy of Ca2+-dependent inactivation. 2) TFP produces an increase in basal [Ca2+]i which may contribute to the enhancement of Ca2+-dependent inactivation. 3) PKC up-regulates L-type ICa2+ without altering the efficacy of Ca2+ dependent inactivation. 4) The TFP effects cannot be attributed to its action as PKC blocker.  相似文献   

18.
19.
In the present study, we have examined any possible involvement of L-type Ca2+ channels in ginseng-mediated neuroprotective actions. Exposure to a 50 mM KCl (high-K) produced neuronal cell death, which was blocked by a selective L-type Ca2+ channel blocker in cultured cortical neurons. When cultured cells were co-treated with ginseng total saponin (GTS) and high-K, GTS reduced high-K-induced neuronal death. Using Ca2+ imaging techniques, we found that GTS inhibited high-K-mediated acute and long-term [Ca2+]i changes. These GTS-mediated [Ca2+]i changes were diminished by nifedipine. Furthermore, GTS-mediated effects were also diminished by a saturating concentration of Bay K (10 μM). After confirming the protective effect of GTS using a TUNEL assay, we found that ginsenosides Rf and Rg3 are active components in ginseng-mediated neuroprotection. These results suggest that inhibition of L-type Ca2+ channels by ginseng could be one of the mechanisms for ginseng-mediated neuroprotection in cultured rat cortical neurons.  相似文献   

20.
Recently, it has become possible to record the localized fluorescence transient associated with the opening of a single plasma membrane Ca2+ permeable ion channel using Ca2+ indicators like fluo-3. These Single Channel Ca2+ Fluorescence Transients (SCCaFTs) share some of the characteristics of such elementary events as Ca2+ sparks and Ca2+ puffs caused by Ca2+ release from intracellular stores (due to the opening of ryanodine receptors and IP3 receptors, respectively). In contrast to intracellular Ca2+ release events, SCCaFTs can be observed while simultaneously recording the unitary channel currents using patch-clamp techniques to verify the channel openings. Imaging SCCaFTs provides a way to examine localized Ca2+ handling in the vicinity of a channel with a known Ca2+ influx, to obtain the Ca2+ current passing through plasma membrane cation channels in near physiological solutions, to localize Ca2+ permeable ion channels on the plasma membrane, and to estimate the Ca2+ currents underlying those elementary events where the Ca2+ currents cannot be recorded. Here we review studies of these fluorescence transients associated with caffeine-activated channels, L-type Ca2+ channels, and stretch-activated channels. For the L-type Ca2+ channel, SCCaFTs have been termed sparklets. In addition, we discuss how SCCaFTs have been used to estimate Ca2+ currents using the rate of rise of the fluorescence transient as well as the signal mass associated with the total fluorescence increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号