首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 663 毫秒
1.
This paper summarizes recent advances in understanding the links between the cell's ability to maintain integrity of its mitochondrial genome and mitochondrial genetic diseases. Human mitochondrial DNA is replicated by the two-subunit DNA polymerase gamma (polgamma). We investigated the fidelity of DNA replication by polgamma with and without exonucleolytic proofreading and its p55 accessory subunit. Polgamma has high base substitution fidelity due to efficient base selection and exonucleolytic proofreading, but low frameshift fidelity when copying homopolymeric sequences longer than four nucleotides. Progressive external ophthalmoplegia (PEO) is a rare disease characterized by the accumulation of large deletions in mitochondrial DNA. Recently, several mutations in the polymerase and exonuclease domains of the human polgamma have been shown to be associated with PEO. We are analyzing the effect of these mutations on the human polgamma enzyme. In particular, three autosomal dominant mutations alter amino acids located within polymerase motif B of polgamma. These residues are highly conserved among family A DNA polymerases, which include T7 DNA polymerase and E.coli pol I. These PEO mutations have been generated in polgamma to analyze their effects on overall polymerase function as well as the effects on the fidelity of DNA synthesis. One mutation in particular, Y955C, was found in several families throughout Europe, including one Belgian family and five unrelated Italian families. The Y955C mutant polgamma retains a wild-type catalytic rate but suffers a 45-fold decrease in apparent binding affinity for the incoming dNTP. The Y955C derivative is also much less accurate than is wild-type polgamma, with error rates for certain mismatches elevated by 10- to 100-fold. The error prone DNA synthesis observed for the Y955C polgamma is consistent with the accumulation of mtDNA mutations in patients with PEO. The effects of other polgamma mutations associated with PEO are discussed.  相似文献   

2.
Peptide sequences obtained from the accessory subunit of Xenopus laevis mitochondrial DNA (mtDNA) polymerase gamma (pol gamma) were used to clone the cDNA encoding this protein. Amino-terminal sequencing of the mitochondrial protein indicated the presence of a 44-amino-acid mitochondrial targeting sequence, leaving a predicted mature protein with 419 amino acids and a molecular mass of 47.3 kDa. This protein is associated with the larger, catalytic subunit in preparations of active mtDNA polymerase. The small subunit exhibits homology to its human, mouse, and Drosophila counterparts. Interestingly, significant homology to glycyl-tRNA synthetases from prokaryotic organisms reveals a likely evolutionary relationship. Since attempts to produce an enzymatically active recombinant catalytic subunit of Xenopus DNA pol gamma have not been successful, we tested the effects of adding the small subunit of the Xenopus enzyme to the catalytic subunit of human DNA pol gamma purified from baculovirus-infected insect cells. These experiments provide the first functional evidence that the small subunit of DNA pol gamma stimulates processive DNA synthesis by the human catalytic subunit under physiological salt conditions.  相似文献   

3.
We propose that a beta-turn-beta structure, which plays a critical role in exonucleolytic proofreading in the bacteriophage T4 DNA polymerase, is also present in the Saccharomyces cerevisiae DNA pol delta. Site-directed mutagenesis was used to test this proposal by introducing a mutation into the yeast POL3 gene in the region that encodes the putative beta-turn-beta structure. The mutant DNA pol delta has a serine substitution in place of glycine at position 447. DNA replication fidelity of the G447S-DNA pol delta was determined in vivo by using reversion and forward assays. An antimutator phenotype for frameshift mutations in short homopolymeric tracts was observed for the G447S-DNA pol delta in the absence of postreplication mismatch repair, which was produced by inactivation of the MSH2 gene. Because the G447S substitution reduced frameshift but not base substitution mutagenesis, some aspect of DNA polymerase proofreading appears to contribute to production of frameshifts. Possible roles of DNA polymerase proofreading in frameshift mutagenesis are discussed.  相似文献   

4.
DNA polymerase gamma (pol gamma ) is required to maintain the genetic integrity of the 16,569-bp human mitochondrial genome (mtDNA). Mutation of the nuclear gene for the catalytic subunit of pol gamma (POLG) has been linked to a wide range of mitochondrial diseases involving mutation, deletion, and depletion of mtDNA. We describe a heterozygous dominant mutation (c.1352G-->A/p.G451E) in POLG2, the gene encoding the p55 accessory subunit of pol gamma , that causes progressive external ophthalmoplegia with multiple mtDNA deletions and cytochrome c oxidase (COX)-deficient muscle fibers. Biochemical characterization of purified, recombinant G451E-substituted p55 protein in vitro revealed incomplete stimulation of the catalytic subunit due to compromised subunit interaction. Although G451E p55 retains a wild-type ability to bind DNA, it fails to enhance the DNA-binding strength of the p140-p55 complex. In vivo, the disease most likely arises through haplotype insufficiency or heterodimerization of the mutated and wild-type proteins, which promote mtDNA deletions by stalling the DNA replication fork. The progressive accumulation of mtDNA deletions causes COX deficiency in muscle fibers and results in the clinical phenotype.  相似文献   

5.
Among the nearly 50 disease mutations in the gene for the catalytic subunit of human DNA polymerase gamma, POLG, the A467T substitution is the most common and has been found in 0.6% of the Belgian population. The A467T mutation is associated with a wide range of mitochondrial disorders, including Alpers syndrome, juvenile spinocerebellar ataxia-epilepsy syndrome, and progressive external ophthalmoplegia, each with vastly different clinical presentations, tissue specificities, and ages of onset. The A467T mutant enzyme possesses only 4% of wild-type DNA polymerase activity, and the catalytic defect is manifest primarily through a 6-fold reduction in kcat with minimal effect on exonuclease function. Human DNA polymerase gamma (pol gamma) requires association of a 55-kDa accessory subunit for enhanced DNA binding and highly processive DNA synthesis. However, the A467T mutant enzyme failed to interact with and was not stimulated by the accessory subunit, as judged by processivity, heat inactivation, and N-ethylmaleimide protection assays in vitro. Thermolysin digestion and immunoprecipitation experiments further indicate weak association of the subunits for A467T pol gamma. This is the first example of a mutation in POLG that disrupts physical association of the pol gamma subunits. We propose that reduced polymerase activity and loss of accessory subunit interaction are responsible for the depletion and deletion of mitochondrial DNA observed in patients with this POLG mutation.  相似文献   

6.
Progressive external ophthalmoplegia (PEO) is a heritable mitochondrial disorder characterized by the accumulation of multiple point mutations and large deletions in mtDNA. Autosomal dominant PEO was recently shown to co-segregate with a heterozygous Y955C mutation in the human gene encoding the sole mitochondrial DNA polymerase, DNA polymerase gamma (pol gamma). Since Tyr-955 is a highly conserved residue critical for nucleotide recognition among family A DNA polymerases, we analyzed the effects of the Y955C mutation on the kinetics and fidelity of DNA synthesis by the purified human mutant polymerase in complex with its accessory subunit. The Y955C enzyme retains a wild-type catalytic rate (k(cat)) but suffers a 45-fold decrease in apparent binding affinity for the incoming nucleoside triphosphate (K(m)). The Y955C derivative is 2-fold less accurate for base pair substitutions than wild-type pol gamma despite the action of intrinsic exonucleolytic proofreading. The full mutator effect of the Y955C substitution was revealed by genetic inactivation of the exonuclease, and error rates for certain mismatches were elevated by 10-100-fold. The error-prone DNA synthesis observed for the Y955C pol gamma is consistent with the accumulation of mtDNA mutations in patients with PEO.  相似文献   

7.
Fidelity of mammalian DNA replication and replicative DNA polymerases.   总被引:11,自引:0,他引:11  
Current models suggest that two or more DNA polymerases may be required for high-fidelity semiconservative DNA replication in eukaryotic cells. In the present study, we directly compare the fidelity of SV40 origin-dependent DNA replication in human cell extracts to the fidelity of mammalian DNA polymerases alpha, delta, and epsilon using lacZ alpha of M13mp2 as a reporter gene. Their fidelity, in decreasing order, is replication greater than or equal to pol epsilon greater than pol delta greater than pol alpha. DNA sequence analysis of mutants derived from extract reactions suggests that replication is accurate when considering single-base substitutions, single-base frameshifts, and larger deletions. The exonuclease-containing calf thymus DNA polymerase epsilon is also highly accurate. When high concentrations of deoxynucleoside triphosphates and deoxyguanosine monophosphate are included in the pol epsilon reaction, both base substitution and frameshift error rates increase. This response suggests that exonucleolytic proofreading contributes to the high base substitution and frameshift fidelity. Exonuclease-containing calf thymus DNA polymerase delta, which requires proliferating cell nuclear antigen for efficient synthesis, is significantly less accurate than pol epsilon. In contrast to pol epsilon, pol delta generates errors during synthesis at a relatively modest concentration of deoxynucleoside triphosphates (100 microM), and the error rate did not increase upon addition of adenosine monophosphate. Thus, we are as yet unable to demonstrate that exonucleolytic proofreading contributes to accuracy during synthesis by DNA polymerase delta. The four-subunit DNA polymerase alpha-primase complex from both HeLa cells and calf thymus is the least accurate replicative polymerase. Fidelity is similar whether the enzyme is assayed immediately after purification or after being stored frozen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Previous studies have shown that the small subunit of Xenopus DNA polymerase gamma (pol gammaB) acts as a processivity factor to stimulate the 140 kDa catalytic subunit of human DNA polymerase gamma. A putative human pol gammaB initially identified by analysis of DNA sequence had not been shown to be functional, and appeared to be an incomplete clone. In this paper, we report the cloning of full-length human and mouse pol gammaB. Both human and mouse pol gammaB proteins were expressed in their mature forms, without their apparent mitochondrial localization signals, and shown to stimulate processivity of the recombinant catalytic subunit of human pol gammaA. Deletion analysis of human pol gammaB indicated that blocks of sequence conserved with prokaryotic class II aminoacyl-tRNA synthetases are necessary for activity and inter-action with human pol gammaA. Purification of DNA pol gamma from HeLa cells indicated that both proteins are associated in vivo.  相似文献   

9.
Pinz KG  Bogenhagen DF 《DNA Repair》2006,5(1):121-128
Mammalian DNA polymerase gamma, the sole polymerase responsible for replication and repair of mitochondrial DNA, contains a large catalytic subunit and a smaller accessory subunit, pol gammaB. In addition to the polymerase domain, the large subunit contains a 3'-5' editing exonuclease domain as well as a dRP lyase activity that can remove a 5'-deoxyribosephosphate (dRP) group during base excision repair. We show that the accessory subunit enhances the ability of the catalytic subunit to function in base excision repair mainly by stimulating two subreactions in the repair process. Pol gammaB appeared to specifically enhance the rate at which pol gamma was able to locate damage in high molecular weight DNA. One pol gammaB point mutant known to have impaired ability to bind duplex DNA stimulated repair poorly, suggesting that duplex DNA binding through pol gammaB may help the catalytic subunit locate sites of DNA damage. In addition, the small subunit significantly stimulated the dRP lyase activity of pol gammaA, although it did not increase the rate at which the dRP group dissociated from the enzyme. The ability of DNA pol gamma to process a high load of damaged DNA may be compromised by the slow release of the dRP group.  相似文献   

10.
The fidelity of DNA synthesis catalyzed by the 180-kDa catalytic subunit (p180) of DNA polymerase alpha from Saccharomyces cerevisiae has been determined. Despite the presence of a 3'----5' exonuclease activity (Brooke et al., 1991, J. Biol. Chem., 266, 3005-3015), its accuracy is similar to several exonuclease-deficient DNA polymerases and much lower than other DNA polymerases that have associated exonucleolytic proofreading activity. Average error rates are 1/9900 and 1/12,000, respectively, for single base-substitution and minus-one nucleotide frameshift errors; the polymerase generates deletions as well. Similar error rates are observed with reactions containing the 180-kDa subunit plus an 86-kDa subunit (p86), or with these two polypeptides plus two additional subunits (p58 and p49) comprising the DNA primase activity required for DNA replication. Finally, addition of yeast replication factor-A (RF-A), a protein preparation that stimulates DNA synthesis and has single-stranded DNA-binding activity, yields a polymerization reaction with 7 polypeptides required for replication, yet fidelity remains low relative to error rates for semiconservative replication. The data suggest that neither exonucleolytic proofreading activity, the beta subunit, the DNA primase subunits nor RF-A contributes substantially to base substitution or frameshift error discrimination by the DNA polymerase alpha catalytic subunit.  相似文献   

11.
The catalytic subunit (alpha) of mitochondrial DNA polymerase (pol gamma) shares conserved DNA polymerase and 3'-5' exonuclease active site motifs with Escherichia coli DNA polymerase I and bacteriophage T7 DNA polymerase. A major difference between the prokaryotic and mitochondrial proteins is the size and sequence of the region between the exonuclease and DNA polymerase domains, referred to as the spacer in pol gamma-alpha. Four gamma-specific conserved sequence elements are located within the spacer region of the catalytic subunit in eukaryotic species from yeast to humans. To elucidate the functional roles of the spacer region, we pursued deletion and site-directed mutagenesis of Drosophila pol gamma. Mutant proteins were expressed from baculovirus constructs in insect cells, purified to near homogeneity, and analyzed biochemically. We find that mutations in three of the four conserved sequence elements within the spacer alter enzyme activity, processivity, and/or DNA binding affinity. In addition, several mutations affect differentially DNA polymerase and exonuclease activity and/or functional interactions with mitochondrial single-stranded DNA-binding protein. Based on these results and crystallographic evidence showing that the template-primer binds in a cleft between the exonuclease and DNA polymerase domains in family A DNA polymerases, we propose that conserved sequences within the spacer of pol gamma may position the substrate with respect to the enzyme catalytic domains.  相似文献   

12.
13.
Mitochondrial DNA polymerase (pol gamma) is the sole DNA polymerase responsible for replication and repair of animal mitochondrial DNA. Here, we address the molecular mechanism by which the human holoenzyme achieves high processivity in nucleotide polymerization. We have determined the crystal structure of human pol gamma-beta, the accessory subunit that binds with high affinity to the catalytic core, pol gamma-alpha, to stimulate its activity and enhance holoenzyme processivity. We find that human pol gamma-beta shares a high level of structural similarity to class IIa aminoacyl tRNA synthetases, and forms a dimer in the crystal. A human pol gamma/DNA complex model was developed using the structures of the pol gamma-beta dimer and the bacteriophage T7 DNA polymerase ternary complex, which suggests multiple regions of subunit interaction between pol gamma-beta and the human catalytic core that allow it to encircle the newly synthesized double-stranded DNA, and thereby enhance DNA binding affinity and holoenzyme processivity. Biochemical properties of a novel set of human pol gamma-beta mutants are explained by and test the model, and elucidate the role of the accessory subunit as a novel type of processivity factor in stimulating pol gamma activity and in enhancing processivity.  相似文献   

14.
The activity of DNA polymerase-associated proofreading 3'-exonucleases is generally enhanced in less stable DNA regions leading to a reduction in base substitution error frequencies in AT- versus GC-rich sequences. Unexpectedly, however, the opposite result was found for Escherichia coli DNA polymerase II (pol II). Nucleotide misincorporation frequencies for pol II were found to be 3-5-fold higher in AT- compared with GC-rich DNA, both in the presence and absence of polymerase processivity subunits, beta dimer and gamma complex. In contrast, E. coli pol III holoenzyme, behaving "as expected," exhibited 3-5-fold lower misincorporation frequencies in AT-rich DNA. A reduction in fidelity in AT-rich regions occurred for pol II despite having an associated 3'-exonuclease proofreading activity that preferentially degrades AT-rich compared with GC-rich DNA primer-template in the absence of DNA synthesis. Concomitant with a reduction in fidelity, pol II polymerization efficiencies were 2-6-fold higher in AT-rich DNA, depending on sequence context. Pol II paradoxical fidelity behavior can be accounted for by the enzyme's preference for forward polymerization in AT-rich sequences. The more efficient polymerization suppresses proofreading thereby causing a significant increase in base substitution error rates in AT-rich regions.  相似文献   

15.
The fidelity of DNA synthesis by an exonuclease-proficient DNA polymerase results from the selectivity of the polymerization reaction and from exonucleolytic proofreading. We have examined the contribution of these two steps to the fidelity of DNA synthesis catalyzed by the large Klenow fragment of Escherichia coli DNA polymerase I, using enzymes engineered by site-directed mutagenesis to inactivate the proofreading exonuclease. Measurements with two mutant Klenow polymerases lacking exonuclease activity but retaining normal polymerase activity and protein structure demonstrate that the base substitution fidelity of polymerization averages one error for each 10,000 to 40,000 bases polymerized, and can vary more than 30-fold depending on the mispair and its position. Steady-state enzyme kinetic measurements of selectivity at the initial insertion step by the exonuclease-deficient polymerase demonstrate differences in both the Km and the Vmax for incorrect versus correct nucleotides. Exonucleolytic proofreading by the wild-type enzyme improves the average base substitution fidelity by 4- to 7-fold, reflecting efficient proofreading of some mispairs and less efficient proofreading of others. The wild-type polymerase is highly accurate for -1 base frameshift errors, with an error rate of less than or equal to 10(-6). The exonuclease-deficient polymerase is less accurate, suggesting that proofreading also enhances frameshift fidelity. Even without a proofreading exonuclease, Klenow polymerase has high frameshift fidelity relative to several other DNA polymerases, including eucaryotic DNA polymerase-alpha, an exonuclease-deficient, 4-subunit complex whose catalytic subunit is almost three times larger. The Klenow polymerase has a large (46 kDa) domain containing the polymerase active site and a smaller (22 kDa) domain containing the active site for the 3'----5' exonuclease. Upon removal of the small domain, the large polymerase domain has altered base substitution error specificity when compared to the two-domain but exonuclease-deficient enzyme. It is also less accurate for -1 base errors at reiterated template nucleotides and for a 276-nucleotide deletion error. Thus, removal of a protein domain of a DNA polymerase can affect its fidelity.  相似文献   

16.
Several amino acids in the active site of family A DNA polymerases contribute to accurate DNA synthesis. For two of these residues, family B DNA polymerases have conserved tyrosine residues in regions II and III that are suggested to have similar functions. Here we replaced each tyrosine with alanine in the catalytic subunits of yeast DNA polymerases alpha, delta, epsilon, and zeta and examined the consequences in vivo. Strains with the tyrosine substitution in the conserved SL/MYPS/N motif in region II in Pol delta or Pol epsilon are inviable. Strains with same substitution in Rev3, the catalytic subunit of Pol zeta, are nearly UV immutable, suggesting severe loss of function. A strain with this substitution in Pol alpha (pol1-Y869A) is viable, but it exhibits slow growth, sensitivity to hydroxyurea, and a spontaneous mutator phenotype for frameshifts and base substitutions. The pol1-Y869A/pol1-Y869A diploid exhibits aberrant growth. Thus, this tyrosine is critical for the function of all four eukaryotic family B DNA polymerases. Strains with a tyrosine substitution in the conserved NS/VxYG motif in region III in Pol alpha, -delta, or -epsilon are viable and a strain with the homologous substitution in Rev3 is UV mutable. The Pol alpha mutant has no obvious phenotype. The Pol epsilon (pol2-Y831A) mutant is slightly sensitive to hydroxyurea and is a semidominant mutator for spontaneous base substitutions and frameshifts. The Pol delta mutant (pol3-Y708A) grows slowly, is sensitive to hydroxyurea and methyl methanesulfonate, and is a strong base substitution and frameshift mutator. The pol3-Y708A/pol3-Y708A diploid grows slowly and aberrantly. Mutation rates in the Pol alpha, -delta, and -epsilon mutant strains are increased in a locus-specific manner by inactivation of PMS1-dependent DNA mismatch repair, suggesting that the mutator effects are due to reduced fidelity of chromosomal DNA replication. This could result directly from relaxed base selectivity of the mutant polymerases due to the amino acid changes in the polymerase active site. In addition, the alanine substitutions may impair catalytic function to allow a different polymerase to compete at the replication fork. This is supported by the observation that the pol3-Y708A mutation is recessive and its mutator effect is partially suppressed by disruption of the REV3 gene.  相似文献   

17.
The mitochondrial DNA polymerase from embryos of Drosophila melanogaster has been examined with regard to template-primer utilization, processivity, and fidelity of nucleotide polymerization. The enzyme replicates predominantly single-stranded and double-stranded DNAs: the rate of DNA synthesis is greatest on the gapped homopolymeric template poly(dA).oligo(dT), while the highest substrate specificity is observed on single-stranded DNA templates of natural DNA sequence. Kinetic experiments and direct physical analysis of DNA synthetic products indicate that the Drosophila DNA polymerase gamma polymerizes nucleotides by a quasi-processive mechanism. The mitochondrial enzyme demonstrates a high degree of accuracy in nucleotide incorporation which is nearly identical with that of the replicative DNA polymerase alpha from Drosophila embryos. Thus, the catalytic properties of the near-homogeneous Drosophila DNA polymerase gamma are consistent with the in vivo requirements for mitochondrial DNA synthesis as described in a variety of animal systems.  相似文献   

18.
19.
Human mitochondrial DNA (mtDNA) polymerase γ (pol γ) is the sole enzyme required to replicate and maintain the integrity of the mitochondrial genome. It comprises two subunits, a catalytic p140 subunit and a smaller p55 accessory subunit encoded by the POLG2 gene. We describe the molecular characterization of a potential dominant POLG2 mutation (p.R369G) in a patient with adPEO and multiple mtDNA deletions. Biochemical studies of the recombinant mutant p55 protein showed a reduced affinity to the pol γ p140 subunit, leading to impaired processivity of the holoenzyme complex but did not show sensitivity to N-ethylmalaimide (NEM) inhibition, inferring a novel disease mechanism.  相似文献   

20.
Mitochondrial DNA polymerase gamma (pol gamma) is responsible for replication and repair of mtDNA and is mutated in individuals with genetic disorders such as chronic external ophthalmoplegia and Alpers syndrome. pol gamma is also an adventitious target for toxic side effects of several antiviral compounds, and mutation of its proofreading exonuclease leads to accelerated aging in mouse models. We have used a variety of physical and functional approaches to study the interaction of the human pol gamma catalytic subunit with both the wild-type accessory factor, pol gammaB, and a deletion derivative that is unable to dimerize and consequently is impaired in its ability to stimulate processive DNA synthesis. Our studies clearly showed that the functional human holoenzyme contains two subunits of the processivity factor and one catalytic subunit, thereby forming a heterotrimer. The structure of pol gamma seems to be variable, ranging from a single catalytic subunit in yeast to a heterodimer in Drosophila and a heterotrimer in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号