首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic diversity provides populations with the possibility to persist in ever-changing environments, where selective regimes change over time. Therefore, the long-term survival of a population may be affected by its level of genetic diversity. The Mexican howler monkey (Alouatta palliata mexicana) is a critically endangered primate restricted to southeast Mexico. Here, we evaluate the genetic diversity and population structure of this subspecies based on 83 individuals from 31 groups sampled across the distribution range of the subspecies, using 29 microsatellite loci. Our results revealed extremely low genetic diversity (HO = 0.21, HE = 0.29) compared to studies of other A. palliata populations and to other Alouatta species. Principal component analysis, a Bayesian clustering method, and analyses of molecular variance did not detect strong signatures of genetic differentiation among geographic populations of this subspecies. Although we detect small but significant FST values between populations, they can be explained by a pattern of isolation by distance. These results and the presence of unique alleles in different populations highlight the importance of implementing conservation efforts in multiple populations across the distribution range of A. p. mexicana to preserve its already low genetic diversity. This is especially important given current levels of population isolation due to the extreme habitat fragmentation across the distribution range of this primate.  相似文献   

2.
Hou Y  Lou A 《PloS one》2011,6(9):e24497
AIMS: Rhodiola dumulosa (Crassulaceae) is a perennial diploid species found in high-montane areas. It is distributed in fragmented populations across northern, central and northwestern China. In this study, we aimed to (i) measure the genetic diversity of this species and that of its populations; (ii) describe the genetic structure of these populations across the entire distribution range in China; and (iii) evaluate the extent of gene flow among the naturally fragmented populations. METHODS: Samples from 1089 individuals within 35 populations of R. dumulosa were collected, covering as much of the entire distribution range of this species within China as possible. Population genetic diversity and structure were analyzed using AFLP molecular markers. Gene flow among populations was estimated according to the level of population differentiation. IMPORTANT FINDINGS: The total genetic diversity of R. dumulosa was high but decreased with increasing altitude. Population-structure analysis indicated that the most closely related populations were geographically restricted and occurred in close proximity to each other. A significant isolation-by-distance pattern, caused by the naturally fragmented population distribution, was observed. At least two distinct gene pools were found in the 35 sampled populations, one composed of populations in northern China and the other composed of populations in central and northwestern China. The calculation of Nei's gene diversity index revealed that the genetic diversity in the northern China pool (0.1972) was lower than that in the central and northwestern China pool (0.2216). The populations were significantly isolated, and gene flow was restricted throughout the entire distribution. However, gene flow among populations on the same mountain appears to be unrestricted, as indicated by the weak genetic isolation among these populations.  相似文献   

3.
The central–marginal hypothesis (CMH) predicts that population size, genetic diversity and genetic connectivity are highest at the core and decrease near the edges of species' geographic distributions. We provide a test of the CMH using three replicated core‐to‐edge transects that encompass nearly the entire geographic range of the endemic streamside salamander (Ambystoma barbouri). We confirmed that the mapped core of the distribution was the most suitable habitat using ecological niche modelling (ENM) and via genetic estimates of effective population sizes. As predicted by the CMH, we found statistical support for decreased genetic diversity, effective population size and genetic connectivity from core to edge in western and northern transects, yet not along a southern transect. Based on our niche model, habitat suitability is lower towards the southern range edge, presumably leading to conflicting core‐to‐edge genetic patterns. These results suggest that multiple processes may influence a species' distribution based on the heterogeneity of habitat across a species' range and that replicated sampling may be needed to accurately test the CMH. Our work also emphasizes the importance of identifying the geographic range core with methods other than using the Euclidean centre on a map, which may help to explain discrepancies among other empirical tests of the CMH. Assessing core‐to‐edge population genetic patterns across an entire species' range accompanied with ENM can inform our general understanding of the mechanisms leading to species' geographic range limits.  相似文献   

4.
Moving animals on a landscape through translocations and reintroductions is an important management tool used in the recovery of endangered species, particularly for the maintenance of population genetic diversity and structure. Management of imperiled amphibian species rely heavily on translocations and reintroductions, especially for species that have been brought to the brink of extinction by habitat loss, introduced species, and disease. One striking example of amphibian declines and associated management efforts is in California's Sequoia and Kings Canyon National Parks with the mountain yellow‐legged frog species complex (Rana sierrae/muscosa). Mountain yellow‐legged frogs have been extirpated from more than 93% of their historic range, and limited knowledge of their population genetics has made long‐term conservation planning difficult. To address this, we used 598 archived skin swabs from both extant and extirpated populations across 48 lake basins to generate a robust Illumina‐based nuclear amplicon data set. We found that samples grouped into three main genetic clusters, concordant with watershed boundaries. We also found evidence for historical gene flow across watershed boundaries with a north‐to‐south axis of migration. Finally, our results indicate that genetic diversity is not significantly different between populations with different disease histories. Our study offers specific management recommendations for imperiled mountain yellow‐legged frogs and, more broadly, provides a population genetic framework for leveraging minimally invasive samples for the conservation of threatened species.  相似文献   

5.
Demographic and environmental forces shape geographical patterns of genetic diversity. Knowledge thereof is not only important for evolutionary ecologists but, in light of future climate change, will be of interest to conservation biologists as well. Sugar pine (Pinus lambertiana Dougl.) is an ecologically important species found in mixed conifer forests across western North America. We applied a candidate-gene-based environmental study to infer spatial patterns in neutral genetic variation and to identify genetic variants associated with local adaptation to drought. Using a panel of 186 candidate gene single nucleotide polymorphisms (SNP), we genotyped 313 individual trees sampled across the entire state of California, USA. We found evidence for a large-scale subdivision into two genetic clusters along the latitudinal axis and increased genetic similarity among sugar pines within a 200–300-km boundary. Associating allelic to environmental variation indicated nine putative SNPs related to local adaptation to drought. These results provide insights into neutral population structure across the natural range of sugar pine and further substantiated a key role of the mitochondrial import inner membrane machinery in enhanced tolerance to drought and constitute important steps into unravelling the eco-evolutionary dynamics in sugar pine.  相似文献   

6.
Population fragmentation is a widespread phenomenon usually associated with human activity. As a result of habitat transformation, the philopatric and steppe-specialist Lesser Kestrel Falco naumanni underwent a severe population decline during the last century that increased population fragmentation throughout its breeding range. In contrast, the ubiquitous Eurasian Kestrel Falco tinnunculus did not suffer such adverse effects, its breeding range still remaining rather continuous. Using microsatellites, we tested the effects of population fragmentation on large-scale spatial patterns of genetic differentiation and diversity by comparing these two sympatric and phylogenetically related species. Our results suggest that habitat fragmentation has increased genetic differentiation between Lesser Kestrel populations, following an isolation-by-distance pattern, while the population of Eurasian Kestrels is panmictic. Contrary to expectations, we did not detect significant evidence of reduced genetic variation or increased inbreeding in Lesser Kestrels. Although this study reports genetic differentiation in a species that has potential for long-distance dispersal but philopatry-limited gene flow, large enough effective population sizes and migration may have been sufficient to mitigate genetic depauperation. A serious reduction of genetic diversity in Lesser Kestrels would, therefore, only be expected after severe population bottlenecks following extreme geographic isolation.  相似文献   

7.
Range expansions driven by global change and species invasions may have significant genomic, evolutionary, and ecological implications. During range expansions, strong genetic drift characterized by repeated founder events can result in decreased genetic diversity with increased distance from the center of the historic range, or the point of invasion. The invasion of the Indo‐Pacific lionfish, Pterois volitans, into waters off the US East Coast, Gulf of Mexico, and Caribbean Sea provides a natural system to study rapid range expansion in an invasive marine fish with high dispersal capabilities. We report results from 12,759 single nucleotide polymorphism loci sequenced by restriction enzyme‐associated DNA sequencing for nine P. volitans sampling areas in the invaded range, including Florida and other sites throughout the Caribbean, as well as mitochondrial control region D‐loop data. Analyses revealed low to no spatially explicit metapopulation genetic structure, which is partly consistent with previous finding of little structure within ocean basins, but partly divergent from initial reports of between‐basin structure. Genetic diversity, however, was not homogeneous across all sampled sites. Patterns of genetic diversity correlate with invasion pathway. Observed heterozygosity, averaged across all loci within a population, decreases with distance from Florida while expected heterozygosity is mostly constant in sampled populations, indicating population genetic disequilibrium correlated with distance from the point of invasion. Using an FST outlier analysis and a Bayesian environmental correlation analysis, we identified 256 and 616 loci, respectively, that could be experiencing selection or genetic drift. Of these, 24 loci were shared between the two methods.  相似文献   

8.
Many highly mobile species, such as migratory birds, can move and disperse over long distances, yet exhibit high levels of population genetic structuring. Although movement capabilities may enable dispersal, gene flow may be restricted by behavioural constraints such as philopatry. In the present study, we examined patterns of genetic differentiation across the range of a highly mobile, colonial waterbird. American white pelicans (Pelecanus erythrorhynchos) breed across continental North America and are currently experiencing a range expansion, especially on the eastern range limit. To assess patterns of genetic structuring, we sampled 333 individuals from 19 colonies across their North American range. The use of ten variable microsatellite markers revealed high levels of allelic richness with no population differentiation. Both Bayesian and frequentist approaches to examining genetic structuring revealed a single panmictic population. We found no evidence of genetic structuring across the Continental Divide or between migratory and non‐migratory colonies. The lack of any genetic structure across the range indicates that, unlike other waterbirds with similar life‐history characteristics, extensive gene flow and presumably low philopatry appear to preclude genetic differentiation. The lack of population genetic structure in American white pelicans provides an example of range‐wide panmixia, a rare phenomenon in any terrestrial species. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 583–592.  相似文献   

9.
Species may cope with rapid habitat changes by distribution shifts or adaptation to new conditions. A common feature of these responses is that they depend on how the process of dispersal connects populations, both demographically and genetically. We analyzed the genetic structure of a near-threatened high-Arctic seabird, the ivory gull (Pagophila eburnea) in order to infer the connectivity among gull colonies. We analyzed 343 individuals sampled from 16 localities across the circumpolar breeding range of ivory gulls, from northern Russia to the Canadian Arctic. To explore the roles of natal and breeding dispersal, we developed a population genetic model to relate dispersal behavior to the observed genetic structure of worldwide ivory gull populations. Our key finding is the striking genetic homogeneity of ivory gulls across their entire distribution range. The lack of population genetic structure found among colonies, in tandem with independent evidence of movement among colonies, suggests that ongoing effective dispersal is occurring across the Arctic Region. Our results contradict the dispersal patterns generally observed in seabirds where species movement capabilities are often not indicative of dispersal patterns. Model predictions show how natal and breeding dispersal may combine to shape the genetic homogeneity among ivory gull colonies separated by up to 2800 km. Although field data will be key to determine the role of dispersal for the demography of local colonies and refine the respective impacts of natal versus breeding dispersal, conservation planning needs to consider ivory gulls as a genetically homogeneous, Arctic-wide metapopulation effectively connected through dispersal.  相似文献   

10.
We describe the genetic structure of a freshwater insect species and interpret it in terms of present-day population dynamics and possible postglacial colonization history. The sampling regime represented a large area of the species range in northwest Europe, particularly focusing on Britain, a region relatively neglected in molecular population genetic studies. Plectrocnemia conspersa generally showed low levels of genetic variation across the sampled populations (Nei's D = 0.0138) and subdivision was unrelated to the pattern of the drainage network. However, the results do suggest that populations across the region are not at equilibrium and that British populations still show effects of the recolonization of the species following the last glacial maximum. Levels of genetic diversity were lower in Britain than in mainland Europe. Two-dimensional scaling showed genetic differentiation between major regions and the pattern of genetic diversity indicates a more recent origin of populations in the north and west of the area compared with the south and east. We argue that, despite the highly fragmented larval habitat, dispersal over tens of kilometres is frequent. Over longer distances, however, P. conspersa does still show evidence of founder effects and postglacial range expansion into Britain.  相似文献   

11.
The golden takin is an endangered species, listed as a First Grade Protected animal and found only in the Qinling Mountains in China. A great deal of research on the golden takin's living habitat, population size, and home range has been conducted. Here, we employed sequence analysis of the mitochondrial DNA control region to study the genetic diversity of the golden takin from three separate nature reserve parks in the Qinling Mountains. We also compared the results of our study with previously published data on the genetic diversity of mixed takin species located in the Qinling Mountains and the Minshan area. Based on 62 sampled golden takin individuals, we found an overall mean genetic haplotype diversity of 0.687. There is no significant geographic genetic diversity across different golden takin populations within the Qinling Mountains. However, we did show significant diversity between golden takin from the Qinling Mountains and from Minshan. These original data provide a foundation for the genetic diversity of golden takin, and will yield comprehensive information for better supporting the management in the national reserve parks.  相似文献   

12.
Aims The effect of anthropogenic landscape fragmentation on the genetic diversity and adaptive potential of plant populations is a major issue in conservation biology. However, little is known about the partitioning of genetic diversity in alpine species, which occur in naturally fragmented habitats. Here, we investigate molecular patterns of three alpine plants (Epilobium fleischeri, Geum reptans and Campanula thyrsoides) across Switzerland and ask whether spatial isolation has led to high levels of population differentiation, increasing over distance, and a decrease of within-population variability. We further hypothesize that the contrasting potential for long-distance dispersal (LDD) of seed in these species will considerably influence and explain diversity partitioning.Methods For each study species, we sampled 20–23 individuals from each of 20–32 populations across entire Switzerland. We applied Random Amplified Polymorphic Dimorphism markers to assess genetic diversity within (Nei's expected heterozygosity, H e; percentage of polymorphic bands, P p) and among (analysis of molecular variance, Φ st) populations and correlated population size and altitude with within-population diversity. Spatial patterns of genetic relatedness were investigated using Mantel tests and standardized major axis regression as well as unweighted pair group method with arithmetic mean cluster analyses and Monmonier's algorithm. To avoid known biases, we standardized the numbers of populations, individuals and markers using multiple random reductions. We modelled LDD with a high alpine wind data set using the terminal velocity and height of seed release as key parameters. Additionally, we assessed a number of important life-history traits and factors that potentially influence genetic diversity partitioning (e.g. breeding system, longevity and population size).Important findings For all three species, we found a significant isolation-by-distance relationship but only a moderately high differentiation among populations (Φ st : 22.7, 14.8 and 16.8%, for E. fleischeri, G. reptans and C. thyrsoides, respectively). Within-population diversity (H e : 0.19–0.21, P p : 62–75%) was not reduced in comparison to known results from lowland species and even small populations with <50 reproductive individuals contained high levels of genetic diversity. We further found no indication that a high long-distance seed dispersal potential enhances genetic connectivity among populations. Gene flow seems to have a strong stochastic component causing large dissimilarity between population pairs irrespective of the spatial distance. Our results suggest that other life-history traits, especially the breeding system, may play an important role in genetic diversity partitioning. We conclude that spatial isolation in the alpine environment has a strong influence on population relatedness but that a number of factors can considerably influence the strength of this relationship.  相似文献   

13.
Nothotsuga longibracteata, a relic and endangered conifer species endemic to subtropical China, was studied for examining the spatial-temporal population genetic variation and structure to understand the historical biogeographical processes underlying the present geographical distribution. Ten populations were sampled over the entire natural range of the species for spatial analysis, while three key populations with large population sizes and varied age structure were selected for temporal analyses using both nuclear microsatellites (nSSR) and chloroplast microsatellites (cpSSR). A recent bottleneck was detected in the natural populations of N. longibracteata. The spatial genetic analysis showed significant population genetic differentiation across its total geographical range. Notwithstanding, the temporal genetic analysis revealed that the level of genetic diversity between different age class subpopulations remained constant over time. Eleven refugia of the Last Glacial Maximum were identified, which deserve particular attention for conservation management.  相似文献   

14.
Forest loss and fragmentation is expected to shape the genetic structure of amphibian populations and reduce genetic variation. Another factor widely understood to have impacted these same parameters in North America is the range expansion that occurred following glacial retreat at the end of the Pleistocene. The Eastern Red-Backed Salamander (Plethodon cinereus) has been subjected to both processes. In this context, we investigated the historical events that are likely to have shaped genetic variation in this species using a panel of six microsatellite markers screened on individuals sampled across ten localities in northeastern Indiana, USA. We found low genetic diversity across forest patches and minimal differentiation. We expected population structure associated with forest fragmentation to result from genetic drift in isolation but instead found that a balance between gene flow and drift was ~50 times more likely. Ratios of allele number and range (M), and coalescent modeling of population demography suggested the occurrence of marked historic decline in effective population size across the region. Taken together, the data point to a loss of genetic variation which preceded deforestation over the past 200 years. This result indicates an important role for ancient demographic processes in shaping current genetic variation that may make it difficult to detect the effect of recent habitat fragmentation.  相似文献   

15.
A phenomenon that strongly influences the demography of small introduced populations and thereby potentially their genetic diversity is the demographic Allee effect, a reduction in population growth rates at small population sizes. We take a stochastic modeling approach to investigate levels of genetic diversity in populations that successfully overcame either a strong Allee effect, in which populations smaller than a certain critical size are expected to decline, or a weak Allee effect, in which the population growth rate is reduced at small sizes but not negative. Our results indicate that compared to successful populations without an Allee effect, successful populations with a strong Allee effect tend to (1) derive from larger founder population sizes and thus have a higher initial amount of genetic variation, (2) spend fewer generations at small population sizes where genetic drift is particularly strong, and (3) spend more time around the critical population size and thus experience more genetic drift there. In the case of multiple introduction events, there is an additional increase in diversity because Allee-effect populations tend to derive from a larger number of introduction events than other populations. Altogether, a strong Allee effect can either increase or decrease genetic diversity, depending on the average founder population size. By contrast, a weak Allee effect tends to decrease genetic diversity across the entire range of founder population sizes. Finally, we show that it is possible in principle to infer critical population sizes from genetic data, although this would require information from many independently introduced populations.  相似文献   

16.
Gene flow may influence the formation of species range limits, and yet little is known about the patterns of gene flow with respect to environmental gradients or proximity to range limits. With rapid environmental change, it is especially important to understand patterns of gene flow to inform conservation efforts. Here we investigate the species range of the selfing, annual plant, Mimulus laciniatus, in the California Sierra Nevada. We assessed genetic variation, gene flow, and population abundance across the entire elevation‐based climate range. Contrary to expectations, within‐population plant density increased towards both climate limits. Mean genetic diversity of edge populations was equivalent to central populations; however, all edge populations exhibited less genetic diversity than neighbouring interior populations. Genetic differentiation was fairly consistent and moderate among all populations, and no directional signals of contemporary gene flow were detected between central and peripheral elevations. Elevation‐driven gene flow (isolation by environment), but not isolation by distance, was found across the species range. These findings were the same towards high‐ and low‐elevation range limits and were inconsistent with two common centre‐edge hypotheses invoked for the formation of species range limits: (i) decreasing habitat quality and population size; (ii) swamping gene flow from large, central populations. This pattern demonstrates that climate, but not centre‐edge dynamics, is an important range‐wide factor structuring M. laciniatus populations. To our knowledge, this is the first empirical study to relate environmental patterns of gene flow to range limits hypotheses. Similar investigations across a wide variety of taxa and life histories are needed.  相似文献   

17.
There is growing interest in quantifying genetic population structure across the geographical ranges of species to understand why species might exhibit stable range limits and to assess the conservation value of peripheral populations. However, many assertions regarding peripheral populations rest on the long-standing but poorly tested supposition that peripheral populations exhibit low genetic diversity and greater genetic differentiation as a consequence of smaller effective population size and greater geographical isolation relative to geographically central populations. We reviewed 134 studies representing 115 species that tested for declines in within-population genetic diversity and/or increases in among-population differentiation towards range margins using nuclear molecular genetic markers. On average, 64.2% of studies detected the expected decline in diversity, 70.2% of those that tested for it showed increased differentiation and there was a positive association between these trends. In most cases, however, the difference in genetic diversity between central and peripheral population was not large. Although these results were consistent across plants and animals, strong taxonomic and biogeographical biases in the available studies call for a cautious generalization of these results. Despite the large number of studies testing these simple predictions, very few attempted to test possible mechanisms causing reduced peripheral diversity or increased differentiation. Almost no study incorporated a phylogeographical framework to evaluate historical influences on contemporary genetic patterns. Finally, there has been little effort to test whether these geographical trends in putatively neutral variation at marker loci are reflected by quantitative genetic trait variation, which is likely to influence the adaptive potential of populations across the geographical range.  相似文献   

18.
Understanding the consequences of exotic diseases on native forests is important to evolutionary ecology and conservation biology because exotic pathogens have drastically altered US eastern deciduous forests. Cornus florida L. (flowering dogwood tree) is one such species facing heavy mortality. Characterizing the genetic structure of C. florida populations and identifying the genetic signature of adaptation to dogwood anthracnose (an exotic pathogen responsible for high mortality) remain vital for conservation efforts. By integrating genetic data from genotype by sequencing (GBS) of 289 trees across the host species range and distribution of disease, we evaluated the spatial patterns of genetic variation and population genetic structure of C. florida and compared the pattern to the distribution of dogwood anthracnose. Using genome‐wide association study and gradient forest analysis, we identified genetic loci under selection and associated with ecological and diseased regions. The results revealed signals of weak genetic differentiation of three or more subgroups nested within two clusters—explaining up to 2%–6% of genetic variation. The groups largely corresponded to the regions within and outside the eastern Hot‐Continental ecoregion, which also overlapped with areas within and outside the main distribution of dogwood anthracnose. The fungal sequences contained in the GBS data of sampled trees bolstered visual records of disease at sampled locations and were congruent with the reported range of Discula destructiva, suggesting that fungal sequences within‐host genomic data were informative for detecting or predicting disease. The genetic diversity between populations at diseased vs. disease‐free sites across the range of C. florida showed no significant difference. We identified 72 single‐nucleotide polymorphisms (SNPs) from 68 loci putatively under selection, some of which exhibited abrupt turnover in allele frequencies along the borders of the Hot‐Continental ecoregion and the range of dogwood anthracnose. One such candidate SNP was independently identified in two prior studies as a possible L‐type lectin‐domain containing receptor kinase. Although diseased and disease‐free areas do not significantly differ in genetic diversity, overall there are slight trends to indicate marginally smaller amounts of genetic diversity in disease‐affected areas. Our results were congruent with previous studies that were based on a limited number of genetic markers in revealing high genetic variation and weak population structure in C. florida.  相似文献   

19.
Although the range dynamics of North American amphibians during the last glacial cycle are increasingly better understood, the recolonization history of the most northern regions and the impact of southern refugia on patterns of intraspecific genetic diversity and phenotypic variation in these regions are not well reconstructed. Here we present the phylogeographic history of a widespread and primarily northern frog, Rana sylvatica . We surveyed 551 individuals from 116 localities across the species' range for a 650-bp region of the NADH dehydrogenase subunit 2 and tRNATRP mitochondrial genes. Our phylogenetic analyses revealed two distinct clades corresponding to eastern and western populations, as well as a Maritime subclade within the eastern lineage. Patterns of genetic diversity support multiple refugia. However, high-latitude refugia in the Appalachian highlands and modern-day Wisconsin appear to have had the biggest impact on northern populations. Clustering analyses based on morphology further support a distinction between eastern and western wood frogs and suggest that postglacial migration has played an important role in generating broad-scale patterns of phenotypic variation in this species.  相似文献   

20.
Genetic diversity of major histocompatibility complex (MHC) genes is linked to reduced pathogen susceptibility in amphibians, but few studies also examine broad spatial and temporal patterns of MHC and neutral genetic diversity. Here, we characterized range-wide MHC diversity in the Northern leopard frog, Rana pipiens, a species found throughout North America that is experiencing disease-related declines. We used previously sequenced neutral markers (mitochondrial DNA and microsatellites), sequenced an expressed MHC class IIß gene fragment, and measured infection prevalence and intensity of the global fungal pathogen Batrachochytrium dendrobatidis (Bd) across 14 populations. Four populations were sampled across two decades, enabling temporal comparisons of selection and demography. We recovered 37 unique MHC alleles, including 17 that were shared across populations. Phylogenetic and population genetic patterns between MHC and neutral markers were incongruent, and five MHC codon positions associated with peptide binding were under positive selection. MHC heterozygosity, but not neutral marker heterozygosity, was a significant factor explaining spatial patterns of Bd prevalence, whereas only environmental variables predicted Bd intensity. MHC allelic richness (AR) decreased significantly over time but microsatellite-based AR did not, highlighting a loss of functional immunogenetic diversity that may be associated with Bd selective pressures. MHC supertype 4 was significantly associated with an elevated risk of Bd infection, whereas one supertype 2 allele was associated with a nearly significant reduced risk of Bd. Taken together, these results provide evidence that positive selection contributes to MHC class IIß evolution in R. pipiens and suggest that functional MHC differences across populations may contribute to disease adaptation.Subject terms: Genetic variation, Immunogenetics  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号