首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.

Background  

The antibody microarray technique is a newly emerging proteomics tool for differential protein expression analyses that uses fluorescent dyes Cy 3 and Cy 5. Environmental factors, such as light exposure, can affect the signal intensity of fluorescent dyes on microarray slides thus, it is logical to scan microarray slides immediately after the final wash and drying processes. However, no research data are available concerning time-dependent changes of fluorescent signals on antibody microarray slides to this date. In the present study, microarray slides were preserved at -20°C after regular microarray experiments and were rescanned at day 10, 20 and 30 to evaluate change in signal intensity.  相似文献   

2.

Background  

Microarray data must be normalized because they suffer from multiple biases. We have identified a source of spatial experimental variability that significantly affects data obtained with Cy3/Cy5 spotted glass arrays. It yields a periodic pattern altering both signal (Cy3/Cy5 ratio) and intensity across the array.  相似文献   

3.

Background  

In individually dye-balanced microarray designs, each biological sample is hybridized on two different slides, once with Cy3 and once with Cy5. While this strategy ensures an automatic correction of the gene-specific labelling bias, it also induces dependencies between log-ratio measurements that must be taken into account in the statistical analysis.  相似文献   

4.
Microarray scanner calibration curves: characteristics and implications   总被引:1,自引:0,他引:1  

Background

Microarray-based measurement of mRNA abundance assumes a linear relationship between the fluorescence intensity and the dye concentration. In reality, however, the calibration curve can be nonlinear.

Results

By scanning a microarray scanner calibration slide containing known concentrations of fluorescent dyes under 18 PMT gains, we were able to evaluate the differences in calibration characteristics of Cy5 and Cy3. First, the calibration curve for the same dye under the same PMT gain is nonlinear at both the high and low intensity ends. Second, the degree of nonlinearity of the calibration curve depends on the PMT gain. Third, the two PMTs (for Cy5 and Cy3) behave differently even under the same gain. Fourth, the background intensity for the Cy3 channel is higher than that for the Cy5 channel. The impact of such characteristics on the accuracy and reproducibility of measured mRNA abundance and the calculated ratios was demonstrated. Combined with simulation results, we provided explanations to the existence of ratio underestimation, intensity-dependence of ratio bias, and anti-correlation of ratios in dye-swap replicates. We further demonstrated that although Lowess normalization effectively eliminates the intensity-dependence of ratio bias, the systematic deviation from true ratios largely remained. A method of calculating ratios based on concentrations estimated from the calibration curves was proposed for correcting ratio bias.

Conclusion

It is preferable to scan microarray slides at fixed, optimal gain settings under which the linearity between concentration and intensity is maximized. Although normalization methods improve reproducibility of microarray measurements, they appear less effective in improving accuracy.
  相似文献   

5.
Workman C  Jensen LJ  Jarmer H  Berka R  Gautier L  Nielser HB  Saxild HH  Nielsen C  Brunak S  Knudsen S 《Genome biology》2002,3(9):research0048.1-research004816

Background  

Microarray data are subject to multiple sources of variation, of which biological sources are of interest whereas most others are only confounding. Recent work has identified systematic sources of variation that are intensity-dependent and non-linear in nature. Systematic sources of variation are not limited to the differing properties of the cyanine dyes Cy5 and Cy3 as observed in cDNA arrays, but are the general case for both oligonucleotide microarray (Affymetrix GeneChips) and cDNA microarray data. Current normalization techniques are most often linear and therefore not capable of fully correcting for these effects.  相似文献   

6.
7.
Microarrays are a powerful tool for comparison and understanding of gene expression levels in healthy and diseased states. The method relies upon the assumption that signals from microarray features are a reflection of relative gene expression levels of the cell types under investigation. It has previously been reported that the classical fluorescent dyes used for microarray technology, Cy3 and Cy5, are not ideal due to the decreased stability and fluorescence intensity of the Cy5 dye relative to the Cy3, such that dye bias is an accepted phenomena necessitating dye swap experimental protocols and analysis of differential dye affects. The incentive to find new fluorophores is based on alleviating the problem of dye bias through synonymous performance between counterpart dyes. Alexa Fluor 555 and Alexa Fluor 647 are increasingly promoted as replacements for CyDye in microarray experiments. Performance relates to the molecular and steric similarities, which will vary for each new pair of dyes as well as the spectral integrity for the specific application required. Comparative analysis of the performance of these two competitive dye pairs in practical microarray applications is warranted towards this end. The findings of our study showed that both dye pairs were comparable but that conventional CyDye resulted in significantly higher signal intensities (P < 0.05) and signal minus background levels (P < 0.05) with no significant difference in background values (P > 0.05). This translated to greater levels of differential gene expression with CyDye than with the Alexa Fluor counterparts. However, CyDye fluorophores and in particular Cy5, were found to be less photostable over time and following repeated scans in microarray experiments. These results suggest that precautions against potential dye affects will continue to be necessary and that no one dye pair negates this need.  相似文献   

8.

Background  

Non-biological signal (or noise) has been the bane of microarray analysis. Hybridization effects related to probe-sequence composition and DNA dye-probe interactions have been observed in differential methylation hybridization (DMH) microarray experiments as well as other effects inherent to the DMH protocol.  相似文献   

9.

Introduction  

The objective of this study was to identify cancer-associated protein expression patterns in bilateral matched nipple aspiration fluids using nanoscale reciprocal Cy3/Cy5 labeling and high-content antibody microarrays. This novel platform allows the pair-wise comparisons of the relative abundance of 512 different antigens using minimal NAF sample containing 1 μg of total protein.  相似文献   

10.
11.
12.
13.
DNA microarray analyses commonly use two spectrally distinct fluorescent labels to simultaneously compare different mRNA pools. Signal correlation bias currently limits accepted resolution to twofold changes in gene expression. This bias was investigated by (i) examining fluorescence and absorption spectra and changes in relative fluorescence of DNAs labeled with the Cy3, Cy5, Alexa Fluor 555, and Alexa Fluor 647 dyes and by (ii) using homotypic hybridization assays to compare the Cy dye pair with the Alexa Fluor dye pair. Cy3 or Cy5 dye-labeled DNA exhibited reduced fluorescence and absorption anomalies that were eliminated by nuclease treatment, consistent with fluorescence quenching that arises from dye-dye or dye-DNA-dye interactions. Alexa Fluor 555 and Alexa Fluor 647 dye-labeled DNA exhibited little or no such anomalies. In microarray hybridization, the Alexa Fluor dye pair provided higher signal correlation coefficients (R2) than did the Cy dye pair; at the 95% prediction level, a 1.3-fold change in gene expression was significant using the Alexa Fluor dye pair. Lowered signal correlation of the Cy dye pair was associated with high variance in Cy5 dye signals. These results indicate that fluorescence quenching may be a source of signal bias associated with the Cy dye pair.  相似文献   

14.

Background

Several different cDNA labeling methods have been developed for microarray based gene expression analysis. We have examined the accuracy and reproducibility of such five commercially available methods in detection of predetermined ratio values from target spike mRNAs (A. thaliana) in a background of total RNA. The five different labeling methods were: direct labeling (CyScribe), indirect labeling (FairPlay? – aminoallyl), two protocols with dendrimer technology (3DNA® Array 50? and 3DNA® submicro?), and hapten-antibody enzymatic labeling (Micromax? TSA?). Ten spike controls were mixed to give expected Cy5/Cy3 ratios in the range 0.125 to 6.0. The amounts of total RNA used in the labeling reactions ranged from 5 – 50 μg.

Results

The 3DNA array 50 and CyScribe labeling methods performed best with respect to relative deviation from the expected values (16% and 17% respectively). These two methods also displayed the best overall accuracy and reproducibility. The FairPlay method had the lowest total experimental variation (22%), but the estimated values were consistently higher than the expected values (36%). TSA had both the largest experimental variation and the largest deviation from the expected values (45% and 48% respectively).

Conclusion

We demonstrate the usefulness of spike controls in validation and comparison of cDNA labeling methods for microarray experiments.
  相似文献   

15.

Background  

The hybridization of synthetic Streptococcus pneumoniae tmRNA on a detection microarray is slow at 34°C resulting in low signal intensities.  相似文献   

16.
17.

Background  

There are many sources of variation in dual labelled microarray experiments, including data acquisition and image processing. The final interpretation of experiments strongly relies on the accuracy of the measurement of the signal intensity. For low intensity spots in particular, accurately estimating gene expression variations remains a challenge as signal measurement is, in this case, highly subject to fluctuations.  相似文献   

18.

Background  

The quality of microarray data can seriously affect the accuracy of downstream analyses. In order to reduce variability and enhance signal reproducibility in these data, many normalization methods have been proposed and evaluated, most of which are for data obtained from cDNA microarrays and Affymetrix GeneChips. CodeLink Bioarrays are a newly emerged, single-color oligonucleotide microarray platform. To date, there are no reported studies that evaluate normalization methods for CodeLink Bioarrays.  相似文献   

19.

Background  

Chromatin immunoprecipitation followed by microarray hybridization (ChIP-chip) is used to study protein-DNA interactions and histone modifications on a genome-scale. To ensure data quality, these experiments are usually performed in replicates, and a correlation coefficient between replicates is used often to assess reproducibility. However, the correlation coefficient can be misleading because it is affected not only by the reproducibility of the signal but also by the amount of binding signal present in the data.  相似文献   

20.

Background  

When DNA microarray data are used for gene clustering, genotype/phenotype correlation studies, or tissue classification the signal intensities are usually transformed and normalized in several steps in order to improve comparability and signal/noise ratio. These steps may include subtraction of an estimated background signal, subtracting the reference signal, smoothing (to account for nonlinear measurement effects), and more. Different authors use different approaches, and it is generally not clear to users which method they should prefer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号