首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A porcine 17kb genomic fragment was used as probe to map the lactase phlorizin hydrolase ( LCT ) gene to pig chromosome 15q13 by fluorescence in situ hybridization. Further, a threeallele TaqI RFLP was used to add the LCT gene to the proximal end of the chromosome 15 linkage map. Comparison of the human chromosome 2 gene map and the gene map of pig chromosome 15 indicates that the part of human chromosome 2 distal to the q13 band is homologous to pig chromosome 15.  相似文献   

2.
A partial cDNA clone encoding the porcine proteasome subunit A4 ( PSMA4 or proteasome subunit C9) has been isolated from a porcine muscle cDNA library and sequenced. A biallelic Taq I RFLP was identified in Large White, Landrace and Duroc breeds. Moreover, the 3'-untranslated region of the gene showed a triallelic SSCP. By linkage analysis the PSMA4 locus was assigned to pig chromosome 7 and by radioactive in situ hybridization this locus was mapped to the region 7q13–q14.  相似文献   

3.
Summary Five DNA probes known to originate from the region 7q22-q31 were sublocalized by in situ hybridization to metaphase preparations of fibroblasts having besides a normal chromosome 7, a homologue 7 with an apparent interstitial deletion of a large part of band q22. A flow cytometric chromosome analysis confirmed a loss of material from one of the homologues of chromosome 7. Four of the probes, B79a, 7C22,metH, and pJ3.11, have been shown to be closely linked to the cystic fibrosis (CF) locus. We localized probes B79a and 7C22 to the part of 7q22 involved in the deletion, whereasmetH and pJ3.11 could be assigned to band 7q31. Probe pJu28, for which polymorphisms have not yet been described, also appeared to derive from the latter band. Since pJ3.11 andmetH are most tightly linked to the CF locus, this disease locus is indirectly assigned to 7q31. A comparison of our findings with linkage data suggests a discrepancy between genetic and physical distances in the region 7q22-q31.  相似文献   

4.
A high-resolution comparative RH map of porcine Chromosome (SSC) 2   总被引:2,自引:0,他引:2  
A high-resolution comparative map was constructed for porcine Chromosome (SSC) 2, where a QTL for back fat thickness (BFT) is located. A radiation hybrid (RH) map containing 33 genes and 25 microsatellite markers was constructed for this chromosome with a 3000-rad porcine RH panel. In total, 16 genes from human Chromosome (HSA) 11p, HSA19p, and HSA5q were newly assigned to SSC2. One linkage group was observed at LOD 3.0, and five linkage groups at LOD 4.0. Comparison of the porcine RH map with homologous human gene orders identified four conserved segments between SSC2 and HSA11, HSA19, and HSA5. Concerning HSA11, a rearrangement of gene order is observed. The segment HSA11p15.4-q13 is inverted on SSC2 when compared with the distal tip of SSC2p, which is homologous to HSA11p15.5. The boundaries of the conserved segments between human and pig were defined more precisely. This high-resolution comparative map will be a valuable tool for further fine mapping of the QTL area. Received: 10 November 2000 / Accepted: 23 January 2001  相似文献   

5.
Summary The human thymidylate synthase (TS) gene was regionally assigned to chromosome band 18p11.32 by nonisotopic in situ hybridization using biotinylated cDNA (1.1kb insert) and genomic DNA (6.8kb insert) probes of the human gene. There have been two provisional assignments for the TS gene to 18pter-q12 and 18q21-qter. The present result confirmed the first of these and further localized the TS gene to the telomeric region of the short arm of chromosome 18. The TS gene appears to be a novel telomeric anchor point for the construction of both physical and genetic linkage maps of human chromosome 18.  相似文献   

6.
The structural gene for transferrin (TF) maps to 3q21----3qter   总被引:2,自引:0,他引:2  
A cloned human cDNA for transferrin (TF) was used as hybridization probe in analysing a series of rodent x human somatic cell hybrids for the presence of human TF sequences. The assignment to chromosome 3 was further refined to region 3q21----3qter using hybrids that carried a translocated chromosome 3 and fibroblasts from a patient trisomic for this region. The gene for TF therefore maps to the same region as the gene for transferrin receptor (TFR) thereby defining an iron transport region on 3q2 to which the transferrin-related tumor associated antigen p97 may also belong. It follows that the genes for pseudocholinesterase (CHE1), ceruleoplasmin (CP) and alpha-2HS-glycoprotein (A2HS) which belong to the, as yet unassigned, linkage group of TF, now also map to chromosome 3 in man.  相似文献   

7.
Nemaline myopathy (NEM) is a neuromuscular disorder characterized by the presence, in skeletal muscle, of nemaline rods composed at least in part of alpha-actinin. A candidate gene and linkage approach was used to localize the gene (NEM1) for an autosomal dominant form (MIM 161800) in one large kindred with 10 living affected family members. Markers on chromosome 19 that were linked to the central core disease gene, a marker at the complement 3 locus, and a marker on chromosome 1 at the alpha-actinin locus exclude these three candidate genes. The family was fully informative for APOA2, which is localized to 1q21-q23. NEM1 was assigned to chromosome 1 by close linkage for APOA2, which is localized to 1q21-q23. NEM1 was assigned to chromosome 1 by close linkage to APOA2, with a lod score of 3.8 at a recombination fraction of 0. Recombinants with NGFB (1p13) and AT3 (1q23-25.1) indicate that NEM1 lies between 1p13 and 1q25.1. In total, 47 loci were investigated on chromosomes 1, 2, 4, 5, 7-11, 14, 16, 17, and 19, with no indications of significant linkage other than to markers on chromosome 1.  相似文献   

8.
The porcine genes encoding the immunoglobulin gamma heavy chain (IGHG), cAMP-dependent protein kinase catalytic beta subunit (PRKACB), and transition protein 2 (TNP2) were mapped to Chromosomes (Chrs) 7 q25–q26, 6q31–q33, and 3p13-cent, respectively, by in situ hybridization. Localization of the IGHG gene confirms the assignment of linkage group III to Chr 7. Our results show that the IGHG locus in pigs, similar to the situation in other mammalian species, viz. humans, mouse, cattle, and river buffaloes, is located on the terminal region of the chromosome. The assignment of the PRKACB gene extends the homology observed between porcine Chr 6q and human Chr 1p. Mapping of the TNP2 gene provides the first marker assigned to the p arm of Chr 3 in pigs. The present study contributes to the development of the physical gene map in pigs and also bears significance in terms of comparative gene mapping.  相似文献   

9.
Restriction fragment length polymorphisms (RFLPs) were described for the porcine loci for β-glucosidase (GBA) and the β-polypeptide 1 of the Na+, K+-transporting ATPase (ATP1B1). Linkage analyses using a three-generation pedigree provided evidence for the assignment of ATP1B1, GBA and two microsatellite loci (S0001 and S0067) to a previously described linkage group comprising the loci for blood group L (EAL) and an anonymous microsatellite (S0097). The linear order of the six markers was determined with confidence by multipoint analyses and the length of the linkage group was estimated at 88 CM. This linkage group was assigned to pig chromosome 4 on the basis of a previous physical localization of the ATP1B1 gene. In situ hybridization data for S0001 presented in this study were consistent with a localization on chromosome 4 and suggested a regional localization to 4pl2-pl3. The present study reveals conflicting data concerning the genetic localization of the K88 loci controlling the expression of the receptors for the E. coli pilus antigens. One group has reported data suggesting a loose linkage between K88 and EAL, now mapped to chromosome 4, whereas two other groups have found linkage between K88 and the transferrin locus (TF), mapped to chromosome 13 by in situ hybridization.  相似文献   

10.
The multisystem autosomal recessive disease ataxia-telangiectasia (A-T) is determined by several genes, as evidenced by the existence of four complementation groups in this disorder. Using linkage analysis, the ATA (A-T complementation group A) gene was previously localized to chromosome 11, region q22-q23. Analysis of the segregation of RFLP markers from this region in a Jewish-Moroccan family assigned to group C indicates that the ATC (A-T complementation group C) gene localizes to chromosome 11q22-q23 as well.  相似文献   

11.
Two genes encoding 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase were localized in human and rat chromosomes. PFKFB1 (previously PFRX), which encodes the liver and muscle isozymes, was assigned to Xq22-q31 in the rat and to Xq27-q28 in the human by in situ hybridization using probes generated by the polymerase chain reaction. PFKFB2, which encodes the heart isozyme of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, was assigned to chromosome 13 in the rat and to chromosome 1 in the human by hybridization of DNA from somatic cell hybrids. By in situ hybridization, this gene was localized to the regions 13q24-25 in the rat and 1q31 in the human.  相似文献   

12.
A porcine 2-kb partial dipeptidylpeptidase IV (DPP4, EC 3.4.14.5) cDNA clone and a porcine 16-kb genomic fragment containing parts of the DPP4 gene were isolated, characterized, and used as probes to map the DPP4 gene to pig Chr (Chr) 15q21 by fluorescence in situ hybridization. A two-allele RFLP was revealed for the DPP4 gene. This polymorphism was utilized in a linkage test against the erythrocyte antigen G (EAG), previously assigned to Chr 15, and the microsatellite S0088, which is linked to EAG. The linkage analyses revealed significant evidence for linkage confirming the assignment of DPP4 to Chr 15.  相似文献   

13.
In situ hybridization of radiolabeled fibrinogen cDNAs to human and rat metaphase chromosomes has shown that the genes encoding the A alpha, B beta, and gamma fibrinogen subunits are syntenic in both species. Our data localize the human fibrinogen gene cluster to band q31 on chromosome 4, thereby confirming and extending previous map assignments of these genes in man. We have also assigned these genes to the q31----q34 region of rat chromosome 2. This is the first map assignment of these genes in the rat and also the first report to clearly establish linkage of the B beta subunit gene to the A alpha and gamma genes in this species.  相似文献   

14.
Seven bovine erythrocyte antigen loci and three serum protein loci were tentatively assigned to chromosomes or synteny groups by linkage analysis to previously assigned microsatellite DNA markers. The erythrocyte antigen locus EAB was mapped to synteny group U27; EAC to chromosome 18, synteny group U9; EAL to chromosome 3, synteny group U6; EAS to chromosome 21, synteny group U4; EAZ to chromosome 10, synteny group U5; EAR' to chromosome 16, synteny group U1; and EAT' to chromosome 19, synteny group U21. The vitamin D binding protein (GC) and albumin (ALB) loci were assigned to chromosome 6, synteny group U15 and post-transferrin 2 (PTF 2) to chromosome 19, synteny group U21.  相似文献   

15.
Two genes encoding 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase were localized in human and rat chromosomes. PFKFB1 (previously PFRX), which encodes the liver and muscle isozymes, was assigned to Xq22-q31 in the rat and to Xq27–q28 in the human by in situ hybridization using probes generated by the polymerase chain reaction. PFKFB2, which encodes the heart isozyme of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, was assigned to chromosome 13 in the rat and to chromosome 1 in the human by hybridization of DNA from somatic cell hybrids. By in situ hybridization, this gene was localized to the regions 13q24–25 in the rat and 1q31 in the human.  相似文献   

16.
Investigation of published sequence data from the porcine insulin-like growth factor 1 (IGF1) gene, resulted in the detection of a microsatellite in the first intron of the gene. Polymerase chain reaction (PCR) primers flanking the (CA)19 repeat were constructed. Polymorphism and Mendelian segregation were documented in a three-generation pedigree and allele frequencies were determined in 74 unrelated animals from four different breeds. Seven alleles were encountered. Linkage analysis was performed in a large pedigree established for gene mapping. Linkage between the IGF1 microsatellite and an anonymous microsatellite marker, S0005, was detected. Furthermore, IGF1 and S0005 was found to be linked to the porcine submaxillary gland mucin (MUC) gene, previously assigned to chromosome 5. The results presented here extend the linkage group on pig chromosome 5 and are in accordance with conserved synteny between human chromosome 12, cattle chromosome 5, mouse chromosome 10 and pig chromosome 5.  相似文献   

17.
The human gene for cystathionine beta-synthase (CBS), the enzyme deficient in classical homocystinuria, has been assigned to the subtelomeric region of band 21q22.3 by in situ hybridization of a rat cDNA probe to structurally rearranged chromosomes 21. The homologous locus in the mouse (Cbs) was mapped to the proximal half of mouse chromosome 17 by Southern analysis of Chinese hamster X mouse somatic cell hybrid DNA. Thus, CBS/Cbs and the gene for alpha A-crystalline (CRYA1/Crya-1 or Acry-1) form a conserved linkage group on human (HSA) chromosome region 21q22.3 and mouse (MMU) chromosome 17 region A-C. Features of Down syndrome (DS) caused by three copies of these genes should not be present in mice trisomic for MMU 16 that have been proposed as animal models for DS. Mice partially trisomic for MMU 16 or MMU 17 should allow gene-specific dissection of the trisomy 21 phenotype.  相似文献   

18.
Localization of the fibrillin (FBN) gene to chromosome 15, band q21.1.   总被引:11,自引:0,他引:11  
Fibrillin (FBN), a large extracellular matrix glycoprotein, is an important component of structures called microfibrils. Because fibrillin microfibrils appear to be abnormal in patients with the Marfan syndrome, fibrillin is a candidate for the gene defect in the Marfan syndrome. Derived clones from fibrillin cDNA were used as probes in isotopic and nonisotopic in situ hybridization studies to map the chromosomal location of the fibrillin gene. Fluorescent signals were found on chromosome 15 band q21.1; an excess of silver grains was noted over a similar region of chromosome 15 following in situ hybridization with a tritium-labeled probe. These results are consistent with linkage studies that localize the Marfan gene to chromosome 15.  相似文献   

19.
The human genes encoding the alpha and beta forms of the retinoic acid receptor are known to be located on chromosomes 17 (band q21.1:RARA) and 3 (band p24:RARB). By in situ hybridization, we have now localized the gene for retinoic acid receptor gamma, RARG, on chromosome 12, band q13. We also mapped the three retinoic acid receptor genes in the mouse, by in situ hybridization, on chromosomes 11, band D (Rar-a); 14, band A (Rar-b); and 15, band F (Rar-g), respectively, and in the rat, using a panel of somatic cell hybrids that segregate rat chromosomes, on chromosomes 10 (RARA), 15 (RARB), and 7 (RARG), respectively. These assignments reveal a retention of tight linkage between RAR and HOX gene clusters. They also establish or confirm and extend the following homologies: (i) between human chromosome 17, mouse chromosome 11, and rat chromosome 10 (RARA); (ii) between human chromosome 3, mouse chromosome 14, and rat chromosome 15 (RARB); and (iii) between human chromosome 12, mouse chromosome 15, and rat chromosome 7 (RARG).  相似文献   

20.
A panel of somatic cell hybrid cell lines containing different parts of human chromosome 20 and fluorescence in situ hybridization have been used to physically localize markers to human chromosome 20. Through these complementary approaches and genetic linkage analysis, D20S16, which is closely linked to the maturity onset diabetes of the young (MODY) locus, was mapped to band 20q12 --> q13.1. The gene for growth hormone-releasing factor (GHRF) was physically mapped and reassigned to 20q11, suggesting that GHRF plays no direct role in MODY. In addition, the genes for the chromosome 20-linked glycogen phosphorylase (GYPB) and the bone morphogenetic protein (BMP2A) have been assigned to chromosome 20p, and the interleukin-6-dependent DNA-binding protein (TCF5) has been assigned to 20q12 --> q13 by hybridization to genomic DNA from the panel of somatic cell hybrid cell lines. These approaches are useful for rapid localization of candidate genes for MODY and other DNA markers mapped to chromosome 20.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号