首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microarrays have been useful in understanding various biological processes by allowing the simultaneous study of the expression of thousands of genes. However, the analysis of microarray data is a challenging task. One of the key problems in microarray analysis is the classification of unknown expression profiles. Specifically, the often large number of non-informative genes on the microarray adversely affects the performance and efficiency of classification algorithms. Furthermore, the skewed ratio of sample to variable poses a risk of overfitting. Thus, in this context, feature selection methods become crucial to select relevant genes and, hence, improve classification accuracy. In this study, we investigated feature selection methods based on gene expression profiles and protein interactions. We found that in our setup, the addition of protein interaction information did not contribute to any significant improvement of the classification results. Furthermore, we developed a novel feature selection method that relies exclusively on observed gene expression changes in microarray experiments, which we call “relative Signal-to-Noise ratio” (rSNR). More precisely, the rSNR ranks genes based on their specificity to an experimental condition, by comparing intrinsic variation, i.e. variation in gene expression within an experimental condition, with extrinsic variation, i.e. variation in gene expression across experimental conditions. Genes with low variation within an experimental condition of interest and high variation across experimental conditions are ranked higher, and help in improving classification accuracy. We compared different feature selection methods on two time-series microarray datasets and one static microarray dataset. We found that the rSNR performed generally better than the other methods.  相似文献   

2.
MOTIVATION: Two important questions for the analysis of gene expression measurements from different sample classes are (1) how to classify samples and (2) how to identify meaningful gene signatures (ranked gene lists) exhibiting the differences between classes and sample subsets. Solutions to both questions have immediate biological and biomedical applications. To achieve optimal classification performance, a suitable combination of classifier and gene selection method needs to be specifically selected for a given dataset. The selected gene signatures can be unstable and the resulting classification accuracy unreliable, particularly when considering different subsets of samples. Both unstable gene signatures and overestimated classification accuracy can impair biological conclusions. METHODS: We address these two issues by repeatedly evaluating the classification performance of all models, i.e. pairwise combinations of various gene selection and classification methods, for random subsets of arrays (sampling). A model score is used to select the most appropriate model for the given dataset. Consensus gene signatures are constructed by extracting those genes frequently selected over many samplings. Sampling additionally permits measurement of the stability of the classification performance for each model, which serves as a measure of model reliability. RESULTS: We analyzed a large gene expression dataset with 78 measurements of four different cartilage sample classes. Classifiers trained on subsets of measurements frequently produce models with highly variable performance. Our approach provides reliable classification performance estimates via sampling. In addition to reliable classification performance, we determined stable consensus signatures (i.e. gene lists) for sample classes. Manual literature screening showed that these genes are highly relevant to our gene expression experiment with osteoarthritic cartilage. We compared our approach to others based on a publicly available dataset on breast cancer. AVAILABILITY: R package at http://www.bio.ifi.lmu.de/~davis/edaprakt  相似文献   

3.
MOTIVATION: An important challenge in the use of large-scale gene expression data for biological classification occurs when the expression dataset being analyzed involves multiple classes. Key issues that need to be addressed under such circumstances are the efficient selection of good predictive gene groups from datasets that are inherently 'noisy', and the development of new methodologies that can enhance the successful classification of these complex datasets. METHODS: We have applied genetic algorithms (GAs) to the problem of multi-class prediction. A GA-based gene selection scheme is described that automatically determines the members of a predictive gene group, as well as the optimal group size, that maximizes classification success using a maximum likelihood (MLHD) classification method. RESULTS: The GA/MLHD-based approach achieves higher classification accuracies than other published predictive methods on the same multi-class test dataset. It also permits substantial feature reduction in classifier genesets without compromising predictive accuracy. We propose that GA-based algorithms may represent a powerful new tool in the analysis and exploration of complex multi-class gene expression data. AVAILABILITY: Supplementary information, data sets and source codes are available at http://www.omniarray.com/bioinformatics/GA.  相似文献   

4.
A CART-based approach to discover emerging patterns in microarray data   总被引:1,自引:0,他引:1  
MOTIVATION: Cancer diagnosis using gene expression profiles requires supervised learning and gene selection methods. Of the many suggested approaches, the method of emerging patterns (EPs) has the particular advantage of explicitly modeling interactions among genes, which improves classification accuracy. However, finding useful (i.e. short and statistically significant) EP is typically very hard. METHODS: Here we introduce a CART-based approach to discover EPs in microarray data. The method is based on growing decision trees from which the EPs are extracted. This approach combines pattern search with a statistical procedure based on Fisher's exact test to assess the significance of each EP. Subsequently, sample classification based on the inferred EPs is performed using maximum-likelihood linear discriminant analysis. RESULTS: Using simulated data as well as gene expression data from colon and leukemia cancer experiments we assessed the performance of our pattern search algorithm and classification procedure. In the simulations, our method recovers a large proportion of known EPs while for real data it is comparable in classification accuracy with three top-performing alternative classification algorithms. In addition, it assigns statistical significance to the inferred EPs and allows to rank the patterns while simultaneously avoiding overfit of the data. The new approach therefore provides a versatile and computationally fast tool for elucidating local gene interactions as well as for classification. AVAILABILITY: A computer program written in the statistical language R implementing the new approach is freely available from the web page http://www.stat.uni-muenchen.de/~socher/  相似文献   

5.
The most widely used statistical methods for finding differentially expressed genes (DEGs) are essentially univariate. In this study, we present a new T(2) statistic for analyzing microarray data. We implemented our method using a multiple forward search (MFS) algorithm that is designed for selecting a subset of feature vectors in high-dimensional microarray datasets. The proposed T2 statistic is a corollary to that originally developed for multivariate analyses and possesses two prominent statistical properties. First, our method takes into account multidimensional structure of microarray data. The utilization of the information hidden in gene interactions allows for finding genes whose differential expressions are not marginally detectable in univariate testing methods. Second, the statistic has a close relationship to discriminant analyses for classification of gene expression patterns. Our search algorithm sequentially maximizes gene expression difference/distance between two groups of genes. Including such a set of DEGs into initial feature variables may increase the power of classification rules. We validated our method by using a spike-in HGU95 dataset from Affymetrix. The utility of the new method was demonstrated by application to the analyses of gene expression patterns in human liver cancers and breast cancers. Extensive bioinformatics analyses and cross-validation of DEGs identified in the application datasets showed the significant advantages of our new algorithm.  相似文献   

6.
METHODS AND RESULTS: We introduce a new method to discover many diversified and significant rules from high dimensional profiling data. We also propose to aggregate the discriminating power of these rules for reliable predictions. The discovered rules are found to contain low-ranked features; these features are found to be sometimes necessary for classifiers to achieve perfect accuracy. The use of low-ranked but essential features in our method is in contrast to the prevailing use of an ad-hoc number of only top-ranked features. On a wide range of data sets, our method displayed highly competitive accuracy compared to the best performance of other kinds of classification models. In addition to accuracy, our method also provides comprehensible rules to help elucidate the translation between raw data and useful knowledge.  相似文献   

7.
Microarray technology has become one of the elementary tools for researchers to study the genome of organisms. As the complexity and heterogeneity of cancer is being increasingly appreciated through genomic analysis, cancerous classification is an emerging important trend. Significant directed random walk is proposed as one of the cancerous classification approach which have higher sensitivity of risk gene prediction and higher accuracy of cancer classification. In this paper, the methodology and material used for the experiment are presented. Tuning parameter selection method and weight as parameter are applied in proposed approach. Gene expression dataset is used as the input datasets while pathway dataset is used to build a directed graph, as reference datasets, to complete the bias process in random walk approach. In addition, we demonstrate that our approach can improve sensitive predictions with higher accuracy and biological meaningful classification result. Comparison result takes place between significant directed random walk and directed random walk to show the improvement in term of sensitivity of prediction and accuracy of cancer classification.  相似文献   

8.
Microarray and beadchip are two most efficient techniques for measuring gene expression and methylation data in bioinformatics. Biclustering deals with the simultaneous clustering of genes and samples. In this article, we propose a computational rule mining framework, StatBicRM (i.e., statistical biclustering-based rule mining) to identify special type of rules and potential biomarkers using integrated approaches of statistical and binary inclusion-maximal biclustering techniques from the biological datasets. At first, a novel statistical strategy has been utilized to eliminate the insignificant/low-significant/redundant genes in such way that significance level must satisfy the data distribution property (viz., either normal distribution or non-normal distribution). The data is then discretized and post-discretized, consecutively. Thereafter, the biclustering technique is applied to identify maximal frequent closed homogeneous itemsets. Corresponding special type of rules are then extracted from the selected itemsets. Our proposed rule mining method performs better than the other rule mining algorithms as it generates maximal frequent closed homogeneous itemsets instead of frequent itemsets. Thus, it saves elapsed time, and can work on big dataset. Pathway and Gene Ontology analyses are conducted on the genes of the evolved rules using David database. Frequency analysis of the genes appearing in the evolved rules is performed to determine potential biomarkers. Furthermore, we also classify the data to know how much the evolved rules are able to describe accurately the remaining test (unknown) data. Subsequently, we also compare the average classification accuracy, and other related factors with other rule-based classifiers. Statistical significance tests are also performed for verifying the statistical relevance of the comparative results. Here, each of the other rule mining methods or rule-based classifiers is also starting with the same post-discretized data-matrix. Finally, we have also included the integrated analysis of gene expression and methylation for determining epigenetic effect (viz., effect of methylation) on gene expression level.  相似文献   

9.
Dynamic model-based clustering for time-course gene expression data   总被引:1,自引:0,他引:1  
Microarray technology has produced a huge body of time-course gene expression data. Such gene expression data has proved useful in genomic disease diagnosis and genomic drug design. The challenge is how to uncover useful information in such data. Cluster analysis has played an important role in analyzing gene expression data. Many distance/correlation- and static model-based clustering techniques have been applied to time-course expression data. However, these techniques are unable to account for the dynamics of such data. It is the dynamics that characterize the data and that should be considered in cluster analysis so as to obtain high quality clustering. This paper proposes a dynamic model-based clustering method for time-course gene expression data. The proposed method regards a time-course gene expression dataset as a set of time series, generated by a number of stochastic processes. Each stochastic process defines a cluster and is described by an autoregressive model. A relocation-iteration algorithm is proposed to identity the model parameters and posterior probabilities are employed to assign each gene to an appropriate cluster. A bootstrapping method and an average adjusted Rand index (AARI) are employed to measure the quality of clustering. Computational experiments are performed on a synthetic and three real time-course gene expression datasets to investigate the proposed method. The results show that our method allows the better quality clustering than other clustering methods (e.g. k-means) for time-course gene expression data, and thus it is a useful and powerful tool for analyzing time-course gene expression data.  相似文献   

10.
MOTIVATION: Various studies have shown that cancer tissue samples can be successfully detected and classified by their gene expression patterns using machine learning approaches. One of the challenges in applying these techniques for classifying gene expression data is to extract accurate, readily interpretable rules providing biological insight as to how classification is performed. Current methods generate classifiers that are accurate but difficult to interpret. This is the trade-off between credibility and comprehensibility of the classifiers. Here, we introduce a new classifier in order to address these problems. It is referred to as k-TSP (k-Top Scoring Pairs) and is based on the concept of 'relative expression reversals'. This method generates simple and accurate decision rules that only involve a small number of gene-to-gene expression comparisons, thereby facilitating follow-up studies. RESULTS: In this study, we have compared our approach to other machine learning techniques for class prediction in 19 binary and multi-class gene expression datasets involving human cancers. The k-TSP classifier performs as efficiently as Prediction Analysis of Microarray and support vector machine, and outperforms other learning methods (decision trees, k-nearest neighbour and na?ve Bayes). Our approach is easy to interpret as the classifier involves only a small number of informative genes. For these reasons, we consider the k-TSP method to be a useful tool for cancer classification from microarray gene expression data. AVAILABILITY: The software and datasets are available at http://www.ccbm.jhu.edu CONTACT: actan@jhu.edu.  相似文献   

11.
基于SVM和平均影响值的人肿瘤信息基因提取   总被引:1,自引:0,他引:1       下载免费PDF全文
基于基因表达谱的肿瘤分类信息基因选取是发现肿瘤特异表达基因、探索肿瘤基因表达模式的重要手段。借助由基因表达谱获得的分类信息进行肿瘤诊断是当今生物信息学领域中的一个重要研究方向,有望成为临床医学上一种快速而有效的肿瘤分子诊断方法。鉴于肿瘤基因表达谱样本数据维数高、样本量小以及噪音大等特点,提出一种结合支持向量机应用平均影响值来寻找肿瘤信息基因的算法,其优点是能够搜索到基因数量尽可能少而分类能力尽可能强的多个信息基因子集。采用二分类肿瘤数据集验证算法的可行性和有效性,对于结肠癌样本集,只需3个基因就能获得100%的留一法交叉验证识别准确率。为避免样本集的不同划分对分类性能的影响,进一步采用全折交叉验证方法来评估各信息基因子集的分类性能,优选出更可靠的信息基因子集。与基它肿瘤分类方法相比,实验结果在信息基因数量以及分类性能方面具有明显的优势。  相似文献   

12.
This paper introduces a novel generic approach for classification problems with the objective of achieving maximum classification accuracy with minimum number of features selected. The method is illustrated with several case studies of gene expression data. Our approach integrates filter and wrapper gene selection methods with an added objective of selecting a small set of non-redundant genes that are most relevant for classification with the provision of bins for genes to be swapped in the search for their biological relevance. It is capable of selecting relatively few marker genes while giving comparable or better leave-one-out cross-validation accuracy when compared with gene ranking selection approaches. Additionally, gene profiles can be extracted from the evolving connectionist system, which provides a set of rules that can be further developed into expert systems. The approach uses an integration of Pearson correlation coefficient and signal-to-noise ratio methods with an adaptive evolving classifier applied through the leave-one-out method for validation. Datasets of gene expression from four case studies are used to illustrate the method. The results show the proposed approach leads to an improved feature selection process in terms of reducing the number of variables required and an increased in classification accuracy.  相似文献   

13.
Hong H  Tong W  Perkins R  Fang H  Xie Q  Shi L 《DNA and cell biology》2004,23(10):685-694
The wealth of knowledge imbedded in gene expression data from DNA microarrays portends rapid advances in both research and clinic. Turning the prodigious and noisy data into knowledge is a challenge to the field of bioinformatics, and development of classifiers using supervised learning techniques is the primary methodological approach for clinical application using gene expression data. In this paper, we present a novel classification method, multiclass Decision Forest (DF), that is the direct extension of the two-class DF previously developed in our lab. Central to DF is the synergistic combining of multiple heterogenic but comparable decision trees to reach a more accurate and robust classification model. The computationally inexpensive multiclass DF algorithm integrates gene selection and model development, and thus eliminates the bias of gene preselection in crossvalidation. Importantly, the method provides several statistical means for assessment of prediction accuracy, prediction confidence, and diagnostic capability. We demonstrate the method by application to gene expression data for 83 small round blue-cell tumors (SRBCTs) samples belonging to one of four different classes. Based on 500 runs of 10-fold crossvalidation, tumor prediction accuracy was approximately 97%, sensitivity was approximately 95%, diagnostic sensitivity was approximately 91%, and diagnostic accuracy was approximately 99.5%. Among 25 genes selected to distinguish tumor class, 12 have functional information in the literature implicating their involvement in cancer. The four types of SRBCTs samples are also distinguishable in a clustering analysis based on the expression profiles of these 25 genes. The results demonstrated that the multiclass DF is an effective classification method for analysis of gene expression data for the purpose of molecular diagnostics.  相似文献   

14.
Micro array data provides information of expression levels of thousands of genes in a cell in a single experiment. Numerous efforts have been made to use gene expression profiles to improve precision of tumor classification. In our present study we have used the benchmark colon cancer data set for analysis. Feature selection is done using t‐statistic. Comparative study of class prediction accuracy of 3 different classifiers viz., support vector machine (SVM), neural nets and logistic regression was performed using the top 10 genes ranked by the t‐statistic. SVM turned out to be the best classifier for this dataset based on area under the receiver operating characteristic curve (AUC) and total accuracy. Logistic Regression ranks as the next best classifier followed by Multi Layer Perceptron (MLP). The top 10 genes selected by us for classification are all well documented for their variable expression in colon cancer. We conclude that SVM together with t-statistic based feature selection is an efficient and viable alternative to popular techniques.  相似文献   

15.
MOTIVATION: The increasing use of microarray technologies is generating large amounts of data that must be processed in order to extract useful and rational fundamental patterns of gene expression. Hierarchical clustering technology is one method used to analyze gene expression data, but traditional hierarchical clustering algorithms suffer from several drawbacks (e.g. fixed topology structure; mis-clustered data which cannot be reevaluated). In this paper, we introduce a new hierarchical clustering algorithm that overcomes some of these drawbacks. RESULT: We propose a new tree-structure self-organizing neural network, called dynamically growing self-organizing tree (DGSOT) algorithm for hierarchical clustering. The DGSOT constructs a hierarchy from top to bottom by division. At each hierarchical level, the DGSOT optimizes the number of clusters, from which the proper hierarchical structure of the underlying dataset can be found. In addition, we propose a new cluster validation criterion based on the geometric property of the Voronoi partition of the dataset in order to find the proper number of clusters at each hierarchical level. This criterion uses the Minimum Spanning Tree (MST) concept of graph theory and is computationally inexpensive for large datasets. A K-level up distribution (KLD) mechanism, which increases the scope of data distribution in the hierarchy construction, was used to improve the clustering accuracy. The KLD mechanism allows the data misclustered in the early stages to be reevaluated at a later stage and increases the accuracy of the final clustering result. The clustering result of the DGSOT is easily displayed as a dendrogram for visualization. Based on a yeast cell cycle microarray expression dataset, we found that our algorithm extracts gene expression patterns at different levels. Furthermore, the biological functionality enrichment in the clusters is considerably high and the hierarchical structure of the clusters is more reasonable. AVAILABILITY: DGSOT is available upon request from the authors.  相似文献   

16.
Microarray data has a high dimension of variables but available datasets usually have only a small number of samples, thereby making the study of such datasets interesting and challenging. In the task of analyzing microarray data for the purpose of, e.g., predicting gene-disease association, feature selection is very important because it provides a way to handle the high dimensionality by exploiting information redundancy induced by associations among genetic markers. Judicious feature selection in microarray data analysis can result in significant reduction of cost while maintaining or improving the classification or prediction accuracy of learning machines that are employed to sort out the datasets. In this paper, we propose a gene selection method called Recursive Feature Addition (RFA), which combines supervised learning and statistical similarity measures. We compare our method with the following gene selection methods:
  • Support Vector Machine Recursive Feature Elimination (SVMRFE)
  • Leave-One-Out Calculation Sequential Forward Selection (LOOCSFS)
  • Gradient based Leave-one-out Gene Selection (GLGS)
To evaluate the performance of these gene selection methods, we employ several popular learning classifiers on the MicroArray Quality Control phase II on predictive modeling (MAQC-II) breast cancer dataset and the MAQC-II multiple myeloma dataset. Experimental results show that gene selection is strictly paired with learning classifier. Overall, our approach outperforms other compared methods. The biological functional analysis based on the MAQC-II breast cancer dataset convinced us to apply our method for phenotype prediction. Additionally, learning classifiers also play important roles in the classification of microarray data and our experimental results indicate that the Nearest Mean Scale Classifier (NMSC) is a good choice due to its prediction reliability and its stability across the three performance measurements: Testing accuracy, MCC values, and AUC errors.  相似文献   

17.
Gene subset selection is essential for classification and analysis of microarray data. However, gene selection is known to be a very difficult task since gene expression data not only have high dimensionalities, but also contain redundant information and noises. To cope with these difficulties, this paper introduces a fuzzy logic based pre-processing approach composed of two main steps. First, we use fuzzy inference rules to transform the gene expression levels of a given dataset into fuzzy values. Then we apply a similarity relation to these fuzzy values to define fuzzy equiva- lence groups, each group containing strongly similar genes. Dimension reduction is achieved by considering for each group of similar genes a single representative based on mutual information. To assess the usefulness of this approach, exten- sive experimentations were carried out on three well-known public datasets with a combined classification model using three statistic filters and three classifiers.  相似文献   

18.
MOTIVATION: The analysis of gene expression data in its chromosomal context has been a recent development in cancer research. However, currently available methods fail to account for variation in the distance between genes, gene density and genomic features (e.g. GC content) in identifying increased or decreased chromosomal regions of gene expression. RESULTS: We have developed a model-based scan statistic that accounts for these aspects of the complex landscape of the human genome in the identification of extreme chromosomal regions of gene expression. This method may be applied to gene expression data regardless of the microarray platform used to generate it. To demonstrate the accuracy and utility of this method, we applied it to a breast cancer gene expression dataset and tested its ability to predict regions containing medium-to-high level DNA amplification (DNA ratio values >2). A classifier was developed from the scan statistic results that had a 10-fold cross-validated classification rate of 93% and a positive predictive value of 88%. This result strongly suggests that the model-based scan statistic and the expression characteristics of an increased chromosomal region of gene expression can be used to accurately predict chromosomal regions containing amplified genes. AVAILABILITY: Functions in the R-language are available from the author upon request. CONTACT: fcouples@umich.edu.  相似文献   

19.
This paper introduces a new technique in the investigation of object classification and illustrates the potential use of this technique for the analysis of a range of biological data, using avian morphometric data as an example. The nascent variable precision rough sets (VPRS) model is introduced and compared with the decision tree method ID3 (through a ‘leave n out’ approach), using the same dataset of morphometric measures of European barn swallows (Hirundo rustica) and assessing the accuracy of gender classification based on these measures. The results demonstrate that the VPRS model, allied with the use of a modern method of discretization of data, is comparable with the more traditional non-parametric ID3 decision tree method. We show that, particularly in small samples, the VPRS model can improve classification and to a lesser extent prediction aspects over ID3. Furthermore, through the ‘leave n out’ approach, some indication can be produced of the relative importance of the different morphometric measures used in this problem. In this case we suggest that VPRS has advantages over ID3, as it intelligently uses more of the morphometric data available for the data classification, whilst placing less emphasis on variables with low reliability. In biological terms, the results suggest that the gender of swallows can be determined with reasonable accuracy from morphometric data and highlight the most important variables in this process. We suggest that both analysis techniques are potentially useful for the analysis of a range of different types of biological datasets, and that VPRS in particular has potential for application to a range of biological circumstances.  相似文献   

20.
Identifying subspace gene clusters from the gene expression data is useful for discovering novel functional gene interactions. In this paper, we propose to use low-rank representation (LRR) to identify the subspace gene clusters from microarray data. LRR seeks the lowest-rank representation among all the candidates that can represent the genes as linear combinations of the bases in the dataset. The clusters can be extracted based on the block diagonal representation matrix obtained using LRR, and they can well capture the intrinsic patterns of genes with similar functions. Meanwhile, the parameter of LRR can balance the effect of noise so that the method is capable of extracting useful information from the data with high level of background noise. Compared with traditional methods, our approach can identify genes with similar functions yet without similar expression profiles. Also, it could assign one gene into different clusters. Moreover, our method is robust to the noise and can identify more biologically relevant gene clusters. When applied to three public datasets, the results show that the LRR based method is superior to existing methods for identifying subspace gene clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号