首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The response of the antioxidative systems of leaf cell mitochondria and peroxisomes of the cultivated tomato Lycopersicon esculentum (Lem) and its wild salt-tolerant related species Lycopersicon pennellii (Lpa) to NaCl 100 mM stress was investigated. Salt-dependent oxidative stress was evident in Lem mitochondria as indicated by their raised levels of lipid peroxidation and H2O2 content whereas their reduced ascorbate and reduced glutathione contents decreased. Concomitantly, SOD activity decreased whereas APX and GPX activities remained at control level. In contrast, the mitochondria of salt-treated Lpa did not exhibit salt-induced oxidative stress. In their case salinity induced an increase in the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione-dependent peroxidase (GPX). Lpa peroxisomes exhibited increased SOD, APX, MDHAR and catalase activity and their lipid peroxidation and H2O2 levels were not affected by the salt treatment. The activities of all these enzymes remained at control level in peroxisomes of salt-treated Lem plants. The salt-induced increase in the antioxidant enzyme activities in the Lpa plants conferred cross-tolerance towards enhanced mitochondrial and peroxisomal reactive oxygen species production imposed by salicylhydroxamic acid (SHAM) and 3-amino-1,2,4-triazole (3-AT), respectively.  相似文献   

2.
Root plastids of the cultivated tomato Lycopersicon esculentum (Lem) exhibited salt-induced oxidative stress as indicated by the increased H 2 O 2 and lipid peroxidation levels which were accompanied with increased contents of the oxidized forms of ascorbate and glutathione. In contrast, H 2 O 2 level decreased, lipid peroxidation level slightly decreased and the levels of the reduced forms of ascorbate and glutathione increased in plastids of L. pennellii (Lpa) species in response to salinity. This better protection of Lpa root plastids from salt-induced oxidative stress was correlated with increased activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidases (POD), monodehydroascorbate reductase (MDHAR), glutathione peroxidase (GPX), glutathione- S -transferase (GST) and phospholipid hydroperoxide glutathione peroxidase (PHGPX). In the plastids of both species, activities of SOD, APX, and POD could be resolved into several isozymes. In Lem plastids two Cu/ZnSOD isozymes were found whereas in Lpa an additional FeSOD type could also be detected. In response to salinity, activities of selected SOD, APX, and POD isozymes were increased in Lpa, while in Lem plastids the activities of most of SOD and POD isozymes decreased. Taken together, it is suggested that plastids play an important role in the adaptation of Lpa roots to salinity.  相似文献   

3.
The response of the chloroplastic antioxidant system of the cultivated tomato Lycopersicon esculentum (Lem) and its wild salt-tolerant related species L. pennellii (Lpa) to NaCl stress was studied. An increase in H2O2 level and membrane lipid peroxidation was observed in chloroplasts of salt-stressed Lem. In contrast, a decrease in these indicators of oxidative stress characterized chloroplasts of salt-stressed Lpa plants. This differential response of Lem and Lpa to salinity, correlates with the activities of the antioxidative enzymes in their chloroplasts. Increased activities of total superoxide dismutase (SOD), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), glutathione-S-transferase (GST), phospholipid hydroperoxide glutathione peroxidase (PHGPX) and several isoforms of non-specific peroxidases (POD) were found in chloroplasts of salt-treated Lpa plants. In these chloroplasts, in contrast, activity of lipoxygenase (LOX) decreased while in those of salt-stressed Lem it increased. Although total SOD activity slightly increased in chloroplasts of salt-treated Lem plants, differentiation between SOD types revealed that only stromal Cu/ZnSOD activity increased. In contrast, in chloroplasts of salt-treated Lpa plants FeSOD activity increased while Cu/ZnSOD activity remained unchanged. These data indicate that salt-dependent oxidative stress and damage, suffered by Lem chloroplasts, was effectively alleviated in Lpa chloroplasts by the selective up-regulation of a set of antioxidative enzymes. Further support for the above idea was supplied by leaf discs experiments in which pre-exposure of Lpa plants to salt-treatment conferred cross-tolerance to paraquat-induced oxidative stress while increased oxidative damage by paraquat-treatment was found in salt-stressed Lem plants.  相似文献   

4.
The response of the antioxidant system to salt stress was studied in the roots of the cultivated tomato Lycopersicon esculentum Mill. cv. M82 (Lem) and its wild salt-tolerant relative L. pennellii (Corr.) D'Arcy accession Atico (Lpa). Roots of control and salt (100 m M NaCl)-stressed plants were sampled at various times after commencement of salinization. A gradual increase in the membrane lipid peroxidation in salt-stressed root of Lem was accompanied with decreased activities of the antioxidant enzymes: superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11) and decreased contents of the antioxidants ascorbate and glutathione and their redox states. In contrast, increased activities of the SOD, CAT, APX, monodehydroascorbate reductase (MDHAR; EC 1.6.5.4), and increased contents of the reduced forms of ascorbate and glutathione and their redox states were found in salt-stressed roots of Lpa, in which the level of membrane lipid peroxidation remained unchanged. It seems that the better protection of Lpa roots from salt-induced oxidative damage results, at least partially, from the increased activity of their antioxidative system.  相似文献   

5.
研究了外源一氧化氮(NO)供体硝普钠(SNP)对NaCl处理下红树植物秋茄(Kan-deliacandel)幼苗叶片中抗氧化酶活性、抗氧化物质及脯氨酸含量的影响。结果表明:NaCl处理下,秋茄幼苗叶片中超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)等4种活性氧清除酶的活性均受到明显抑制(P<0.05),SNP可以不同程度地恢复SOD、POD、CAT的活性,但对APX活性影响不大;SNP提高谷胱甘肽(GSH)及类胡萝卜素(Car)的含量,促进脯氨酸含量的上升,显著降低叶片中过氧化氢(H2O2)和丙二醛(MDA)的累积。表明外源NO可以缓解NaCl处理诱导的秋茄幼苗叶片氧化损伤,降低膜脂过氧化水平,有利于秋茄适应盐生环境。  相似文献   

6.
Mitochondria require robust antioxidant defences to prevent lipid peroxidation and to protect tricarboxylic acid cycle enzymes from oxidative damage. Mitochondria from wild, salt‐tolerant tomato, Lycopersicon pennellii (Lpa) did not exhibit lipid peroxidation in response to high salinity (100 mm NaCl), whereas those isolated from cultivated tomato, L. esculentum (Lem), accumulated malondialdehyde. The activity, intraorganellar distribution and salt response of mitochondrial ascorbate peroxidase (mAPX) differed dramatically in the two species. In Lem mitochondria, the majority (84%) of mAPX was associated with membranes, being located either on the inner membrane, facing the intermembrane space, or on the outer membrane. Total mAPX activity did not increase substantially in response to salt, although the proportion of matrix APX increased. In contrast, 61% of Lpa mAPX activity was soluble in the matrix, the remainder being bound to the matrix face of the inner membrane. Salt treatment increased the activity of all mAPX isoforms in Lpa, without altering their intramitochondrial distribution. The membrane‐bound isoforms were detected in mitochondria of both species by western blotting and found to be induced by salt in Lpa. These observations suggest that matrix‐associated APX isoforms could act in concert with other mitochondrial antioxidants to protect against salt‐induced oxidative stress.  相似文献   

7.
The possible involvement of the antioxidative system in the tolerance to salt stress was studied in the cultivated tomato Lycopersicon esculentum Mill. cv. M82 (M82) and its wild salt‐tolerant relative L. pennellii (Corn) D'Arcy accession Atico (Lpa). All analyses, except that of monodehydroascorbate reductase (MDHAR), were performed of the youngest fully‐expanded leaf of control and salt (100 m M NaCl) stressed plants, 4, 7, 10, 14, 18 and 22 days after completing the stress treatment. In Lpa, constitutive level of lipid peroxidation and activities of catalase (CAT) and glutathione reductase (GR) were lower while the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) were inherently higher than in M82. Relative to M82, lipid peroxidation was much lower and the activities of SOD, CAT and APX were higher in Lpa at 100 m M NaCl. The activity of DHAR decreased more in Lpa than in M82 under salt stress, and the activity of MDHAR, which was lower in Lpa than in M82 under control conditions, increased much more and to a higher level in salt‐treated Lpa plants. GR activity decreased similarly in the two species under salt stress. The results of these analyses suggest that the wild salt‐tolerant Lpa plants are better protected against active oxygen species (AOS), inherently and under salt stress, than the relatively sensitive plants of the cultivated species.  相似文献   

8.
The activities of the ascorbate-glutathione cycle enzymes ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) and SOD were studied in cell organelles of the cultivated tomato Lycopersicon esculentum (M82) and its wild salt-tolerant related species Lycopersicon pennellii (Lpa). All four enzymes of the ascorbate-glutathione cycle were present in chloroplasts/plastids, mitochondria and peroxisomes of leaf and root cells of both tomato species. In all leaf and root organelles of both species, the activity of MDHAR was similar to, or higher than, that of APX, while the activity of DHAR was one order of magnitude lower than that of MDHAR. Based on these results, it is suggested that in the organelles of both tomato species, ascorbate is regenerated mainly by MDHAR. In both tomato species, GR activity, and to a lesser extent DHAR activity, was found to reside in the soluble fraction of all leaf and root cell organelles, while APX and MDHAR activities were distributed between the membrane and soluble fractions. A higher SOD to APX activity ratio in all Lpa organelles was the major difference between the two tomato species. It is possible that this higher ratio contributes to the inherently better protection of Lpa from salt stress, as was previously reported.  相似文献   

9.
Leaves of maize (Zea mays L.) seedlings were supplied with different concentrations of abscisic acid (ABA). Its effects on the levels of superoxide radical (O(2)(-)), hydrogen peroxide (H(2)O(2)) and the content of catalytic Fe, the activities of several antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), the contents of several non-enzymatic antioxidants such as ascorbate (ASC), reduced glutathione (GSH), alpha-tocopherol (alpha-TOC) and carotenoid (CAR), and the degrees of the oxidative damage to the membrane lipids and proteins were examined. Treatment with 10 and 100 microM ABA significantly increased the levels of O(2)(-) and H(2)O(2), followed by an increase in activities of SOD, CAT, APX and GR, and the contents of ASC, GSH, alpha-TOC and CAR in a dose- and time-dependent pattern in leaves of maize seedlings. An oxidative damage expressed as lipid peroxidation, protein oxidation, and plasma membrane leakage did not occur except for a slight increase with 100 microM ABA treatment for 24 h. Treatment with 1,000 microM ABA led to a more abundant generation of O(2)(-) and H(2)O(2) and a significant increase in the content of catalytic Fe, which is critical for H(2)O(2)-dependent hydroxyl radical production. The activities of these antioxidative enzymes and the contents of alpha-TOC and CAR were still maintained at a higher level, but no longer further enhanced when compared with the treatment of 100 microM ABA. The contents of ASC and GSH had no changes in leaves treated with 1,000 microM ABA. These results indicate that treatment with low concentrations of ABA (10 to 100 microM) induced an antioxidative defence response against oxidative damage, but a high concentration of ABA (1,000 microM) induced an excessive generation of AOS and led to an oxidative damage in plant cells.  相似文献   

10.
Shi Q  Bao Z  Zhu Z  He Y  Qian Q  Yu J 《Phytochemistry》2005,66(13):1551-1559
The effects of exogenous silicon (Si) on plant growth, activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and catalase, and concentrations of ascorbate and glutathione were investigated in cucumber (Cucumis sativus L.) plants treated with excess manganese (Mn) (600 microM). Compared with the treatment of normal Mn (10 microM), excess Mn significantly increased H2O2 concentration and lipid peroxidation indicated by accumulation of thiobarbituric acid reactive substances. The leaves showed apparent symptoms of Mn toxicity and the plant growth was significantly inhibited by excess Mn. The addition of Si significantly decreased lipid peroxidation caused by excess Mn, inhibited the appearance of Mn toxicity symptoms, and improved plant growth. This alleviation of Mn toxicity by Si was related to a significant increase in the activities of SOD, APX, DHAR and GR and the concentrations of ascorbate and glutathione.  相似文献   

11.
We investigated the role of selenium (Se) against aluminium (Al) stress in ryegrass by evaluating the growth responses and the antioxidant properties of plants cultured hydroponically with Al (0 or 0.2 mM) and selenite (0–10 µM Se). Al addition significantly reduced the yield and length of shoots and roots, and most Al was accumulated in the roots. Al also enhanced lipid peroxidation and activated the peroxidase (POD), ascorbate peroxidase (APX) and superoxide dismutase (SOD) enzymes in the roots. Se application up to 2 µM improved root growth and steadily decreased thiobarbituric acid reactive substances (TBARS) accumulation in plants treated with 0 and 0.2 mM Al. However, above 2 µM, Se induced stress in plants grown with or without Al. Significant changes in antioxidant enzymes activities were also found as a result of the added Se. At low Se addition levels POD was activated, whereas APX activity decreased irrespective of added Al. Furthermore, Se supplied up to 2 µM greatly decreased root SOD activity in Al-stressed plants. Our study provides evidence that Se alleviated the Al-induced oxidative stress in ryegrass roots through the enhancement of the spontaneous dismutation of superoxide radicals and the subsequent activation of POD enzyme.  相似文献   

12.
The effects of NiSO4, calcium, and L-histidine (His) on the components of ascorbate-glutathione cycle, antioxidant enzymes and lipid peroxidation in a tomato cultivar Early Urbana Y was investigated. The activities of enzymes including catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), superoxide dismutase (SOD), glutathione reductase (GR), lipoxygenase (LOX), and phenylalanine ammonia lyase (PAL) were measured. In addition, the content of H2O2, ascorbate (ASC), dehydroascorbate (DHA), reduced glutathione (GSH), chlorophyll (Chl) a+b, carotenoids, proteins, malondialdehyde (MDA), membrane aldehydes, and electrolyte leakage (EL) were determined. Results suggest that the excess of Ni increased the content of H2O2, MDA, membrane aldehydes and proteins in roots as well as GPX, LOX, APX activities, and EL in leaves, whereas Ca and His ameliorated these effects. Moreover, decreasing leaf GSH and DHA content and GR activity were observed under the Ni stress, but these parameters were raised by Ca plus His treatment. However, no improvement in leaf protein, ASC, root GSH content, and activities of PAL and CAT were observed by using Ca or His under Ni stress.  相似文献   

13.
The present study investigated the effects of aluminum on lipid peroxidation, accumulation of reactive oxygen species and antioxidative defense systems in root tips of wheat (Triticum aestivum L.) seedlings. Exposure to 30 μM Al increased contents of malondialdehyde, H2O2, suproxide radical and Evans blue uptake in both genotypes, with increases being greater in Al-sensitive genotype Yangmai-5 than in Al-tolerant genotype Jian-864. In addition, Al treatment increased the activity of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), glutathione reductase (GR) and glutathione peroxidase (GPX), as well as the contents of ascorbate (AsA) and glutathione (GSH) in both genotypes. The increased activities SOD and POD were greater in Yangmai-5 than in Jian-864, whereas the opposite was true for the activities of CAT, APX, MDHAR, GR and GPX and the contents of AsA and GSH. Consequently, the antioxidant capacity in terms of 2,2-diphenyl-1-picrylhydrazyl (DPPH)-radical scavenging activity and ferric reducing/antioxidant power (FRAP) was greater in Jian-864 than in Yangmai-5.  相似文献   

14.
夜间低温胁迫对番茄叶片活性氧代谢及AsA-GSH循环的影响   总被引:3,自引:0,他引:3  
以番茄品种‘辽园多丽’为试材,利用人工气候室模拟设施生产中的夜间低温胁迫环境,研究9℃和6℃夜低温对番茄叶片活性氧代谢和AsA-GSH循环的影响。结果显示:9℃和6℃夜间低温胁迫3~9d可诱导番茄叶片中超氧阴离子(O2.-)产生速率、过氧化氢(H2O2)和丙二醛(MDA)含量上升;抑制过氧化物酶(POD)、过氧化氢酶(CAT)的活性,增加超氧化物歧化酶(SOD)和AsA-GSH循环中抗坏血酸过氧化物酶(APX)、脱氢抗坏血酸还原酶(DHAR)、谷胱甘肽还原酶(GR)的活性,并提高还原型抗坏血酸(AsA)、还原型谷胱甘肽(GSH)、氧化型谷胱甘肽(GSSG)的含量。研究表明,在夜间低温胁迫过程中,增加的番茄叶片中SOD活性和AsA-GSH循环清除活性氧的能力并未与氧还原的速率一致,从而导致番茄叶片中活性氧的累积,使细胞膜系统受到一定破坏,在6℃处理的植物中尤为明显。  相似文献   

15.
大豆萌发过程的活性氧代谢   总被引:16,自引:0,他引:16  
本文研究了大豆萌发过程中活性氧的产生与清除,并探讨了光因子在活性氧代谢中的作用。大豆呼吸强度、O产生速率及H2O2水平都在吸水后第四天达到高峰,然后下降,三者的变化趋势同步。SOD、POD及APX的活性随萌发过程而逐渐增强,最后趋于平稳。SOD同工酶谱中分别于萌发的第二、第三天各出现一条新的酶带。CAT在萌发的初期猛增50倍左右,之后趋于稳定。在三种清除H2O2的酶(CAT、POD、APX)中,CAT清除H2O2的能力远远高于POD与APX,CAT可能是大豆萌发过程中最主要的H2O2清除酶。光萌发时呼吸强度低于暗中萌发,但O产生速率与H2O2水平高于暗萌发,光萌发时O的产生占总耗氧量的1.1—2.7%,而暗中萌发为0.9—1.3%。光条件下SOD、APX活性明显高于暗中萌发,而POD与CAT则在光和暗条件下相差不大。  相似文献   

16.
水分胁迫下丛枝菌根真菌对红橘叶片活性氧代谢的影响   总被引:1,自引:0,他引:1  
研究了水分胁迫下接种地表球囊霉(Glomus versiforme (Karsten) Berch)对红橘(Citrus tangerine Hort. ex Tanaka)叶片活性氧代谢的影响.结果表明:水分胁迫显著抑制了地表球囊霉对红橘根系的侵染,抑制率为33%.在正常供水和水分胁迫下,接种地表球囊霉处理的红橘叶片磷含量显著增加,与未接种处理相比,分别增加了45%和27%,丙二醛(MDA)和H2O2含量分别降低了25%、21%和16%、16%.正常供水和水分胁迫下接种地表球囊霉增强了叶片超氧化物岐化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性;提高了可溶性蛋白质、还原型抗坏血酸(ASC)和总抗坏血酸(TASC)含量.水分胁迫下接种处理显著降低了叶片超氧阴离子自由基(O2-·)含量,与正常供水相比降低了31%.表明菌根化红橘植株的抗旱性增强.  相似文献   

17.
The effect of silicon (Si) on the growth, sodium (Na), chloride (Cl), boron (B) concentrations, lipid peroxidation (MDA), membrane permeability (MP), lypoxygenase activity (LOX), proline (PRO) and H(2)O(2) accumulation, and the activities of major antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT and ascorbate peroxidase, APX) of barley grown in original sodic-B toxic soil were investigated. Si applied to the sodic-B toxic soil at 70, 140 and 280 mg kg(-1) levels significantly increased Si concentrations of the plants and counteracted the deleterious effects of sodicity (Na ions) and B on shoot growth. Membrane permeability and the concentrations of H(2)O(2) and MDA increased, while PRO concentration decreased in plants grown in sodic-B toxic soil without Si. LOX activity was increased by applied Si. Compared with control plants, the activities of SOD and CAT were decreased, but APX was increased by applied Si levels.  相似文献   

18.
The aim of this work was to investigate the balance between the activities of ascorbate peroxidase (APX) and phenol peroxidases (POD) and cowpea root growth in response to dehydration and salt stress. Root growth and indicators of oxidative response were markedly changed in response to salinity and dehydration. Salt treatment strongly inhibited root elongation, which was associated with an increase in lignin content and a significant decrease in the concentrations of apoplastic hydrogen peroxide (H2O2) and ascorbate. In conditions of extreme salinity, cytosol–APX activity was significantly decreased. In contrast, cell-wall POD activity was greatly increased, whereas lipid peroxidation was unchanged. These results indicate that POD could be involved in both H2O2 scavenging and the inhibition of root elongation under high salinity. In contrast, dehydration stimulated primary root elongation and increased lipid peroxidation and apoplastic ascorbate content, but it did not change APX and POD activities or H2O2 concentration. When cowpea roots were subjected to salinity followed by dehydration, the water and pressure potentials were decreased, and lipid peroxidation was markedly increased, highlighting the additive nature of the inhibitory effects caused by salt and dehydration. The proline concentration was markedly increased by dehydration alone, as well as by salt followed by dehydration, suggesting a possible role for proline in osmotic adjustment. Salinity and dehydration induce contrasting responses in the growth and morphology of cowpea roots. These effects are associated with different types of oxidative modulation involving cytosolic-APX and cell-wall POD activities and apoplast H2O2 and ascorbate levels.  相似文献   

19.
王红霞  胡金朝  施国新  杨海燕  李阳  赵娟  许晔 《生态学报》2010,30(10):2784-2792
采用营养液水培的方法,研究了外源亚精胺(Spd)和精胺(Spm)对Cu胁迫下水鳖叶片3种形态多胺(PAs)、抗氧化系统及营养元素的影响。结果表明:(1)Cu胁迫使水鳖叶片腐胺(Put)急剧积累,Spd和Spm明显下降,从而使(Spd+Spm)/Put比值也随之下降。外源Spd和Spm显著或极显著逆转Cu诱导的PAs变化,抑制Put的积累,缓解Spd和Spm的下降,从而提高了(Spd+Spm)/Put比值。(2)外源Spd和Spm抑制了Cu胁迫诱导的多胺氧化酶(PAO)的增加,缓解了二胺氧化酶(DAO)的下降。(3)与单一Cu胁迫相比,Spd和Spm显著或极显著提高了超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)活性和抗坏血酸(AsA)、谷胱甘肽(GSH)、游离脯氨酸(Pro)含量,从而降低了超氧阴离子(O2.-)产生速率和过氧化氢(H2O2)含量,极显著降低了丙二醛(MDA)含量,缓解了Cu诱导的氧化胁迫。(4)外源Spd和Spm显著或极显著缓解了Cu胁迫下矿质营养元素吸收平衡的紊乱。以上结果均说明了外施Spd和Spm可增加水鳖对Cu胁迫的耐受性。  相似文献   

20.
We studied the effects of different concentrations of mercury (0.0 to 100 μM) on growth and photosynthetic efficiency in rice plants treated for 21 d. In addition, we investigated how this metal affected the malondialdehyde (MDA) content as well as the activity of five antioxidant enzymes — superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), guaiacol peroxidase (POD), and catalase (CAT). Photosynthetic efficiency (Fμ/Fm) and seedling growth decreased as the concentration of Hg was increased in the growth media. Plants also responded to Hg-induced oxidative stress by changing the levels of their antioxidative enzymes. Enhanced lipid peroxidation was observed in both leaves and roots that had been exposed to oxidative stress, with leaves showing higher enzymatic activity. Both SOD and APX activities increased in treatments with up to 50 μM Hg, then decreased at higher concentrations. In the leaves, both CAT and POD activities increased gradually, with CAT levels decreasing at higher concentrations. In the roots, however, CAT activity remained unchanged while that of POD increased a bit more than did the control for concentrations of up to 10 μM Hg. At higher Hg levels, both CAT and POD activities decreased. GR activity increased in leaves exposed to no more than 0.25 μM Hg, then decreased gradually. In contrast, its activity was greatly inhibited in the roots. Based on these results, we suggest that when rice plants are exposed to different concentrations of mercury, their antioxidative enzymes become involved in defense mechanisms against the free radicals that are induced by this stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号