首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Combinatorial fluorescence energy transfer (CFET) tags, constructed by exploiting energy transfer and combinatorial synthesis, allow multiple biological targets to be analyzed simultaneously. We here describe a multiplex single nucleotide polymorphism (SNP) assay based on single base extension (SBE) using CFET tags and biotinylated dideoxynucleotides (biotin-ddNTPs). A library of CFET-labeled oligonucleotide primers was mixed with biotin-ddNTPs, DNA polymerase and the DNA templates containing the SNPs in a single tube. The nucleotide at the 3′-end of each CFET-labeled oligonucleotide primer was complementary to a particular SNP in the template. Only the CFET-labeled primer that is fully complementary to the DNA template was extended by DNA polymerase with a biotin-ddNTP. We isolated the DNA extension fragments that carry a biotin at the 3′-end by capture with streptavidin-coated magnetic beads, while the unextended primers were eliminated. The biotinylated fluorescent DNA fragments were subsequently analyzed in a multicolor fluorescence electrophoresis system. The distinct fluorescence signature and electrophoretic mobility of each DNA extension product in the electropherogram coded the SNPs without the use of a sizing standard. We simultaneously distinguished six nucleotide variations in synthetic DNA templates and a PCR product from the retinoblastoma tumor suppressor gene. The use of CFET-labeled primers and biotin-ddNTPs coupled with the specificity of DNA polymerase in SBE offered a multiplex method for detecting SNPs.  相似文献   

2.
We have developed a new method for typing single nucleotide polymorphisms (SNPs), MagSNiPer, based on single base extension, magnetic separation, and chemiluminescence. Single base nucleotide extension reaction is performed with a biotinylated primer whose 3' terminus is contiguous to the SNP site with a tag-labeled ddNTP. Then the primers are captured by magnetic-coated beads with streptavidin, and unincorporated labeled ddNTP is removed by magnetic separation. The magnetic beads are incubated with anti-tag antibody conjugated with alkaline phosphatase. After the removal of excess conjugates by magnetic separation, SNP typing is performed by measuring chemiluminescence. The incorporation of labeled ddNTP is monitored by chemiluminescence induced by alkaline phosphatase. MagSNiPer is a simple and robust SNP typing method with a wide dynamic range and high sensitivity. Using MagSNiPer, we could perform SNP typing with as little as 10(-17) mol of template DNA.  相似文献   

3.
Quencher extension (QEXT) is a novel single step closed tube real-time method to quantify SNPs using reporters and quenchers in combination with primer extension. A probe with a 5′-reporter dye is single base extended with a dideoxy nucleotide containing a quencher dye if the target SNP allele is present. The extension is recorded from the quenching (reduced fluorescence) of the reporter dye. This avoids the influence of the unincorporated dye-labeled nucleotides, resulting in high accuracy and a high signal-to-noise ratio. The relative amount of a specific SNP allele is determined from the nucleotide incorporation rate in a thermo-cycling reaction. We tested the QEXT assay using five SNPs in the Listeria monocytogenes inlA gene as a model system. The presence of the target SNP alleles was determined with high statistical confidence (P < 0.0005). The quantitative detection limits were between 0 and 5% for the targeted SNP alleles on a background of other SNP alleles (P < 0.05). The QEXT method is directly adaptable to current real-time PCR equipment and is thus suited for high throughput and a wide application range.  相似文献   

4.
A new approach to SNP genotyping with fluorescently labeled mononucleotides   总被引:4,自引:1,他引:3  
Fluorescence resonance energy transfer (FRET) is one of the most powerful and promising tools for single nucleotide polymorphism (SNP) genotyping. However, the present methods using FRET require expensive reagents such as fluorescently labeled oligonucleotides. Here, we describe a novel and cost-effective method for SNP genotyping using FRET. The technique is based on allele-specific primer extension using mononucleotides labeled with a green dye and a red dye. When the target DNA contains the sequence complementary to the primer, extension of the primer incorporates the green and red dye-labeled nucleotides into the strand, and red fluorescence is emitted by FRET. In contrast, when the 3′ end nucleotide of the primer is not complementary to the target DNA, there is no extension of the primer, or FRET signal. Therefore, discrimination among genotypes is achieved by measuring the intensity of red fluorescence after the extension reaction. We have validated this method with 11 SNPs, which were successfully determined by end-point measurements of fluorescence intensity. The new strategy is simple and cost-effective, because all steps of the preparation consist of simple additions of solutions and incubation, and the dye-labeled mononucleotides are applicable to all SNP analyses. This method will be suitable for large-scale genotyping.  相似文献   

5.
A new MALDI-TOF based detection assay was developed for analysis of single nucleotide polymorphisms (SNPs). It is a significant modification on the classic three-step minisequencing method, which includes a polymerase chain reaction (PCR), removal of excess nucleotides and primers, followed by primer extension in the presence of dideoxynucleotides using modified thermostable DNA polymerase. The key feature of this novel assay is reliance upon deoxynucleotide mixes, lacking one of the nucleotides at the polymorphic position. During primer extension in the presence of depleted nucleotide mixes, standard thermostable DNA polymerases dissociate from the template at positions requiring a depleted nucleotide; this principal was harnessed to create a genotyping assay. The assay design requires a primer- extension primer having its 3'-end one nucleotide upstream from the interrogated site. The assay further utilizes the same DNA polymerase in both PCR and the primer extension step. This not only simplifies the assay but also greatly reduces the cost per genotype compared to minisequencing methodology. We demonstrate accurate genotyping using this methodology for two SNPs run in both singleplex and duplex reactions. We term this assay nucleotide depletion genotyping (NUDGE). Nucleotide depletion genotyping could be extended to other genotyping assays based on primer extension such as detection by gel or capillary electrophoresis.  相似文献   

6.
Association studies using common sequence variants or single nucleotide polymorphisms (SNPs) may provide a powerful approach to dissect the genetic inheritance of common complex traits. Such studies necessitate the development of cost-effective, high throughput technologies for scoring SNPs. The method described in this paper for the co-detection of both alleles of a SNP in a single homogeneous reaction combines the specificity of a high fidelity DNA ligation step with the power of rolling circle amplification. The incorporation of Amplifluor™ energy transfer primers enables signal detection in a homogeneous format, making this approach highly amenable to automation. The adaptation of the genotyping method for high throughput screening using conventional liquid handling systems is described.  相似文献   

7.
This study reports the development of a microarray-based allele-specific extension method for typing of single nucleotide polymorphisms (SNPs). The use of allele-specific primers has been employed previously to identify single base variations but it is acknowledged that certain mismatches are not refractory to extension. Here we have overcome this limitation by introducing apyrase, a nucleotide-degrading enzyme, to the extension reaction. We have shown previously that DNA polymerases exhibit slower reaction kinetics when extending a mismatched primer compared with a matched primer. This kinetic difference is exploited in the apyrase-mediated allele-specific extension (AMASE) assay, allowing incorporation of nucleotides when the reaction kinetics are fast but degrading the nucleotides before extension when the reaction kinetics are slow. Here we show that five homozygous variants (14% of the total number of variants) that were incorrectly scored in the absence of apyrase were correctly typed when apyrase was included in the extension reaction. AMASE was performed in situ on the oligonucleotide microarrays using fluorescent nucleotides to type 10 SNPs and two indels in 17 individuals generating approximately 200 genotypes. Cluster analysis of these data shows three distinct clusters with clear-cut boundaries. We conclude that SNP typing on oligonucleotide microarrays by AMASE is an efficient, rapid and accurate technique for large-scale genotyping.  相似文献   

8.
Previously, we established the feasibility of using solid phase capturable (SPC) dideoxynucleotides to generate single base extension (SBE) products which were detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for multiplex genotyping, an approach that we refer to as SPC-SBE. We report here the expanding of the SPC-SBE method as a single-tube assay to simultaneously detect 20 single nucleotide variations in a model system and 3 single nucleotide polymorphisms (SNPs) in the human beta2-adrenergic receptor (beta2AR) gene. Twenty primers were designed to have a sufficient mass difference between all extension products for accurate detection of nucleotide variants of the synthetic templates related to the p53 gene. These primers were extended simultaneously in a single tube with biotin-ddNTPs to generate 3(')-biotinylated DNA products, which were first captured by streptavidin-coated magnetic beads and then released from the beads and analyzed with MALDI-TOF MS. This approach generates a mass spectrum free of primer peaks and their associated dimers, increasing the scope of multiplexing SNPs. We also simultaneously genotyped 3 SNPs in the beta2AR gene (5(')LC-Cys19Arg, Gly16Arg, and Gln27Glu) from the genomic DNA of 20 individuals. Comparison of this approach with direct sequencing and the restriction fragment length polymorphism method indicated that the SPC-SBE method is superior for detecting nucleotide variations at known SNP sites.  相似文献   

9.
This article presents a new, highly sensitive method for the identification of single nucleotide polymorphisms (SNPs) in homogeneous solutions using fluorescently labeled hairpin-structured oligonucleotides (smart probes) and fluorescence single-molecule spectroscopy. While the hairpin probe is closed, fluorescence intensity is quenched due to close contact between the chromophore and several guanosine residues. Upon hybridization to the respective target SNP sequence, contact is lost and the fluorescence intensity increases significantly. High specificity is achieved by blocking sequences containing mismatch with unlabeled oligonucleotides. Time-resolved single-molecule fluorescence spectroscopy enables the detection of individual smart probes passing a small detection volume. This method leads to a subnanomolar sensitivity for this single nucleotide specific DNA assay technique.  相似文献   

10.
A FRET-based analysis of SNPs without fluorescent probes   总被引:2,自引:0,他引:2  
Fluorescence resonance energy transfer (FRET) is a simple procedure for detecting specific DNA sequences, and is therefore used in many fields. However, the cost is relatively high, because FRET-based methods usually require fluorescent probes. We have designed a cost-effective way of using FRET, and developed a novel approach for the genotyping of single nucleotide polymorphisms (SNPs) and allele frequency estimation. The key feature of this method is that it uses a DNA-binding fluorogenic molecule, SYBR Green I, as an energy donor for FRET. In this method, single base extension is performed with dideoxynucleotides labeled with an orange dye and a red dye in the presence of SYBR Green I. The dyes incorporated into the extended products accept energy from SYBR Green I and emit fluorescence. We have validated the method with ten SNPs, which were successfully discriminated by end-point measurements of orange and red fluorescence intensity in a microplate fluorescence reader. Using a mixture of homozygous samples, we also confirmed the potential of this method for estimation of allele frequency. Application of this strategy to large-scale studies will reduce the time and cost of genotyping a vast number of SNPs.  相似文献   

11.
In the future, analysis of single nucleotide polymorphisms (SNPs) should become a powerful tool for many genetic applications in areas such as association studies, pharmacogenetics and traceability in the agro-alimentary sector. A number of technologies have been developed for high-throughput genotyping of SNPs. Here we present the simplified GOOD assay for SNP genotyping by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI). The simplified GOOD assay is a single-tube, purification-free, three-step procedure consisting of PCR, primer extension and phosphodiesterase II digestion followed by mass spectrometric analysis. Due to the application of charge-tag technology, no sample purification is required prior to the otherwise very impurity-sensitive MALDI analysis. The use of methylphosphonate containing primers and ddNTPs or α-S-ddNTPs together with a novel DNA polymerase derived from Thermotoga maritima for primer extension allow the fluent preparation of negatively charge-tagged, allele-specific products. A key feature of this polymerase is its preference for ddNTPs and α-S-ddNTPs over dNTPs. The simplified GOOD assay was run with automatic liquid handling at the lowest manageable volumes, automatic data acquisition and interpretation. We applied this novel procedure to genotyping SNPs of candidate genes for hypertension and cardiovascular disease.  相似文献   

12.
Single nucleotide polymorphisms (SNPs) of genes that affect cytokine production and function are known to influence the susceptibility and progression of immune-related conditions such as infection, autoimmune diseases, transplantation, and cancer. We established a multiplex genotyping method to analyze the SNPs of cytokine genes by combining the multiplex PCR and bead array platform. Thirteen cytokine gene regions, including 20 SNPs, were amplified, and allele-specific primer extension was performed in a single tube. High-quality allele-specific primers were selected for signals greater than 1000 median fluorescence intensity (MFI) for positive alleles, and less than 500 MFI for negative alleles. To select and improve the extension primers, modifications for the reverse direction, length or refractory were performed. 24 primers in the forward or reverse direction step and 12 primers in length or refractory modifications were selected and showed high concordance with results by nucleotide sequencing. Among the 13 candidate cytokine genes, the SNPs of 12 cytokine genes, including IL-1α, IL-1R, IL-1RA, IL-1β, IL-2, IL-4, IL-4Rα, IL-6, IL-10, IL-12, TGF-β1, and TNF-α, were successfully defined with the selected allele-specific primers in healthy Korean subjects. Our genotyping system provides a fast and accurate detection for SNPs of multiple cytokine genes to investigate their association with immune-related diseases and transplantation outcomes.  相似文献   

13.
Two procedures, multibase and multiprimer, have been developed for single nucleotide extension of primers immobilized within polyacrylamide gel pads on a microchip. In the multibase assay, a primer is next to a polymorphic nucleotide; the nucleotide is identified by the specificity with which the primer incorporates fluorescently labeled dideoxyribo-nucleoside triphosphates. In the multiprimer assay, several primers containing different 3'-terminal nucleotides overlapping the variable nucleotide in DNA are used. The polymorphic nucleotide is identified according to the primer that is extended. The methods were compared for diagnosis of beta-thalassemia mutations. Isothermal amplification of the fluorescent signal was achieved by performing both assays at elevated temperature. Anthrax toxin genes were identified in a model system using this amplification method.  相似文献   

14.
Here, we present a novel method for SNP genotyping based on protease-mediated allele-specific primer extension (PrASE), where the two allele-specific extension primers only differ in their 3′-positions. As reported previously [Ahmadian,A., Gharizadeh,B., O'Meara,D., Odeberg,J. and Lundeberg,J. (2001), Nucleic Acids Res., 29, e121], the kinetics of perfectly matched primer extension is faster than mismatched primer extension. In this study, we have utilized this difference in kinetics by adding protease, a protein-degrading enzyme, to discriminate between the extension reactions. The competition between the polymerase activity and the enzymatic degradation yields extension of the perfectly matched primer, while the slower extension of mismatched primer is eliminated. To allow multiplex and simultaneous detection of the investigated single nucleotide polymorphisms (SNPs), each extension primer was given a unique signature tag sequence on its 5′ end, complementary to a tag on a generic array. A multiplex nested PCR with 13 SNPs was performed in a total of 36 individuals and their alleles were scored. To demonstrate the improvements in scoring SNPs by PrASE, we also genotyped the individuals without inclusion of protease in the extension. We conclude that the developed assay is highly allele-specific, with excellent multiplex SNP capabilities.  相似文献   

15.
利用三色荧光标记的A、C、T双脱氧核苷酸单碱基延伸的方法结合编码寡核苷酸芯片技术检测单核苷酸多态性 (SNP)的基因型。以beta地中海贫血样本基因 (HBB基因 )突变作为模型的研究结果显示该方法能同时对多位点的SNP进行检测。  相似文献   

16.
We have developed a new method using the Qbead™ system for high-throughput genotyping of single nucleotide polymorphisms (SNPs). The Qbead system employs fluorescent Qdot™ semiconductor nanocrystals, also known as quantum dots, to encode microspheres that subsequently can be used as a platform for multiplexed assays. By combining mixtures of quantum dots with distinct emission wavelengths and intensities, unique spectral ‘barcodes’ are created that enable the high levels of multiplexing required for complex genetic analyses. Here, we applied the Qbead system to SNP genotyping by encoding microspheres conjugated to allele-specific oligonucleotides. After hybridization of oligonucleotides to amplicons produced by multiplexed PCR of genomic DNA, individual microspheres are analyzed by flow cytometry and each SNP is distinguished by its unique spectral barcode. Using 10 model SNPs, we validated the Qbead system as an accurate and reliable technique for multiplexed SNP genotyping. By modifying the types of probes conjugated to microspheres, the Qbead system can easily be adapted to other assay chemistries for SNP genotyping as well as to other applications such as analysis of gene expression and protein–protein interactions. With its capability for high-throughput automation, the Qbead system has the potential to be a robust and cost-effective platform for a number of applications.  相似文献   

17.
Liu H  Li S  Wang Z  Hou P  He Q  He N 《Biotechnology journal》2007,2(4):508-511
A novel approach for the genotyping of single nucleotide polymorphisms (SNPs) based on solidphase PCR on magnetic nanoparticles (MNPs) is described. PCR products were amplified directly on MNPs. The genotypes of a given SNP were differentiated by hybridization with a pair of allele-specific probes labeled with dual-color fluorescence (Cy3, Cy5). The results were analyzed by scanning the microarray printed with the denatured fluorescent probes on an unmodified glass slide. Electrophoresis analysis indicated that PCR could proceed successfully when MNPs-bound primers were used. Furthermore, nine different samples were genotyped and their fluorescent signals were quantified. Genotyping results showed that three genotypes for the locus were very easily discriminated. The fluorescent ratios (match probe:mismatch probe signal) of homozygous samples were over 9.3, whereas heterozygous samples had ratios near 1.0. Without any purification and concentration of PCR products, this new MNP-PCR based genotyping assay potentially provides a rapid, labor-saving method for genotyping of a large number of individuals.  相似文献   

18.
Single nucleotide polymorphism (SNP) genotyping is playing an increasing role in genome mapping, pharmacogenetic studies, and drug discovery. To date, genome-wide scans and studies involving thousands of SNPs and samples have been hampered by the lack of a system that can perform genotyping with cost-effective throughput, accuracy, and reliability. To address this need, Orrhid has developed an automated, ultra-high throughput system, SNPstream UHT, which uses multiplexed PCR in conjunction with our next generation SNP-IT tag array single base extension genotyping technology The system employs oligonucleotide microarrays manufactured in a 384-well format on a novel glass-bottomed plate. Multiplexed PCR and genotyping are performed in homogeneous reactions, and assay results are read by direct two-color fluorescence on the SNPstream UHTArray Imager. The systems flexibility enables large projects involving thousands of SNPs and thousands of samples as well as small projects that have hundreds of SNPs and hundreds of samples to be done cost effectively. We have successfully demonstrated this system in greater than 1,000,000 genotyping assays with >96% of samples giving genotypes with >99% accuracy  相似文献   

19.
We report an approach using solid phase capturable biotinylated dideoxynucleotides (biotin-ddNTPs) in single base extension for multiplex genotyping by mass spectrometry (MS). In this method, oligonucleotide primers that have different molecular weights and that are specific to the polymorphic sites in the DNA template are extended with biotin-ddNTPs by DNA polymerase to generate 3′-biotinylated DNA products. These products are then captured by streptavidin-coated solid phase magnetic beads, while the unextended primers and other components in the reaction are washed away. The pure extension DNA products are subsequently released from the solid phase and analyzed by matrix-assisted laser desorption/ionization time-of-flight MS. The mass of the extension products is determined using a stable oligonucleotide as a common internal mass standard. Since only the pure extension DNA products are introduced to the MS for analysis, the resulting mass spectrum is free of non-extended primer peaks and their associated dimers, which increases the accuracy and scope of multiplexing in single nucleotide polymorphism (SNP) analysis. The solid phase purification approach also facilitates desalting of the captured oligonucleotides, which is essential for accurate mass measurement by MS. We selected four biotin-ddNTPs with distinct molecular weights to generate extension products that have a 2-fold increase in mass difference compared to that with conventional ddNTPs. This increase in mass difference provides improved resolution and accuracy in detecting heterozygotes in the mass spectrum. Using this method, we simultaneously distinguished six nucleotide variations on synthetic DNA templates mimicking mutations in the p53 gene and two disease-associated SNPs in the human hereditary hemochromatosis gene.  相似文献   

20.
We report a new strategy that combines a Förster Resonance Energy Transfer (FRET) based spectral codification tool with a single base extension (SBE) reaction for rapid and medium-throughput analysis of single nucleotide polymorphisms (SNPs). This strategy is based on the spectral codification - a donor (fluorophore labeled probe complementary to the region adjacent to an SNP) is used to induce specific FRET signatures from an acceptor fluorophore revealing the SNP variant. Using an SBE reaction and differently labeled ddNTPs, we can directly question each donor probe and retrieve information about which allele variant is present at that locus. The potential of the method is demonstrated by application to simultaneous questioning of two loci in the same reaction tube. Following calibration with all possible combinations of FRET pairs, an evaluation algorithm was calibrated so as to optimize base calling and allow unequivocal allele scoring with more than 80% confidence (for two simultaneous loci being questioned, one homo- and one heterozygous). In conclusion, this spectral codification approach may constitute a solution towards increasing throughput capability of single base extension based assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号