首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
When the glossopharyngeal nerve (GP) in the frog was strongly stimulated electrically, slow potentials were elicited from the tongue surface and taste cells in the fungiform papillae. Injection of atropine completely blocked these slow potentials. The present and previous data indicate that the slow potentials induced in the tongue surface and taste cells are due to a liquid junction potential between saliva secreted from the lingual glands due to parasympathetic fiber activity and an adapting solution on the tongue surface. Intracellularly recorded depolarizing receptor potentials in taste cells induced by 0.5 M NaCl and 3 mM acetic acid were enhanced by depolarizing slow potentials induced by GP nerve stimulation, but were depressed by the hyperpolarizing slow potentials. On average, the receptor potential of taste cells for 0.5 M NaCl was increased by 25% by the GP nerve-induced slow potential, but the receptor potential of taste cells for 3 mM acetic acid was decreased by 1% by the slow potential. These transformations of receptor potentials in frog taste cells were not due to a synaptic event initiated between taste cells and the efferent nerve fiber, but due to a non-synaptic event, a lingual junction potential generated in the dorsal lingual epithelium by GP nerve stimulation.  相似文献   

2.
The electrical properties of the frog taste cells during gustatory stimulations with distilled water and varying concentrations of NaCl were studied with intracellular microelectrodes. Under the Ringer adaptation of the tongue, two types of taste cells were distinguished by the gustatory stimuli. One type, termed NaCl-sensitive (NS) cells, responded to water with hyperpolarizations and responded to concentrated NaCl with depolarizations. In contrast, the other type of cells, termed water-sensitive (WS) cells, responded to water depolarizations and responded to concentrated NaCl with hyperpolarizations. The membrane resistance of both taste cell types increased during the hyperpolarizing receptor potentials and decreased during the depolarizing receptor potentials, Reversal potentials for the depolarizing and hyperpolarizing responses in each cell type were a few millivolts positive above the zero membrane potential. When the tongue was adapted with Na-free Ringer solution for 30 min, the amplitude of the depolarizing responses in the NS cells reduced to 50% of the control value under normal Ringer adaptation. On the basis of the present results, it is concluded (a) that the depolarizing responses of the NS and WS cells under the Ringer adaptation are produced by the permeability increase in some ions, mainly Na+ ions across the taste cell membranes, and (b) that the hyperpolarizing responses of both types of taste cells are produced by a decrease in the cell membrane permeability to some ions, probably Na+ ions, which is slightly enhanced during the Ringer adaptation.  相似文献   

3.
Enhancement of taste responses to acids by calcium ions   总被引:1,自引:0,他引:1  
The frog taste nerve responses to HCl and acetic acids were greatly enhanced by increasing calcium concentration in a solution to which the tongue had adapted when the lingual artery was perfused with Ringer solution. Enhancement was not seen in the responses to other taste stimuli.  相似文献   

4.
Distribution density of the taste disks of the fungiform papillae in the frog tongue was larger at the proximal portion than at the apical and middle portions. The number of myelinated afferent nerve fibres and taste cells per cm2 area of the tongue increased in the order of proximal greater than middle greater than apical portion. The amplitudes of gustatory neural responses for 0.5 M NaCl, 0.5 M KCl, 0.5 M NH4Cl, 0.05 M CaCl2, 1 mM acetic acid and 1 mM quinine-HCl (Q-HCl) were significantly larger with lingual stimulation of the proximal region than with the stimulation of the apical region. With these stimuli the mean ratio of the apical response to the proximal response was 1.00:1.54. On the other hand, this ration with deionized water was 1.00:5.00. The mean magnitudes of receptor potentials in taste cells for 1 mM acetic acid and 10 mM Q-HCl were the same among the apical, middle and proximal portions of the tongue. The mean magnitudes of receptor potentials for 0.5 M NaCl were significantly larger at the apical portion than at the other portions, whereas those for deionized water tended to be the largest at the proximal portion. It is concluded that the larger magnitude of the gustatory neural responses at the proximal portion of the tongue is due to morphological and physiological properties of the taste organ.  相似文献   

5.
Parasympathetic nerve (PSN) innervates taste cells of the frog taste disk, and electrical stimulation of PSN elicited a slow hyperpolarizing potential (HP) in taste cells. Here we report that gustatory receptor potentials in frog taste cells are depressed by PSN-induced slow HPs. When PSN was stimulated at 30 Hz during generation of taste cell responses, the large amplitude of depolarizing receptor potential for 1 M NaCl and 1 mM acetic acid was depressed by approximately 40% by slow HPs, but the small amplitude of the depolarizing receptor potential for 10 mM quinine-HCl (Q-HCl) and 1 M sucrose was completely depressed by slow HPs and furthermore changed to the hyperpolarizing direction. The duration of the depolarizing receptor potentials depressed by slow HPs prolonged with increasing period of PSN stimulation. As tastant-induced depolarizing receptor potentials were increased, the amplitude of PSN-induced slow HPs inhibiting the receptor potentials gradually decreased. The mean reversal potentials of the slow HPs were approximately -1 mV under NaCl and acetic acid stimulations, but approximately -14 mV under Q-HCl and sucrose stimulations. This implies that when a slow HP was evoked on the same amplitude of depolarizing receptor potentials, the depression of the NaCl and acetic acid responses in taste cells was larger than that of Q-HCl and sucrose responses. It is concluded that slow HP-induced depression of gustatory depolarizing receptor potentials derives from the interaction between gustatory receptor current and slow hyperpolarizing current in frog taste cells and that the interaction is stronger for NaCl and acetic acid stimulations than for Q-HCl and sucrose stimulations.  相似文献   

6.
1. Dorsal epithelium of the frog tongue produced a change in potential difference across the tissue in response to removal of NaCl from the adapting Ringer solution on the mucosa. 2. The response was not caused by an osmotic decrease in the stimulus, and its profile was in many respects similar to that of the receptor potential in frog taste cells. 3. In conclusion, the response may influence or modify water reception in frogs.  相似文献   

7.
K Morimoto  M Sato 《Life sciences》1977,21(11):1685-1695
By artificially perfusing the frog tongue with serotonin (5HT) and its antagonists, the possibility of 5HT as a chemical transmitter from taste cells to nerve terminals in frog taste organ was examined. Although serotonin creatinine sulfate, when perfused through the lingual artery, produced impulse discharges in the glossopharyngeal nerve, creatinine sulfate elicited a similar response. Neural responses to taste stimuli were depressed by perfusion with 5HT. Among many antiserotonergic drugs perfused through the lingual artery, LSD was the only one which modified responses to taste stimuli. LSD suppressed taste responses to NaCl, CaCl2 and water, while LSD at a high concentration (10?5 g/ml) enhanced responses to guinine and HCl. When PCPA (DL-p-chlorophenylalanine) was injected intraperitoneally in conbination with reserpine, the agent did not significantly change taste responses. The above results possibly suggest that 5HT would not be a chemical mediator from taste cells to nerve terminals.  相似文献   

8.
Pulmonary microvascular response to LTB4: effects of perfusate composition   总被引:1,自引:0,他引:1  
We examined the effects of leukotriene B4 (LTB4) on pulmonary hemodynamics and vascular permeability using isolated perfused guinea pig lungs and cultured monolayers of pulmonary arterial endothelial cells. In lungs perfused with Ringer solution, containing 0.5 g/100 ml albumin (R-alb), LTB4 (4 micrograms) transiently increased pulmonary arterial pressure (Ppa) and capillary pressure (Pcap). Pulmonary edema developed within 70 min after LTB4 injection despite a normal Pcap. The LTB4 metabolite, 20-COOH-LTB4 (4 micrograms), did not induce hemodynamic and lung weight changes. In lungs perfused with autologous blood hematocrit = 12 +/- 1%; protein concentration = 1.5 +/- 0.2 g/100 ml), the increases in Ppa and Pcap were greater, and both pressures remained elevated. The lung weight did not increase in blood-perfused lungs. In lungs perfused with R-alb (1.5 g/100 ml albumin) to match the blood perfusate protein concentration, LTB4 induced similar hemodynamic changes as R-alb (0.5 g/100 ml) perfusate, but the additional albumin prevented the pulmonary edema. LTB4 (10(-11)-10(-6) M) with or without the addition of neutrophils to the monolayer did not increase endothelial 125I-albumin permeability. Therefore LTB4 induces pulmonary edema when the perfusate contains a low albumin concentration, but increasing the albumin concentration or adding blood cells prevents the edema. The edema is not due to increased endothelial permeability to protein and is independent of hemodynamic alterations. Protection at higher protein-concentration may be the result of LTB4 binding to albumin.  相似文献   

9.
A new method for excitation-contraction uncoupling in frog skeletal muscle   总被引:11,自引:0,他引:11  
The mechanical activity of frog sartorius muscle fibers can be uncoupled from the electrical activity of their surface membranes by immersing the preparation in Ringer solution containing either 1.5 or 2.0 M of formamide for 15--20 min. This uncoupling is not reversed when the muscle is transferred to normal frog Ringer solution. Formamide does not affect the electrical activity of the sciatic nerve branch, and both endplate potentials and miniature endplate potentials may be recorded from the uncoupled muscles. Prolonged exposure to formamide, beyond the time needed to paralyze, causes neuromuscular block.  相似文献   

10.
Resting membrane potentials of isolated frog sartorius muscles were measured under a variety of conditions using intracellular glass microelectrodes. Muscle cells depolarized by the addition of 5.0 or 10.0 mM KCl to the bathing Ringer solution can be repolarized some 5 to 10 mV by the substitution of an equivalent amount of K-aspartate for KCl in the presence of 2.0 mM Mg++. The repolarization produced by this method persists when the muscle is again placed in the initial KCl solution, thus eliminating the possibility that the hyperpolarization is due to the reduction of chloride in the bathing medium. If for some reason the resting membrane potential of the muscle fibers is considerably below (less negative than) the normal level of 92 mV reported for muscles bathed in 2.5 mM Ringer solution, the substitution of 2.5 mM K-aspartate for the 2.5 mM KCl and the addition of 2.0 mM Mg-aspartate to the Ringer solution will, within 15 minutes, repolarize the fiber to the normal level. Magnesium ions alone will not produce the observed repolarization nor can it be attributed to a reduction in the activity of the potassium in the Ringer solution.  相似文献   

11.
1. The effect of arginine vasopressin (AVP) on frog gustatory responses was investigated by recording integrated responses of the whole glossopharyngeal nerve by stimulation of the tongue with tastants. 2. After AVP (100 mUnits/ml) was perfused to the basolateral side of taste cells through the lingual artery, gustatory neural responses for NaCl and hydrochloric acid (HCl) stimuli were greatly enhanced, but the responses for CaCl2, quinine hydrochloride (Q-HCl) and galactose were not affected. 3. Three hours after the onset of AVP perfusion, the responses for NaCl and HCl increased to 260% and 270% of the respective controls. 4. The NaCl response which was insensitive to amiloride during normal saline perfusion became sensitive to amiloride during AVP perfusion. 5. When membrane-permeable 8-bromo-cyclic AMP (8-Br-cAMP, 0.1 mM) was perfused to the basolateral side of taste cells, the responses for NaCl and HCl decreased to 41 and 63% of the respective controls. 6. These results suggest that AVP may regulate the gustatory responses for monovalent salts and acids by a mechanism which is not necessary to activate adenylate cyclase.  相似文献   

12.
The effect of primycin, a guanidine-type antibiotic was studied on the electric properties and 42K+ uptake of the frog sartorius and semitendinosus muscle. Both in normal and choline chloride Ringer solution, primycin evoked a concentration and time dependent depolarization of the surface membrane of the muscle. This depolarization was significantly increased by Na ions. Primycin treatment was shown to evoke a dose-dependent decrease of the depolarization induced by 20 mM K+-Ringer. When the muscles were incubated in a Ringer solution containing choline chloride, during an incubation period of 30 min the uptake of 42K+ was decreased to 12% upon the exposure to 5 x 10(-6) mol primycin as compared to the control value. As the primycin-induced depolarization increased, the shape and amplitude of the action potentials elicited by square-wave electric impulses were altered and decreased, respectively. In sodium isaethionate Ringer 1--2 x 10(-6) M primycin induced a slow depolarization resulting in firing potentials. The results suggest that primycin depolarizes the surface membrane exclusively through the blockade of the resting K+ channels, the other phenomena being the results of this depolarizing effect.  相似文献   

13.
Responses in the frog glossopharyngeal nerve induced by electrical stimulation of the tongue were compared with those induced by chemical stimuli under various conditions. (a) Anodal stimulation induced much larger responses than cathodal stimulation, and anodal stimulation of the tongue adapted to 5 mM MgCl2 produced much larger responses than stimulation with the tongue adapted to 10 mM NaCl at equal current intensities, as chemical stimulation with MgCl2 produced much larger responses than stimulation with NaCl at equal concentration. (b) The enhansive and suppressive effects of 8-anilino-1-naphthalenesulfonate, NiCl2, and uranyl acetate on the responses to anodal current were similar to those on the responses to chemical stimulation. (c) Anodal stimulation of the tongue adapted to 50 mM CaCl2 resulted in a large response, whereas application of 1 M CaCl2 to the tongue adapted to 50 mM CaCl2 produced only a small response. This, together with theoretical considerations, suggested that the accumulation of salts on the tongue surface is not the cause of the generation of the response to anodal current. (d) Cathodal current suppressed the responses induced by 1 mM CaCl2, 0.3 M ethanol, and distilled water. (e) The addition of EGTA or Ca-channel blockers (CdCl2 and verapamil) to the perfusing solution of the lingual artery reversibly suppressed both the responses to chemical stimulus (NaCl) and to anodal current with 10 mM NaCl. (f) We assume from the results obtained that electrical current from the microvillus membrane of a taste cell to the synaptic area supplied by anodal stimulation or induced by chemical stimulation activates the voltage-dependent Ca channel at the synaptic area.  相似文献   

14.
The electrical response of the taste cells of the frog fungiform papillae to four fundamental taste solutions (NaCl, acetic acid, quinine-HCl and sucrose) was studied by using the intracellular recording technique. The average value of resting membrane potential was 22.5 mV, inside negative. Each of the four taste solutions applied to the tongue produced a slow depolarizing potential, the receptor potential, on which no spike potential was superimposed. The amplitude of the receptor potentials increased linearly as a function of the logarithm of the concentration of the stimulus. Amplitudes of depolarizations to a given taste stimulation varied from one cell to another even within a single taste bud. Most of the cells responded to more than two of the four basic taste solutions. Sensitivity patterns in terms of the number of effective solutions and the relative effectiveness of different kinds of solutions were variable among cells. Statistical analysis suggests that at the receptor membranes of the taste cells, the sensitivities for the four basic stimuli are independent and random.  相似文献   

15.
  • 1.1. After ionic composition of superficial fluid (ISF) and interstitial fluid (ISF) of the frog Rana catesbeiana) tongue had mostly been changed with a low Na+ saline solution, the relations between membrane potentials and receptor potentials in a frog taste cell evoked by various concentrations of NaCl and various types of salts were analyzed to examine permeability of the taste receptive membrane to cations and anions.
  • 2.2. The mean reversal potentials for depolarizing potentials of a taste cell in response to 0.05 M, 0.2 M and 0.5 M Nad were -40.0, 6.4 and 28.8 mV, respectively.
  • 3.3. When adding an anion channel blocker, SITS, to a NaCl solution the reversal potential for receptor potential with NaCl plus SITS became about twice as large than with NaCl alone.
  • 4.4. Reversal potentials for 0.2 M NaCl, LiCl, KCl and NaSCN were 6.4, 25.4, −1.0 and −7.8 mV, respectively, indicating that permeability of the apical taste receptive membrane to cations of Cl salts is arranged in the order of Li+ > Na+ > K+ and that the permeability to anions of Na+ salts is arranged as SCN > Cl
  • 5.5. It is concluded that in the case of NaCl stimulation, Na+ and Cl of NaCl stimulus permeate NaCl-gated cationic and anionic channels at the apical taste receptive membrane in generating receptor potentials.
  相似文献   

16.
The structure and physiological properties of the non-papillarytaste organs on the ventral side of frog tongue were examined.The taste organs were distributed around the hyoglossal muscleof the tongue. The total number of organs was estimated as about100. The fine structure of the taste organs was similar to thatof the fungiform papilla. Neural responses recorded from theglossopharyngeal nerve by applying chemical stimuli to the ventraltide of the tongue were noticeably smaller than those to thedorsal side of the tongue. The taste cells on the ventral sideof the tongue generated receptor potentials to various chemicalstimuli like those on the dorsal side of the tongue.  相似文献   

17.
This study describes the development of a trout gill perfusion model, consisting of an excised branchial arch from rainbow trout (Oncorhynchus mykiss L.), perfused via the afferent branchial artery and suspended in a circular organ chamber filled with Ringer solution. Different perfusion fluids were tested: Ringer, Cortland, Ringer + procaine, Ringer + adrenalin, Cortland + procaine, Cortland + adrenalin and Cortland + dextran 1%. The latter perfusion fluid proved to be satisfactory, maintaining the gill tissue in a healthy condition outside the body of the fish for at least 180 min. Using this model, the interaction of damaging agents with the trout gill tissue may be studied under carefully controlled conditions. The trout gill perfusion model leads effectively to a reduction in the number of experimental animals to be used and also involves an elimination of pain and/or suffering, which is as good as complete.  相似文献   

18.
Summary Antidromic electrical stimulation of the lingual branch of the glossopharyngeal (IX) nerve of the frog was carried out while recording intracellular potentials of taste disc cells.Antidromic activation of sensory fibers resulted in depolarization of cells of the upper layer of the disc and most commonly in hyperpolarization of the cells in the lower layer. These changes in potential exhibited latencies greater than 1 s (Fig. 3), and thus cannot be due to electrotonic effects of action potentials in terminals of IX nerve fibers, which have much shorter conduction times. These cell potentials also showed summation, adaptation and post-stimulus rebound (Figs. 3, 4).Depending upon the chemical stimulus used, antidromic activity produced either depression or enhancement of gustatory fiber discharge in response to taste stimuli (Fig. 5).Alteration of the resting membrane potential by current injection did not significantly modify the antidromically evoked potentials (Fig. 8), whereas chemical stimulation of the tongue did (Fig. 7), indicating that these potential changes are not the result of passive electrical processes.These experimental results indicate that the membrane potential of taste disc cells can be modified by antidromic activity in their afferent nerves. This mechanism may be responsible for peripheral interactions among gustatory units of the frog tongue.The research was supported in part by NIH grant NS-09168.  相似文献   

19.
Intracellular pH (pHi), measured with H+-selective microelectrodes, in quiescent frog sartorius muscle fibres was 7.29 +/- 0.09 (n = 13). Frog muscle fibres were superfused with a modified Ringer solution containing 30 mM HEPES buffer, at extracellular pH (pHo) 7.35. Intracellular pH decreased to 6.45 +/- 0.14 (n = 13) following replacement of 30 mM NaCl with sodium lactate (30 mM MES, pHo 6.20). Intracellular pH recovery, upon removal of external lactic acid, depended on the buffer concentration of the modified Ringer solution. The measured values of the pHi recovery rates was 0.06 +/- 0.01 delta pHi/min (n = 5) in 3 mM HEPES and was 0.18 +/- 0.06 delta pHi/min (n = 13) in 30 mM HEPES, pHo 7.35. The Na+-H+ exchange inhibitor amiloride (2 mM) slightly reduced pHi recovery rate. The results indicate that the net proton efflux from lactic acidotic frog skeletal muscle is mainly by lactic acid efflux and is limited by the transmembrane pH gradient which, in turn, depends on the extracellular buffer capacity in the diffusion limited space around the muscle fibres.  相似文献   

20.
When the glossopharyngeal (GP) nerve of the frog was stimulated electrically, electropositive slow potentials were recorded from the tongue surface and depolarizing slow potentials from taste cells in the fungiform papillae. The amplitude of the slow potentials was stimulus strength- and the frequency-dependent. Generation of the slow potentials was not related to antidromic activity of myelinated afferent fibers in the GP nerve, but to orthodromic activity of autonomic post-ganglionic C fibers in the GP nerve. Intravenous injection of atropine abolished the positive and depolarizing slow potentials evoked by GP nerve stimulation, suggesting that the slow potentials were induced by the activity of parasympathetic post-ganglionic fibers. The amplitude and polarity of the slow potentials depended on the concentration of adapting NaCl solutions applied to the tongue surface. These results suggest that the slow potentials recorded from the tongue surface and taste cells are due to the liquid junction potential generated between saliva secreted from the lingual glands by GP nerve stimulation and the adapting solution on the tongue surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号