首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xylitol formation by Candida boidinii in oxygen limited chemostat culture   总被引:2,自引:0,他引:2  
Summary Production of xylitol by Candida boidinii NRRL Y-17213 occurs under conditions of an oxygen limitation. The extent to which substrate is converted to xylitol and its coproducts (ethanol, other polyols, acetic acid), and the relative flow rates of substrate to energetic and biosynthetic pathways is controlled by the degree of oxygen limitation.With decrease in oxygen concentration in the inlet gas, for a constant dilution rate of 0.05 1/h. the specific oxygen uptake rate decreased from 1.30 to 0.36 mmol/gh Xylitol was not produced at specific oxygen uptake rates above 0.91 mmol/gh. Upon shift to lower oxygen rates, specific xylitol production rate increased more rapidly than specific ethanol production rate:Nomenclature D dilution rate (1/h) - DOT dissolved oxygen tension (%) - mo2 maintenance coefficient (mmol O2/g cell mass h) - qo2 specific oxygen uptake rate (mmol O2/g cell mass h) - qs specific xylose uptake rate (g xylose/g cell mass h) or (mmol xylose/g cell mass h) - qx specific xylitol production rate (g xylitol/ g cell mass h) or (mmol xylitol/ g cell mass h) - qe specific ethanol production rate (g ethanol/ g cell mass h) or (mmol ethanol/ g cell mass h) - qCO2 specific carbon dioxide production rate (mmol CO2/g cell mass h) - S xylose concentration (g/1) - Ycm/s cell mass yield coefficient, (g cell mass/mmol xylose) or (g cell mass/ g xylose consumed) - Ycm/O2 cell mass yield coefficient, (g cell mass/mmol O2) - YX/S xylitol yield coefficient (g xylitol/g xylose consumed) - Yx/O2 xylitol yield coefficient (g xylitol/mmol O2) - Ye/s ethanol yield coefficient (g ethanol/g xylose consumed) - OUR oxygen uptake rate (mmol O2/1h) - specific growth rate (1/h)  相似文献   

2.
3.
Cultivation of Norcardia sp., Mycobacterium phlei, and Candida lipolytica in inorganic salt solution containing n-alkanes C10–C20 as solo carbon and energy source was investigated. Generation times of 0.5–7.0 hr were typical during the exponential growth phase. The final cell concentrations (dry weight) were usually 9–26 g/l with n-alkane mixtures ranging from n-decane through n-eicosane. A linear dependence was found between the production of cell mass and the consumption of n-alkanes. The rest concentration of n-alkanes in the cell mass is in all experiments smaller than 0.5% (w/w). Cell yields were Ysub 60–142% and for Ye 50–97% based on n-alkane utilization. In one case, with the Nocardia NBZ 23, the substrate specifity on hydrocarbons and on a n-alkane mixture C10-C20 was studied. The cell mass recovered from the fermentations contained 47.8–57.7% carbon, 5.6–9.95% nitrogen, 7.2–9.4% hydrogen, 35–62% crude protein, and 6–36% lipid. Cellular protein and lipid synthesized by an organism is influenced by the type of nitrogen source. The amino acid, glucosamine, muramic acid, 2,6-diaminopimelinic acid, and fatty acid distribution in organisms grown on n-alkanes compared with a corresponding fermentation on glucose as sole carbon source were also estimated.  相似文献   

4.
The dry milling ethanol industry produces distiller's grains as major co-products, which are composed of unhydrolyzed and unfermented polymeric sugars. Utilization of the distiller's grains as an additional source of fermentable sugars has the potential to increase overall ethanol yields in current dry grind processes. In this study, controlled pH liquid hot water pretreatment (LHW) and ammonia fiber expansion (AFEX) treatment have been applied to enhance enzymatic digestibility of the distiller's grains. Both pretreatment methods significantly increased the hydrolysis rate of distiller's dried grains with solubles (DDGS) over unpretreated material, resulting in 90% cellulose conversion to glucose within 24h of hydrolysis at an enzyme loading of 15FPU cellulase and 40 IU beta-glucosidase per gram of glucan and a solids loading of 5% DDGS. Hydrolysis of the pretreated wet distiller's grains at 13-15% (wt of dry distiller's grains per wt of total mixture) solids loading at the same enzyme reduced cellulose conversion to 70% and increased conversion time to 72h for both LHW and AFEX pretreatments. However, when the cellulase was supplemented with xylanase and feruloyl esterase, the pretreated wet distiller's grains at 15% or 20% solids (w/w) gave 80% glucose and 50% xylose yields. The rationale for supplementation of cellulases with non-cellulolytic enzymes is given by Dien et al., later in this journal volume. Fermentation of the hydrolyzed wet distiller's grains by glucose fermenting Saccharomyces cerevisiae ATCC 4124 strain resulted in 100% theoretical ethanol yields for both LHW and AFEX pretreated wet distiller's grains. The solids remaining after fermentation had significantly higher protein content and are representative of a protein-enhanced wet DG that would result in enhanced DDGS. Enhanced DDGS refers to the solid product of a modified dry grind process in which the distiller's grains are recycled and processed further to extract the unutilized polymeric sugars. Compositional changes of the laboratory generated enhanced DDGS are also presented and discussed.  相似文献   

5.
Waste streams from the wood processing industry can serve as feedstream for ethanol production from biomass residues. Hardboard manufacturing process wastewater (HPW) was evaluated on the basis of monomeric sugar recovery and fermentability as a novel feedstream for ethanol production. Dilute acid hydrolysis, coupled with concentration of the wastewater resulted in a hydrolysate with 66 g/l total fermentable sugars. As xylose accounted for 53 % of the total sugars, native xylose-fermenting yeasts were evaluated for their ability to produce ethanol from the hydrolysate. The strains selected were, in decreasing order by ethanol yields from xylose (Y p/s, based on consumed sugars), Scheffersomyces stipitis ATCC 58785 (CBS 6054), Pachysolen tannophilus ATCC 60393, and Kluyveromyces marxianus ATCC 46537. The yeasts were compared on the basis of substrate utilization and ethanol yield during fermentations of the hydrolysate, measured using an HPLC. S. stipitis, P. tannophilus, and K. marxianus produced 0.34, 0.31, and 0.36 g/g, respectively. The yeasts were able to utilize between 58 and 75 % of the available substrate. S. stipitis outperformed the other yeast during the fermentation of the hydrolysate; consuming the highest concentration of available substrate and producing the highest ethanol concentration in 72 h. Due to its high sugar content and low inhibitor levels after hydrolysis, it was concluded that HPW is a suitable feedstream for ethanol production by S. stipitis.  相似文献   

6.
A number of previous studies determined dilute acid pretreatment conditions that maximize xylose yields from pretreatment or glucose yields from subsequent digestion of the pretreated cellulose, but our emphasis was on identifying conditions to realize the highest yields of both sugars from both stages. Thus, individual xylose and glucose yields are reported as a percentage of the total potential yield of both sugars over a range of sulfuric acid concentrations of 0.22%, 0.49% and 0.98% w/w at 140, 160, 180 and 200 degrees C. Up to 15% of the total potential sugar in the substrate could be released as glucose during pretreatment and between 15% and 90+% of the xylose remaining in the solid residue could be recovered in subsequent enzymatic hydrolysis, depending on the enzyme loading. Glucose yields increased from as high as 56% of total maximum potential glucose plus xylose for just enzymatic digestion to 60% when glucose released in pretreatment was included. Xylose yields similarly increased from as high as 34% of total potential sugars for pretreatment alone to between 35% and 37% when credit was taken for xylose released in digestion. Yields were shown to be much lower if no acid was used. Conditions that maximized individual sugar yields were often not the same as those that maximized total sugar yields, demonstrating the importance of clearly defining pretreatment goals when optimizing the process. Overall, up to about 92.5% of the total sugars originally available in the corn stover used could be recovered for coupled dilute acid pretreatment and enzymatic hydrolysis. These results also suggest that enhanced hemicellulase activity could further improve xylose yields, particularly for low cellulase loadings.  相似文献   

7.
Summary Recombinant E. coli B (pLOI297) grows in Luria broth with mannose at a rate that is only about one-half of the rate with xylose and about one-quarter of the rate with glucose as carbon source. For a sugar concentration of about 2 % (w/v), the corresponding specific ethanol productivities (qp) are 0.22, 0.45 and 0.70 g ethanol/g cell/h for mannose, xylose and glucose. At higher sugar concentrations (8–11 %), the sp. productivities are 0.12, 0.33 and 0.35 g ethanol/g cell/h for mannose, xylose and glucose. Using a synthetic softwood prehydrolysate medium, in which the mass ratio of mannose:xylose:glucose was approx. 1.0:0.6:0.4 (total sugar conc'n 4.5 %), the sp. productivities associated with glucose and xylose metabolism were decreased by about 50 % and 75 % respectively, whereas mannose metabolism appeared unaffected by the presence of the other sugars. In all cases, the sugar-to-ethanol conversion efficiency was >90 % of theoretical maximum  相似文献   

8.
The two metabolically versatile actinobacteria Rhodococcus opacus PD630 and R. jostii RHA1 can efficiently convert diverse organic substrates into neutral lipids mainly consisting of triacylglycerol (TAG), the precursor of energy-rich hydrocarbon. Neither, however, is able to utilize xylose, the important component present in lignocellulosic biomass, as the carbon source for growth and lipid accumulation. In order to broaden their substrate utilization range, the metabolic pathway of d-xylose utilization was introduced into these two strains. This was accomplished by heterogenous expression of two well-selected genes, xylA, encoding xylose isomerase, and xylB, encoding xylulokinase from Streptomyces lividans TK23, under the control of the tac promoter with an Escherichia coli-Rhodococcus shuttle vector. The recombinant R. jostii RHA1 bearing xylA could grow on xylose as the sole carbon source, and additional expression of xylB further improved the biomass yield. The recombinant could consume both glucose and xylose in the sugar mixture, although xylose metabolism was still affected by the presence of glucose. The xylose metabolic pathway was also introduced into the high-lipid-producing strain R. opacus PD630 by expression of xylA and xylB. Under nitrogen-limited conditions, the fatty acid composition was determined, and lipid produced from xylose by recombinants of R. jostii RHA1 and R. opacus PD630 carrying xylA and xylB represented up to 52.5% and 68.3% of the cell dry weight (CDW), respectively. This work demonstrates that it is feasible to produce lipid from the sugars, including xylose, derived from renewable feedstock by genetic modification of rhodococcus strains.  相似文献   

9.
Plant biomass from different species is heterogeneous, and this diversity in composition can be mined to identify materials of value to fuel and chemical industries. Agave produces high yields of energy-rich biomass, and the sugar-rich stem tissue has traditionally been used to make alcoholic beverages. Here, the compositions of Agave americana and Agave tequilana leaves are determined, particularly in the context of bioethanol production. Agave leaf cell wall polysaccharide content was characterized by linkage analysis, non-cellulosic polysaccharides such as pectins were observed by immuno-microscopy, and leaf juice composition was determined by liquid chromatography. Agave leaves are fruit-like—rich in moisture, soluble sugars and pectin. The dry leaf fiber was composed of crystalline cellulose (47–50% w/w) and non-cellulosic polysaccharides (16–22% w/w), and whole leaves were low in lignin (9–13% w/w). Of the dry mass of whole Agave leaves, 85–95% consisted of soluble sugars, cellulose, non-cellulosic polysaccharides, lignin, acetate, protein and minerals. Juice pressed from the Agave leaves accounted for 69% of the fresh weight and was rich in glucose and fructose. Hydrolysis of the fructan oligosaccharides doubled the amount of fermentable fructose in A. tequilana leaf juice samples and the concentration of fermentable hexose sugars was 41–48 g/L. In agricultural production systems such as the tequila making, Agave leaves are discarded as waste. Theoretically, up to 4000 L/ha/yr of bioethanol could be produced from juice extracted from waste Agave leaves. Using standard Saccharomyces cerevisiae strains to ferment Agave juice, we observed ethanol yields that were 66% of the theoretical yields. These data indicate that Agave could rival currently used bioethanol feedstocks, particularly if the fermentation organisms and conditions were adapted to suit Agave leaf composition.  相似文献   

10.
Summary Lipid production of the oleaginous yeastApiotrichum curvatum was studied in wheypermeate to determine optimum operation conditions in this medium. Studies on the influence of the carbon to nitrogen ratio (C/N-ratio) of the growth medium on lipid production in continuous cultures demonstrated that cellular lipid content in wheypermeate remained constant at 22% of the cell dry weight up to a C/N-ratio of about 25. The maximal dilution rate at which all lactose is consumed in wheypermeate with excess nitrogen was found to be 0.073 h-1. At C/N-ratios higher than 25–30 lipid content gradually increased to nearly 50% at C/N=70 and the maximal obtainable dilution rate decreased to 0.02 h-1 at C/N=70. From these studies it could be derived that maximal lipid production rates can be obtained at C/N-ratios of 30–35 in wheypermeate. Since the C/N-ratio of wheypermeate normally has a value between 70 and 101, some additional nitrogen is required to optimize the lipid production rate. Lipid production rates ofA. curvatum in wheypermeate were compared in four different culture modes: batch, fed-batch, continuous and partial recycling cultures. Highest lipid production rates were achieved in culture modes with high cell densities. A lipid production rate of nearly 1 g/l/h was reached in a partial recycling culture. It was calculated that by using this cultivation technique lipid production rates of even 2.9 g/l/h may be reached when the supply of oxygen can be optimized.Nomenclature C/N-ratio carbon to nitrogen ratio of the growth medium (g/g) - C/Ncrit C/N-ratio at which there is just enough nitrogen to allow all carbon source to be converted to biomass - D dilution rate=volume of incoming medium per unit time/volume of medium in the culture vessel (h-1) - Dmax maximum dilution rate (h-1) - DW cell dry weight - L lipid yield (g storage lipid/g carbon source) - specific growth rate (h-1) - max maximum specific growth rate (h-1) - QL lipid production rate (g/l/h) - Yi molecular fraction of carbon substrate that is converted to storage carbohydrate (C-mol/C-mol) - Yls maximal amount of storage lipid that can be produced per mol carbon source (C-mol/C-mol)  相似文献   

11.
ABSTRACT: BACKGROUND: Microbial lipids are a potential source of bio- or renewable diesel and the red yeast Rhodosporidium toruloides is interesting not only because it can accumulate over 50% of its dry biomass as lipid, but also because it utilises both five and six carbon carbohydrates, which are present in plant biomass hydrolysates. METHODS: R. toruloides was grown in batch and fed-batch cultures in 0.5 l bioreactors at pH 4 in chemically defined, nitrogen restricted (C/N 40 to 100) media containing glucose, xylose, arabinose, or all three carbohydrates as carbon source. Lipid was extracted from the biomass using chloroform-methanol, measured gravimetrically and analysed by GC. RESULTS: R. toruloides was grown on glucose, xylose, arabinose or mixtures of these carbohydrates in batch and fed-batch, nitrogen restricted conditions. Lipid production was most efficient with glucose (up to 25 g lipid L1, 48 to 75% lipid in the biomass, at up to 0.21 g lipid L1h1) as the sole carbon source, but high lipid concentrations were also produced from xylose (36 to 45% lipid in biomass). Lipid production was low (15-19% lipid in biomass) with arabinose as sole carbon source and was lower than expected (30% lipid in biomass) when glucose, xylose and arabinose were provided simultaneously. The presence of arabinose and/or xylose in the medium increased the proportion of palmitic and linoleic acid and reduced the proportion of oleic acid in the fatty acids, compared to glucose-grown cells. High cell densities were obtained in both batch (37 g L1, with 49% lipid in the biomass) and fed-batch (35 to 47 g L1, with 50 to 75% lipid in the biomass) cultures. The highest proportion of lipid in the biomass was observed in cultures given nitrogen during the batch phase but none with the feed. However, carbohydrate consumption was incomplete when the feed did not contain nitrogen and the highest total lipid and best substrate consumption were observed in cultures which received a constant low nitrogen supply. CONCLUSIONS: Lipid production in R. toruloides was lower from arabinose and mixed carbohydrates than from glucose or xylose. Although high biomass and lipid production were achieved in both batch and fed-batch cultures with glucose as carbon source, for lipid production from mixtures of carbohydrates fed-batch cultivation was preferable. Constant feeding was better than intermittent feeding. The feeding strategy did not affect the relative proportion of different fatty acids in the lipid, but the presence of C5 sugars did.  相似文献   

12.
In this study, bioethanol production from steam-exploded wheat straw using different process configurations was evaluated using two Saccharomyces cerevisiae strains, F12 and Red Star. The strain F12 has been engineerically modified to allow xylose consumption as cereal straw contain considerable amounts of pentoses. Red Star is a robust hexose-fermenting strain used for industrial fuel ethanol fermentations and it was used for comparative purposes. The highest ethanol concentration, 23.7 g/L, was reached using the whole slurry (10%, w/v) and the recombinant strain (F12) in an SSF process, it showed an ethanol yield on consumed sugars of 0.43 g/g and a volumetric ethanol productivity of 0.7 g/L h for the first 3 h. Ethanol concentrations obtained in SSF processes were in all cases higher than those from SHF at the same conditions. Furthermore, using the whole slurry, final ethanol concentration was improved in all tests due to the increase of potential fermentable sugars in the fermentation broth. Inhibitory compounds present in the pretreated wheat straw caused a significantly negative effect on the fermentation rate. However, it was found that the inhibitors furfural and HMF were completely metabolized by the yeast during SSF by metabolic redox reactions. An often encountered problem during xylose fermentation is considerable xylitol production that occurs due to metabolic redox imbalance. However, in our work this redox imbalance was counteracted by the detoxification reactions and no xylitol was produced.  相似文献   

13.
Batch fermentation of sugarcane bagasse hemicellulosic hydrolyzate by the yeast Candida guilliermondii FTI 20037 was performed using controlled pH values (3.5, 5.5, 7.5). The maximum values of xylitol volumetric productivity (Q p=0.76 g/l h) and xylose volumetric consumption (Q s=1.19 g/l h) were attained at pH 5.5. At pH 3.5 and 7.5 the Q p value decreased by 66 and 72%, respectively. Independently of the pH value, Y x/s decreased with the increase in Y p/s suggesting that the xylitol bioconversion improves when the cellular growth is limited. At the highest pH value (7.5), the maximum specific xylitol production value was the lowest (q pmax=0.085 g/l h.), indicating that the xylose metabolism of the yeast was diverted from xylitol formation to cell growth.List of symbols P max xylitol concentration (g/l) - Q x volumetric cell production rate (g/l h) - Q s volumetric xylose uptake rate (g/l h) - Q p volumetric xylitol production rate (g/l h) - q pmax specific xylitol production (g/g h) - q smax specific xylose uptake rate (g/g h) - max specific cell growth rate (h–1) - Y p/s xylitol yield coefficient, g xylitol per g xylose consumed (g/g) - Y p/x xylitol yield coefficient, g xylitol per g dry cell mass produced (g/g) - Y x/s cell yield coefficient, g dry cell mass per g xylose consumed (g/g) - cell percentage of the cell yield from the theoretical value (%) - xylitol percentage of xylitol yield from the theoretical value (%)  相似文献   

14.
The marine microalga Chlorella sp. was cultivated under mixotrophic conditions using methanol as an organic carbon source, which may also act to maintain the sterility of the medium for long-term outdoor cultivation. The optimal methanol concentration was determined to be 1% (v/v) for both cell growth and lipid production when supplying 5% CO2 with 450 μE/m2/sec of continuous illumination. Under these conditions, the maximal cell biomass and total lipid production were 4.2 g dry wt/L and 17.5% (w/w), respectively, compared to 2.2 g dry wt/L and 12.5% (w/w) from autotrophic growth. Cell growth was inhibited at methanol concentrations above 1% (v/v) due to increased toxicity, whereas 1% methanol alone sustained 1.0 g dry wt/L and 4.8% total lipid production. We found that methanol was preferentially consumed during the initial period of cultivation, and carbon dioxide was consumed when the methanol was depleted. A 12:12 h (light:dark) cyclic illumination period produced favorable cell growth (3.6 g dry wt/L). Higher lipid production was observed with cyclic illumination than with continuous illumination (18.6% (w/w) vs 17.5% (w/w)), and better lipid production was also obtained under mixotrophic rather than autotrophic conditions. Interestingly, under mixotrophic conditions with 12:12 (h) cyclic illumination, high proportions of C16:0, C18:0, and C18:1 were observed, which are beneficial for biodiesel production. These results strongly indicate that the carbon source is important for controlling both lipid composition and cell growth under mixotrophic conditions, and they suggest that methanol could be utilized to scale up production to an open pond type system for outdoor cultivation where light illumination changes periodically.  相似文献   

15.
Elephant grass (Pennisetum purpureum) dilute acid hydrolysate contains 34.6?g/L total sugars. The potential of lipid production by oleaginous yeast Trichosporon cutaneum grown on elephant grass acid hydrolysate was investigated for the first time. During the fermentation process on the elephant grass acid hydrolysate, glucose, xylose, and arabinose could be well utilized as carbon sources by T. cutaneum. Interestingly, xylose was almost no use before glucose was consumed completely. This illustrated that simultaneous saccharification of xylose and glucose by T. cutaneum did not occur on elephant grass acid hydrolysate. The highest biomass, lipid content, lipid yield, and lipid coefficient of T. cutaneum were measured after the sixth day of fermentation and were 22.76?g/L, 24.0%, 5.46?g/L, and 16.1%, respectively. Therefore, elephant grass is a promising raw material for microbial oil production by T. cutaneum.  相似文献   

16.
A balance of electrons available from acetic acid consumed for growth and oxygen uptake in the aerobic- and photoheterotrophic growth of Rhodopseudomonas sphaeroides S on acetate-minimal medium could be realized the same as in the carbon balance. The unmeasured amounts of yeast extract consumed by the cells grown on propionate–yeast extract media were indirectly estimated from the balance equation of electrons available from carbon substrates. The specific consumption rate of the yeast extract increased with an increase in propionate consumption rate in aerobic and photoheterotrophic cultures. Growth yields from acetic acid and from propionic acid plus yeast extract were calculated on the electron level, i.e., YX/ave g cell produced/equivalent electrons available from substrate consumed. YX/ave values were 5.0 to 5.8 g cell/ave in photoheterotrophic cultures and 2.7 to 3.6 in aerobic–heterotrophic cultures regardless of different medium compositions.  相似文献   

17.
Epimastigotes of Trypanosoma mega were submitted to phenol extraction after lipid extraction, providing an extract whose carbohydrate portion (30%) contained fucose, ribose, xylose, mannose, galactose, and glucose. The purified fraction recovered in the void volume of Bio Gel P-150 gave on SDS-PAGE a band of Mr~ 55,000 positive for protein and carbohydrate and a diffuse band strongly positive for carbohydrate and lipids (Mr~ 22,000). The structural analysis of the carbohydrate moiety of this fraction by GLC-MS indicated the presence of nonreducing end groups of fucopyranose, mannopyranose, and galactopyranose, 3-O- and 4-O-substituted and 2,3- and 2,4-di-O-substituted galactopyranosyl units. Extraction of this fraction with chloroform/methanol/water provided a soluble fraction that on SDS-PAGE gave rise to a carbohydrate and lipid-positive band (Mr~ 22,000). This fraction contained fucose, mannose, and galactose (1:1:1). As main branch points, 2,3-di-O-substituted galactopyranosyl units were present according to methylation data. Similar proportions of fucopyranosyl, mannopyranosyl, galactopyranosyl end units were present. The presence of lipids in this fraction was confirmed by methanolysis following isolation and characterization of the corresponding fatty acid methyl esters. Palmitic acid (16:0) and an 18:1 fatty acid were the predominant fatty acids.  相似文献   

18.
Summary Ethanol was produced from xylose by converting the sugar to xylulose, using commercial xylose isomerases, and simultaneously converting the xylulose to ethanol by anaerobic fermentation using different yeast strains. The process was optimized with the yeast strain Schizosaccharomyces pombe (Y-164). The data show that the simultaneous fermentation and isomerization of 6% xylose can produce final ethanol concentrations of 2.1% w/v within 2 days at temperatures as high as 39°C.Nomenclature SFIX simultaneous fermentation and isomerization of xylose - V p volumetric production (g ethanol·l-1 per hour) - Q p specific rate (g ethanol·g-1 cells per hour) - Y s yield from substrate consumed (g ethanol, g-1 xylose) - ET ethanol concentration (% wt/vol) - XT xylitol concentration (% wt/vol) - Glu glucose - Xyl xylose - --m maximum - --f final  相似文献   

19.
Cholinium amino acids ionic liquids ([Ch][AA] ILs), a novel type of bio‐ILs that can easily be prepared from renewable biomaterials, were investigated for pretreatment of rice straw by selective extraction of lignin from this abundant lignocellulosic biomass material. Of the eight ILs examined, most were demonstrated to be excellent pretreatment solvents. Upon pretreatment using these ILs, the initial saccharification rates of rice straw residues were substantially improved as well as the extent to which polysaccharides could be digested (>90% for cellulose and >60% for xylan). Enzymatic hydrolysis of pretreated rice straw by Trichoderma reesei cellulase/xylanase furnished glucose and xylose with the yields in excess of 80% and 30%, respectively. Detailed spectroscopic characterization showed that the enhancement of polysaccharides degestibility derived mainly from delignification rather than changes in cellulose crystallinity. The yields of fermentable reducing sugars were significantly improved after individual optimization of pretreatment temperature and duration. With [Ch][Lys] as the solvent, the sugar yields of 84.0% for glucose and 42.1% for xylose were achieved after pretreatment at 90°C for 5 h. The IL [Ch][Lys] showed excellent reusability across five successive batches in pretreatment of rice straw. These bio‐ILs performed as well as or better than previously investigated non‐renewable ILs, and thus present a new and environmentally friendly way to pretreat lignocellulose for production of fermentable sugars and total utilization of the biomass. Biotechnol. Bioeng. 2012; 109: 2484–2493. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Microbial oil is a potential alternative to food/plant-derived biodiesel fuel. Our previous screening studies identified a wide range of oleaginous yeast species, using a defined laboratory medium known to stimulate lipid accumulation. In this study, the ability of these yeasts to grow and accumulate lipids was further investigated in synthetic hydrolysate (SynH) and authentic ammonia fiber expansion (AFEX?)-pretreated corn stover hydrolysate (ACSH). Most yeast strains tested were able to accumulate lipids in SynH, but only a few were able to grow and accumulate lipids in ACSH medium. Cryptococcus humicola UCDFST 10-1004 was able to accumulate as high as 15.5 g/L lipids, out of a total of 36 g/L cellular biomass when grown in ACSH, with a cellular lipid content of 40 % of cell dry weight. This lipid production is among the highest reported values for oleaginous yeasts grown in authentic hydrolysate. Preculturing in SynH media with xylose as sole carbon source enabled yeasts to assimilate both glucose and xylose more efficiently in the subsequent hydrolysate medium. This study demonstrates that ACSH is a suitable medium for certain oleaginous yeasts to convert lignocellullosic sugars to triacylglycerols for production of biodiesel and other valuable oleochemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号