首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Durum wheat, Triticum turgidum L. (2n= 4x=28, genome formula AABB) is inferior to bread wheat, T. aestivum L. (2n=6x=42, genome formula AABBDD), in the ability to exclude Na+ under salt strees, in the ratio of the accumulated K+ to Na+ in the leaves under salt stress, and in tolerance of salt stress. Previous work showed that chromosome 4D has a major effect on Na+ and K+ accumulation in the leaves of bread wheat. The 4D chromosome was recombined with chromosome 4B in the genetic background of durum wheat. The recombinants showed that Na+ exclusion and enhanced K+/Na+ ratio in the shoots were controlled by a single locus, Kna1, in the long arm of chromosome 4D. The recombinant families were grown in the field under non-saline conditions and two levels of salinity to determine whether Kna1 confers salt tolerance. Under salt stress, the Kna1 families had higher K+/Na+ ratios in the flag leaves and higher yields of grain and biomass than the Kna1 - families and the parental cultivars. Kna1 is, therefore, one of the factors responsible for the higher salt tolerance of bread wheat relative to durum wheat. The present work provides conceptual evidence that tolerance of salt stress can be transferred between species in the tribe Triticeae.  相似文献   

2.
Bread wheat (Triticum aestivum) has a greater ability to exclude Na+ from its leaves and is more salt tolerant than durum wheat (Triticum turgidum L. subsp. durum [Desf.]). A novel durum wheat, Line 149, was found to contain a major gene for Na+ exclusion, Nax2, which removes Na+ from the xylem in the roots and leads to a high K+-to-Na+ ratio in the leaves. Nax2 was mapped to the distal region on chromosome 5AL based on linkage to microsatellite markers. The Nax2 locus on 5AL coincides with the locus for a putative Na+ transporter, HKT1;5 (HKT8). The Nax2 region on 5AL is homoeologous to the region on chromosome 4DL containing the major Na+ exclusion locus in bread wheat, Kna1. A gene member of the HKT1;5 family colocates to the deletion bin containing Kna1 on chromosome 4DL. This work provides evidence that Nax2 and Kna1 are strongly associated with HKT1;5 genes.  相似文献   

3.
Targeted homoeologous recombination mediated by the absence of the Ph1 locus is currently the most efficient technique by which foreign genes can be introgressed into polyploid wheat species. Because intra-arm homoeologous double cross-overs are rare, introgressed foreign genes are usually on terminal foreign chromosome segments. Since the minimum length of such a segment is determined by the position of a gene in the chromosome, large chromosome segments with undesirable genetic effects are often introgressed. Introgression of foreign genes on short interstitial segments based on two cycles of homoeologous recombination is described here. The utility of the technique is demonstrated by the introgression of the Kna1 locus, which controls K+/Na+ selectivity in T. aesivum L., on short interstitial segments of chromosome 4D into chromosome 4B of Triticum turgidum L. The level of recombination in a homoeologous segment is not significantly affected by a juxtaposed proximal homologous segment in the absence of the Ph1 locus.  相似文献   

4.
The long arm of chromosome 4D of wheat (Triticum aestivum L.) contains a gene (or genes) which influences the ability of wheat plants to discriminate between Na+ and K+. This discrimination most obviously affects transport from the roots to the shoots, in which less Na+ and more K+ accumulate in those plants which contain the long arm of chromosome 4D. Concentrations of Na+ and K+ in the roots, and Cl concentrations in the roots and shoots, are not significantly affected by this trait, but Na+, K+ and Cl contents of the grain are reduced. The trait operates over a wide range of salinities and appears to be constitutive. At the moment it is not possible to determine accurately the effect of this trait on growth or grain yield because the aneuploid lines which are available are much less vigorous and less fertile than their euploid parents.  相似文献   

5.
Worldwide, dryland salinity is a major limitation to crop production. Breeding for salinity tolerance could be an effective way of improving yield and yield stability on saline-sodic soils of dryland agriculture. However, this requires a good understanding of inheritance of this quantitative trait. In the present study, a doubled-haploid bread wheat population (Berkut/Krichauff) was grown in supported hydroponics to identify quantitative trait loci (QTL) associated with salinity tolerance traits commonly reported in the literature (leaf symptoms, tiller number, seedling biomass, chlorophyll content, and shoot Na+ and K+ concentrations), understand the relationships amongst these traits, and determine their genetic value for marker-assisted selection. There was considerable segregation within the population for all traits measured. With a genetic map of 527 SSR-, DArT- and gene-based markers, a total of 40 QTL were detected for all seven traits. For the first time in a cereal species, a QTL interval for Na+ exclusion (wPt-3114-wmc170) was associated with an increase (10%) in seedling biomass. Of the five QTL identified for Na+ exclusion, two were co-located with seedling biomass (2A and 6A). The 2A QTL appears to coincide with the previously reported Na+ exclusion locus in durum wheat that hosts one active HKT1;4 (Nax1) and one inactive HKT1;4 gene. Using these sequences as template for primer design enabled mapping of at least three HKT1;4 genes onto chromosome 2AL in bread wheat, suggesting that bread wheat carries more HKT1;4 gene family members than durum wheat. However, the combined effects of all Na+ exclusion loci only accounted for 18% of the variation in seedling biomass under salinity stress indicating that there were other mechanisms of salinity tolerance operative at the seedling stage in this population. Na+ and K+ accumulation appear under separate genetic control. The molecular markers wmc170 (2A) and cfd080 (6A) are expected to facilitate breeding for salinity tolerance in bread wheat, the latter being associated with seedling vigour.  相似文献   

6.
7.
Right-side-out plasma membrane vesicles were isolated from wheat roots using an aqueous polymer two-phase system. The purity and orientation of the vesicles were confirmed by marker enzyme analysis. Membrane potential (Ψ)-dependent 22Na+ influx and sodium/proton (Na+/ H+) antiport-mediated efflux across the plasma membrane were studied using these vesicles. Membrane potentials were imposed on the vesicles using either K+ gradients in the presence of valinomycin or H+ gradients. The ΔΨ was quantified by the uptake of the lipophilic cation tetraphenylphosphonium. Uptake of Na+ into the vesicles was stimulated by a negative ΔΨ and had a Km for extrav-esicular Na+ of 34.8 ± 5.9 mol m3. The ΔΨ-dependent uptake of Na+ was similar in vesicles from roots of hexaploid (cv. Troy) and tetraploid (cv. Langdon) wheat differing in a K+/Na+ discrimination trait, and was also unaffected by growth in 50 mol m?3 NaCl. Inhibition of ΔΨ-dependent Na+ uptake by Ca2+ was greater in the hexaploid than in the tetraploid. Sodium/proton antiport was measured as Na+-dependent, amiloride-inhibited pH gradient formation in the vesicles. Acidification of the vesicle interior was measured by the uptake of 14C-methylamine. The Na+/H+ antiport had a Km, for intravesicular Na+ of between 13 and 19 mol m?3. In the hexaploid, Na+/H+ antiport activity was greater when roots were grown in the presence of 50 mol m?3NaCl, and was also greater than the activity in salt-grown tetraploid wheat roots. Antiport activity was not increased in a Langdon 4D chromosome substitution line which carries a trait for K+/Na+ discrimination. It is concluded that neither of the transport processes measured is responsible for the Na+/K+ discrimination trait located on the 4D chromosome of wheat.  相似文献   

8.
Screening methods for salinity tolerance: a case study with tetraploid wheat   总被引:19,自引:1,他引:18  
Munns  Rana  James  Richard A. 《Plant and Soil》2003,253(1):201-218
Fast and effective glasshouse screening techniques that could identify genetic variation in salinity tolerance were tested. The objective was to produce screening techniques for selecting salt-tolerant progeny in breeding programs in which genes for salinity tolerance have been introduced by either conventional breeding or genetic engineering. A set of previously unexplored tetraploid wheat genotypes, from five subspecies of Triticum turgidum, were used in a case study for developing and validating glasshouse screening techniques for selecting for physiologically based traits that confer salinity tolerance. Salinity tolerance was defined as genotypic differences in biomass production in saline versus non-saline conditions over prolonged periods, of 3–4 weeks. Short-term experiments (1 week) measuring either biomass or leaf elongation rates revealed large decreases in growth rate due to the osmotic effect of the salt, but little genotypic differences, although there were genotypic differences in long-term experiments. Specific traits were assessed. Na+ exclusion correlated well with salinity tolerance in the durum subspecies, and K+/Na+ discrimination correlated to a lesser degree. Both traits were environmentally robust, being independent of root temperature and factors that might influence transpiration rates such as light level. In the other four T. turgidum subspecies there was no correlation between salinity tolerance and Na+ accumulation or K+/Na+ discrimination, so other traits were examined. The trait of tolerance of high internal Na+ was assessed indirectly, by measuring chlorophyll retention. Five landraces were selected as maintaining green healthy leaves despite high levels of Na+ accumulation. Factors affecting field performance of genotypes selected by trait-based techniques are discussed.  相似文献   

9.
Changes in leaf solute concentrations in response to salinity were measured at two growth stages in two species of wheat, Triticum turgidum L. cv. Aldura (Durum group) and Triticum aestivum L., cv. Probred that differed in their salt tolerances. Both species at 55 days of age were Na+-excluders, but the concentration of Na+ was 10 times higher in T. turgidum than T. aestivum at low to moderate levels of stress. The ratio then decreased until it was 2:1 at – 1.2 MPa. In T. turgidum, K+ concentrations decreased with increasing Na+ concentrations so that the sum of the two cations remained constant at all stress levels, but in T. aestivum K+ decreased more rapidly than Na+ increased. In both species growing in media at 0 to –0.6 MPa, the amounts of Mg2+ and Ca2+ in 55-day-old plants that could be extracted with hot water were below 0.1 mmol (g dry weight)?1. Then, as osmotic potentials of media decreased further, hot water-extractable Ca2+ increased greatly until, at – 1.2 MPa, Ca2+ concentrations were almost equal to the sum of Na+ and K+. In the range of 0 to –1.0 MPa, the ratio of Cl? to total cationic charge remained constant at 1:6 in T. aestivum and 1:2 in T. turgidum. However, at – 1.2 MPa, the ratio in both species had changed to 2:3. Sucrose and betaine concentrations were 4 and 48 μmol (g dry weight)?1, respectively, in non-stressed plants of both species. At – 1.2 MPa, sucrose had increased 30-fold but betaine had increased only 2.5-fold. Proline increased exponentially relative to foliar Na+ in T. turgidum. In T. aestivum only plants grown at –1.2 MPa contained sufficient Na+ to stimulate the accumulation of proline. Although the quantities of the solutes in leaves of non-stressed 96-day-old plants differed from those in non-stressed younger plants, the patterns of change of organic solutes as the older plants were subjected to increasing saline stresses were the same as in younger plants with the exception of sucrose. Sucrose concentrations were much higher in leaves of non-stressed older plants and this sugar first increased and then decreased with decreasing osmotic potentials of media.  相似文献   

10.
植物染料在工业化应用过程中存在着资源限制,目标色相不丰富、色牢度不理想、植物染料本身的鉴别和成品的鉴别等问题。为了丰富染料植物资源的来源和提高染料植物资源的利用效率,该研究对西双版纳傣族利用的染料植物及其染色工艺涉及的相关植物进行了系统调查。2014年10月到2016年1月,采用半结构式访谈法对西双版纳14个村寨的56个关键信息人进行访谈,收集信息包括使用着色植物、媒染植物和助染植物的种类、傣名、利用部位和资源来历,以及预处理和染色过程工艺条件与技术步骤;采用参与式观察法对4种色相的10个染色工艺过程进行了记录,采集了凭证标本和图像资料;对调查信息进行了整理编目。结果表明:西双版纳地区的傣族使用11种着色植物和17种助染植物;目标色相有红、黄、蓝和绿。分析了傣族染料植物资源的发掘潜力、傣族利用植物染色对于染料植物利用的应用启发。该研究详细深入地记录了西双版纳傣族使用的染料植物的种类及其相关的组合和染色的过程。该研究结果对民族民间染料植物与染色工艺的产业化应用具有重要借鉴意义,为染料植物资源筛选及其染色工艺条件优化提供了参考。  相似文献   

11.
This work investigated the importance of the ability of leaf mesophyll cells to control K+ flux across the plasma membrane as a trait conferring tissue tolerance mechanism in plants grown under saline conditions. Four wheat (Triticum aestivum and Triticum turgidum) and four barley (Hordeum vulgare) genotypes contrasting in their salinity tolerance were grown under glasshouse conditions. Seven to 10‐day‐old leaves were excised, and net K+ and H+ fluxes were measured from either epidermal or mesophyll cells upon acute 100 mM treatment (mimicking plant failure to restrict Na+ delivery to the shoot) using non‐invasive microelectrode ion flux estimation (the MIFE) system. To enable net ion flux measurements from leaf epidermal cells, removal of epicuticular waxes was trialed with organic solvents. A series of methodological experiments was conducted to test the efficiency of different methods of wax removal, and the impact of experimental procedures on cell viability, in order to optimize the method. A strong positive correlation was found between plants' ability to retain K+ in salt‐treated leaves and their salinity tolerance, in both wheat and especially barley. The observed effects were related to the ionic but not osmotic component of salt stress. Pharmacological experiments have suggested that voltage‐gated K+‐permeable channels mediate K+ retention in leaf mesophyll upon elevated NaCl levels in the apoplast. It is concluded that MIFE measurements of NaCl‐induced K+ fluxes from leaf mesophyll may be used as an efficient screening tool for breeding in cereals for salinity tissue tolerance.  相似文献   

12.
The expression of salt tolerance from Triticum tauschii in hexaploid wheat   总被引:6,自引:0,他引:6  
Summary Accessions of Triticum tauschii (Coss.) Schmal. (D genome donor to hexaploid wheat) vary in salt tolerance and in the rate that Na+ accumulates in leaves. The aim of this study was to determine whether these differences in salt tolerance and leaf Na+ concentration would be expressed in hexaploid wheat. Synthetic hexaploids were produced from five T. tauschii accessions varying in salt tolerance and two salt-sensitive T. turgidum cultivars. The degree of salt tolerance of the hexaploids was evaluated as the grain yield per plant in 150 mol m-3 NaCl relative to grain yield in 1 mol m-3 NaCl (control). Sodium concentration in leaf 5 was measured after the leaf was fully expanded. The salt tolerance of the genotypes correlated negatively with the concentration of Na+ in leaf 5. The salt tolerance of the synthetic hexaploids was greater than the tetraploid parents primarily due to the maintenance of kernel weight under saline conditions. Synthetic hexaploids varied in salt tolerance with the source of their D genome which demonstrates that genes for salt tolerance from the diploid are expressed at the hexaploid level.  相似文献   

13.
采用植物水培方法,以乌拉尔甘草为研究材料,用不同浓度(0、80、160、320mmol·L~(-1))NaCl溶液胁迫处理乌拉尔甘草幼苗3周后,分析其叶片表面盐离子(K~+、Ca~(2+)、Na+)分泌速率的差异,并采集盐化低地草甸重盐土生境中2年生乌拉尔甘草植株,应用ICP-AES测定其不同部位(根、根状茎、茎、老叶和幼叶)中的盐离子(K~+、Na~+、Ga~(2+)、Mg~(2+))含量,探究盐离子在乌拉尔甘草叶片上的分泌格局以及盐离子在植株体内的积存格局,为完善甘草耐盐机理的研究提供依据。结果显示:(1)随着盐胁迫浓度的升高,乌拉尔甘草叶片上K~+、Ca~(2+)、Na+的分泌速率均呈增加趋势,且Na~+的分泌速率远远大于Ca~(2+)和K+的分泌速率。(2)在乌拉尔甘草各部位中,K+的积存量从大到小依次为:幼叶根根状茎茎老叶;Na~+在各个部位的积存量都十分有限,且无论地下部分还是地上部分,差异均不大;Ca~(2+)积存量由大到小依次为:老叶幼叶茎根状茎根,且老叶中Ca~(2+)的积存量显著高于其它部位。研究认为,在重盐碱地生境中,K+主要积存在幼叶中,Ga~(2+)主要积存在老叶中,植株体内各个部位Na~+的积存量很低,乌拉尔甘草表现出明显的拒Na现象;叶片分泌的主要盐离子为Na~+;乌拉尔甘草通过泌盐的方式将Na+排出体外,从而有效降低Na~+在体内的积存,这是其能够在重盐碱地生存生长的重要原因。  相似文献   

14.
采用4种浓度的NaCl溶液(50、100、150、200 mmol/L)处理二穗短柄草和拟南芥(对照)幼苗,测定不同浓度盐胁迫下2种植物幼苗的生长指标和离子分布,以探讨二穗短柄草在盐胁迫下主要阳离子平衡机制.结果表明:(1)盐胁迫显著抑制二穗短柄草根叶的生物量积累.(2)根冠比数据显示,在盐胁迫条件下二穗短柄草能够更好地维系地下部分的生物量积累.(3)在4种浓度盐胁迫下,二穗短柄草叶中Na+含量低于根系,而且K+、Cl-含量和K+/Na+比值始终高于根系,说明在二穗短柄草中Na+从地下到地上的转运受到抑制,但对Cl-的转运缺乏有效的调控.(4)回归分析发现,盐胁迫下二穗短柄草和拟南芥根部Na+与K+含量变化呈正相关关系,而在叶部则不相关,说明二穗短柄草和拟南芥Na+与K+在根部具有相同的离子通道,而在叶部却具有各自独立的转运途径.  相似文献   

15.
Summary Polyacrylamide and starch gel electrophoresis of esterase (EST), glutamate oxaloacetate transaminase (GOT) and phosphoglucomutase (PGM) isozymes in Hordeum chilense, Triticum turgidum conv. durum, the amphiploid H. chilense X T. turgidum (Tritordeum), and the durum wheat/H. chilense monosomic addition lines revealed the chromosomal location of one EST locus, two GOT loci and one PGM locus. Loci Est-H ch1 and Got-H ch2 were found on chromosome 6Hch,Got-H ch3 on chromosome 3Hch, and Pgm-H ch1 on chromosome 4Hch. These results lend evidence for the assumed homoeology relationships between chromosomes of Triticeae species.  相似文献   

16.
17.
以披针叶黄华(Thermopsis lanceolata)试管苗为材料,通过组培方法研究其在0、0.2%、0.4%、0.6%、0.8%和1.0%NaCl和Na2SO4胁迫30d后的生长、有机渗透调节物质和无机渗透调节物质(Na+、K+和Ca2+)含量的变化,以探讨其耐盐性机制。结果显示:(1)随NaCl和Na2SO4胁迫浓度的增加,披针叶黄华试管苗叶片脯氨酸和可溶性糖含量均显著持续增加,且NaCl胁迫下脯氨酸上升的幅度均大于相同浓度Na2SO4胁迫下的增幅,而可溶性糖上升的幅度却小于相同浓度Na2SO4胁迫下的幅度;可溶性蛋白含量随NaCl浓度的增大呈先升高后降低的趋势,但随Na2SO4浓度的增加呈持续上升的趋势。(2)随NaCl和Na2SO4浓度的增加,披针叶黄华试管苗Na+含量呈增加趋势且各处理均显著高于对照,Ca2+含量和叶片K+含量却呈逐渐减少趋势且各处理均显著低于对照,而根系K+含量呈先降后升的趋势;Na2SO4胁迫下披针叶黄华试管苗叶片Na+含量上升幅度以及K+和Ca2+含量下降幅度均明显低于相同浓度NaCl胁迫组;而Na+/K+和Na+/Ca2+比值随NaCl和Na2SO4浓度增加而升高;NaCl胁迫下,叶片Na+/K+和Na+/Ca2+高于相同浓度Na2SO4胁迫下的比值,而根系Na+/K+和Na+/Ca2+却低于相同浓度Na2SO4胁迫下的比值。研究表明,盐胁迫下,披针叶黄华试管苗通过抑制叶片中Na+积累并增加可溶性糖和可溶性蛋白含量,在根系中维持较高K+和Ca2+含量以及较低水平Na+/K+和Na+/Ca2+比,以降低披针叶黄华细胞渗透势来适应盐渍环境;披针叶黄华对NaCl胁迫的调节能力弱于Na2SO4。  相似文献   

18.
The effects of saline-stresses due to different salts on growth and on foliar solute concentrations in seedlings of two species of wheat that differed in salt tolerance. Triticum aestivum L. cv. Probred and Triticum turgidum L. (Durum group) cv. Aldura, were studied. Triticum aestivum is the more salt tolerant species. The salts used were NaCl, KCI, a 1:1 mixture of NaCI and KCI, and these same monovalent cation salts but mixed with CaCI2 at a ratio of 2:1 on a molar basis of monovalent to divalent cation salts. Growth inhibition of both species was a function of media osmotic potentials. There was a small additional inhibition of growth if KCI replaced NaCI as the salinizing salt. CaCI2 had little or no effect on growth inhibition beyond an osmotic effect except at the most severe stress level, i.e. when Ca2+ concentrations may be excessive. The amounts of water-soluble Ca2+ were about 10 times higher in leaves of plants grown in the presence of CaCI2 than in its absence, but its concentrations even then were approximately 10% or less of those of the monovalent cations. Including CaCI2 in growth media resulted in a reduction in the amount of Na+ in leaves compared to the amounts in plants grown at the same osmotic potential but in the absence of CaCI2. Triticum aestivum was a better Na+-excluder than T. turgidum. With CaCI2 in media, (Na++ K+) remained relatively constant or increased by small amounts as media osmotic potentials décreased. In the absence of CaCI2+ (Na++ K+) increased by large amounts when media osmotic potentials were at ?0.6 and ?0.8 MPa. It is concluded that the accumulation system in leaves for monovalent cations was under feed-back control, and that this control mechanism was inhibited by high media concentrations of Na+ and/or K+. Sucrose was present at a constant amount under all growth conditions. Proline started accumulating when (Na++ K+) exceeded a threshold value of 200 μmol (g fresh weight)?1. Its concentration was 5 to 13% of that portion of (Na++ K+) that exceeded the threshold value.  相似文献   

19.
Lophopyrum elongatum (tall wheatgrass), a wild relative of wheat, can be used as a source of novel genes for improving salt tolerance of bread wheat. Sodium ‘exclusion’ is a major physiological mechanism for salt tolerance in a wheat–tall wheatgrass amphiploid, and a large proportion (~50%) for reduced Na+ accumulation in the flag leaf, as compared to wheat, was earlier shown to be contributed by genetic effects from substitution of chromosome 3E from tall wheatgrass for wheat chromosomes 3A and 3D. Homoeologous recombination between 3E and wheat chromosomes 3A and 3D was induced using the ph1b mutant, and putative recombinants were identified as having SSR markers specific for tall wheatgrass loci. As many as 14 recombinants with smaller segments of tall wheatgrass chromatin were identified and low-resolution breakpoint analysis was achieved using wheat SSR loci. Seven recombinants were identified to have leaf Na+ concentrations similar to those in 3E(3A) or 3E(3D) substitution lines, when grown in 200 mM NaCl in nutrient solution. Phenotypic analysis identified recombinants with introgressions at the distal end on the long arm of homoeologous group 3 chromosomes being responsible for Na+ ‘exclusion’. A total of 55 wheat SSR markers mapped to the long arm of homoeologous group 3 markers by genetic and deletion bin mapping were used for high resolution of wheat–tall wheatgrass chromosomal breakpoints in selected recombinants. Molecular marker analysis and genomic in situ hybridisation confirmed the 524-568 recombinant line as containing the smallest introgression of tall wheatgrass chromatin on the distal end of the long arm of wheat chromosome 3A and identified this line as suitable for developing wheat germplasm with Na+ ‘exclusion’.  相似文献   

20.
Previous work identified the wild barley (Hordeum vulgare ssp. spontaneum) accession CPI-71284-48 as being capable of limiting sodium (Na+) accumulation in the shoots under saline hydroponic growth conditions. Quantitative trait locus (QTL) analysis using a cross between CPI-71284-48 and a selection of the cultivated barley (H. vulgare ssp. vulgare) cultivar Barque (Barque-73, a moderate Na+ excluder) attributed the control of the Na+ exclusion trait from CPI-71284-48 to a single locus on the short arm of chromosome 7H, which was named HvNax3. The locus reduced shoot Na+ accumulation by 10–25% in plants grown in 150 mM NaCl. Markers generated using colinearity with rice and Brachypodium, together with the analysis of introgression lines and F2 and F3 families, enabled HvNax3 to be mapped to a 1.3-cM interval. Genes from the corresponding rice and Brachypodium intervals encode 16 different classes of proteins and include several plausible candidates for HvNax3. The potential of HvNax3 to provide a useful trait contributing to salinity tolerance in cultivated barley is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号