首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recent emergence of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) marked a quantum change in the biology and epidemiology of a major human pathogen. Various virulence determinants unique to CA-MRSA have been uncovered recently, which shed light on how these strains spread easily and sustainably among humans and frequently cause severe disease. The role of the Panton Valentine leukocidin (PVL) in CA-MRSA pathogenesis is a matter of much debate. Although epidemiological data have indicated a role for PVL in the CA-MRSA disease process, recent data from relevant animal models indicate that PVL does not impact virulence of prevalent CA-MRSA strains. Identifying specialized pathogenic traits of CA-MRSA remains a challenge that will yield new diagnostic tools and therapeutic targets for drug and vaccine development. Here, we discuss the roles of PVL, the arginine catabolic mobile element and phenol-soluble modulins in the pathogenesis of prevalent CA-MRSA strains.  相似文献   

2.
We investigate the in-hospital transmission dynamics of two methicillin-resistant Staphylococcus aureus (MRSA) strains: hospital-acquired methicillin resistant S. aureus (HA-MRSA) and community-acquired methicillin-resistant S. aureus (CA-MRSA). Under the assumption that patients can only be colonized with one strain of MRSA at a time, global results show that competitive exclusion occurs between HA-MRSA and CA-MRSA strains; the strain with the larger basic reproduction ratio will become endemic while the other is extinguished due to competition. Because new studies suggest that patients can be concurrently colonized with multiple strains of MRSA, we extend the model to allow patients to be co-colonized with HA-MRSA and CA-MRSA. Using the extended model, we explore the effect of co-colonization on competitive exclusion by determining the invasion reproduction ratios of the boundary equilibria. In contrast to results derived from the assumption that co-colonization does not occur, the extended model rarely exhibits competitive exclusion. More commonly, both strains become endemic in the hospital. When transmission rates are assumed equal and decolonization measures act equally on all strains, competitive exclusion never occurs. Other interesting phenomena are exhibited. For example, solutions can tend toward a co-existence equilibrium, even when the basic reproduction ratio of one of the strains is less than one.  相似文献   

3.
4.
The ability of influenza A viruses (IAVs) to cross species barriers and evade host immunity is a major public health concern. Studies on the phylodynamics of IAVs across different scales – from the individual to the population – are essential for devising effective measures to predict, prevent or contain influenza emergence. Understanding how IAVs spread and evolve during outbreaks is critical for the management of epidemics. Reconstructing the transmission network during a single outbreak by sampling viral genetic data in time and space can generate insights about these processes. Here, we obtained intra-host viral sequence data from horses infected with equine influenza virus (EIV) to reconstruct the spread of EIV during a large outbreak. To this end, we analyzed within-host viral populations from sequences covering 90% of the infected yards. By combining gene sequence analyses with epidemiological data, we inferred a plausible transmission network, in turn enabling the comparison of transmission patterns during the course of the outbreak and revealing important epidemiological features that were not apparent using either approach alone. The EIV populations displayed high levels of genetic diversity, and in many cases we observed distinct viral populations containing a dominant variant and a number of related minor variants that were transmitted between infectious horses. In addition, we found evidence of frequent mixed infections and loose transmission bottlenecks in these naturally occurring populations. These frequent mixed infections likely influence the size of epidemics.  相似文献   

5.
Methicillin-resistant Staphylococcus aureus (MRSA) poses a serious threat to worldwide health. Historically, MRSA clones have strictly been associated with hospital settings, and most hospital-associated MRSA (HA-MRSA) disease resulted from a limited number of virulent clones. Recently, MRSA has spread into the community causing disease in otherwise healthy people with no discernible contact with healthcare environments. These community-associated MRSA clones (CA-MRSA) are phylogenetically distinct from traditional HA-MRSA clones, and CA-MRSA strains seem to exhibit hypervirulence and more efficient host : host transmission. Consequently, CA-MRSA clones belonging to the USA300 lineage have become dominant sources of MRSA infections in North America. The rise of this successful USA300 lineage represents an important step in the evolution of emerging pathogens and a great deal of effort has been exerted to understand how these clones evolved. Here, we review much of the recent literature aimed at illuminating the source of USA300 success and broadly categorize these findings into three main categories: newly acquired virulence genes, altered expression of common virulence determinants and alterations in protein sequence that increase fitness. We argue that none of these evolutionary events alone account for the success of USA300, but rather their combination may be responsible for the rise and spread of CA-MRSA.  相似文献   

6.
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) USA300 has spread rapidly across North America, and CA-MRSA is also increasing in Australia. However, the dominant Australian CA-MRSA strain, ST93-IV [2B] appears distantly related to USA300 despite strikingly similar clinical and epidemiological profiles. Here, we compared the virulence of a recent Australian ST93 isolate (JKD6159) to other MRSA, including USA300, and found that JKD6159 was the most virulent in a mouse skin infection model. We fully sequenced the genome of JKD6159 and confirmed that JKD6159 is a distinct clone with 7616 single nucleotide polymorphisms (SNPs) distinguishing this strain from all other S. aureus genomes. Despite its high virulence there were surprisingly few virulence determinants. However, genes encoding α-hemolysin, Panton-Valentine leukocidin (PVL) and α-type phenol soluble modulins were present. Genome comparisons revealed 32 additional CDS in JKD6159 but none appeared to encode new virulence factors, suggesting that this clone's enhanced pathogenicity could lie within subtler genome changes, such as SNPs within regulatory genes. To investigate the role of accessory genome elements in CA-MRSA epidemiology, we next sequenced three additional Australian non-ST93 CA-MRSA strains and compared them with JKD6159, 19 completed S. aureus genomes and 59 additional S. aureus genomes for which unassembled genome sequence data was publicly available (82 genomes in total). These comparisons showed that despite its distinctive genotype, JKD6159 and other CA-MRSA clones (including USA300) share a conserved repertoire of three notable accessory elements (SSCmecIV, PVL prophage, and pMW2). This study demonstrates that the genetically distinct ST93 CA-MRSA from Australia is highly virulent. Our comparisons of geographically and genetically diverse CA-MRSA genomes suggest that apparent convergent evolution in CA-MRSA may be better explained by the rapid dissemination of a highly conserved accessory genome from a common source.  相似文献   

7.
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) strains typically carry genes encoding Panton-Valentine leukocidin (PVL). We used wild-type parental and isogenic PVL-deletion (Delta pvl) strains of USA300 (LAC and SF8300) and USA400 (MW2) to test whether PVL alters global gene regulatory networks and contributes to pathogenesis of bacteremia, a hallmark feature of invasive staphylococcal disease. Microarray and proteomic analyses revealed that PVL does not alter gene or protein expression, thereby demonstrating that any contribution of PVL to CA-MRSA pathogenesis is not mediated through interference of global gene regulatory networks. Inasmuch as a direct role for PVL in CA-MRSA pathogenesis remains to be determined, we developed a rabbit bacteremia model of CA-MRSA infection to evaluate the effects of PVL. Following experimental infection of rabbits, an animal species whose granulocytes are more sensitive to the effects of PVL compared with the mouse, we found a contribution of PVL to pathogenesis over the time course of bacteremia. At 24 and 48 hours post infection, PVL appears to play a modest, but measurable role in pathogenesis during the early stages of bacteremic seeding of the kidney, the target organ from which bacteria were not cleared. However, the early survival advantage of this USA300 strain conferred by PVL was lost by 72 hours post infection. These data are consistent with the clinical presentation of rapid-onset, fulminant infection that has been associated with PVL-positive CA-MRSA strains. Taken together, our data indicate a modest and transient positive effect of PVL in the acute phase of bacteremia, thereby providing evidence that PVL contributes to CA-MRSA pathogenesis.  相似文献   

8.
BackgroundDespite dengue dynamics being driven by complex interactions between human hosts, mosquito vectors and viruses that are influenced by climate factors, an operational model that will enable health authorities to anticipate the outbreak risk in a dengue non-endemic area has not been developed. The objectives of this study were to evaluate the temporal relationship between meteorological variables, entomological surveillance indices and confirmed dengue cases; and to establish the threshold for entomological surveillance indices including three mosquito larval indices [Breteau (BI), Container (CI) and House indices (HI)] and one adult index (AI) as an early warning tool for dengue epidemic.Conclusion/SignificanceThere was little evidence of quantifiable association among vector indices, meteorological factors and dengue transmission that could reliably be used for outbreak prediction. Our study here provided the proof-of-concept of how to search for the optimal model and determine the threshold for dengue epidemics. Since those factors used for prediction varied, depending on the ecology and herd immunity level under different geological areas, different thresholds may be developed for different countries using a similar structure of the two-stage model.  相似文献   

9.
Monkeypox virus (MPXV) is considered the most significant human public health threat in the genus Orthopoxvirus since the eradication of variola virus (the causative agent of smallpox). MPXV is a zoonotic agent endemic to forested areas of Central and Western Africa. In 2003, MPXV caused an outbreak in the United States due to the importation of infected African rodents, and subsequent sequential infection of North American prairie dogs (Cynomys ludovicianus) and humans. In previous studies, the prairie dog MPXV model has successfully shown to be very useful for understanding MPXV since the model emulates key characteristics of human monkeypox disease. In humans, percutaneous exposure to animals has been documented but the primary method of human-to-human MPXV transmission is postulated to be by respiratory route. Only a few animal model studies of MPXV transmission have been reported. Herein, we show that MPXV infected prairie dogs are able to transmit the virus to naive animals through multiple transmission routes. All secondarily exposed animals were infected with MPXV during the course of the study. Notably, animals secondarily exposed appeared to manifest more severe disease; however, the disease course was very similar to those of experimentally challenged animals including inappetence leading to weight loss, development of lesions, production of orthopoxvirus antibodies and shedding of similar levels or in some instances higher levels of MPXV from the oral cavity. Disease was transmitted via exposure to contaminated bedding, co-housing, or respiratory secretions/nasal mucous (we could not definitively say that transmission occurred via respiratory route exclusively). Future use of the model will allow us to evaluate infection control measures, vaccines and antiviral strategies to decrease disease transmission.  相似文献   

10.
The diversion of disease carrying insect from humans to animals may reduce transmission of diseases such as malaria. The use of animals to mitigate mosquito bites on human is called ‘zooprophylaxis’. We introduce a mathematical model for Plasmodium vivax malaria transmission with two bloodmeal hosts (humans and domestic animals) to study the effect of zooprophylaxis. After computing the basic reproduction number from the proposed model, we explore how perturbations in the parameters, sensitive to the effects of control measures, affect its value. Zooprophylaxis is shown to determine whether a basic reproduction becomes bigger than an outbreak threshold value or not. Sensitivity analysis shows that increasing the relative animal population size works better in P. vivax malaria control than decreasing the mosquito population when the relative animal population size is larger than a threshold value.  相似文献   

11.
In the past decade, community-associated (CA-) infections with methicillin-resistant Staphylococcus aureus (MRSA) have emerged throughout the world. Different CA-MRSA strains dominate in different geographical locations. Many CA-MRSA lineages contain genes coding for the Pantón-Valentine leukocidin. However, the role of this leukotoxin in CA-MRSA pathogenesis is still controversial. The genome sequences of two key PVL-positive CA-MRSA strains (USA300, USA400) have been reported, but we lack information on the more recently found PVL-negative CA-MRSA strains. One such strain is the PVL-negative ST72, the main cause of CA-MRSA infections in Korea. Here, we report the entire genome sequence of CA-MRSA ST72 and analyze its gene content with a focus on virulence factors. Our results show that this strain does not have considerable differences in virulence factor content compared to other CA-MRSA strains (USA300, USA400), indicating that other toxins do not substitute for the lack of PVL in ST72. This finding is in accordance with the notion that differential expression of widespread virulence determinants, rather than the acquisition of additional virulence factors on mobile genetic elements, such as PVL, is responsible for the increased virulence of CA- compared to hospital-associated MRSA.  相似文献   

12.
Community acquired methicillin resistant Staphylococcus aureus (CA-MRSA), and the USA300 strain of CA-MRSA in particular, are known for their rapid community transmission, and propensity to cause aggressive skin and soft tissue infections. To assess factors that contribute to these hallmark traits of CA-MRSA, we evaluated how growth of USA300 and production of secreted virulence factors was influenced on exposure to physiologic levels of unsaturated free fatty acids that would be encountered on the skin or anterior nares, which represent the first sites of contact with healthy human hosts. There was a sharp threshold between sub-inhibitory and inhibitory concentrations, such that 100 µM sapienic acid (C16∶1) and linoleic acid (C18∶1) were sufficient to prevent growth after 24 h incubation, while 25 µM allowed unrestricted growth, and 50 µM caused an approximate 10–12 h lag, followed by unimpeded exponential growth. Conversely, saturated palmitic or stearic acids did not affect growth at 100 µM. Although growth was not affected by 25 µM sapienic or linoleic acid, these and other unsaturated C16 and C18 fatty acids, but not their saturated counterparts, promoted robust production of secreted proteases comprising the Staphylococcal proteolytic cascade. This trait was also manifested to varying degrees in other CA-MRSA, and in genetically diverse methicillin susceptible S. aureus strains. Therefore, induction of the Staphylococcal proteolytic cascade by unsaturated fatty acids is another feature that should now be evaluated as a potential contributing factor in the aggressive nature of skin and soft tissue infections caused by USA300, and as a general virulence mechanism of S. aureus.  相似文献   

13.
Severe acute respiratory syndrome (SARS) has been transmitted extensively within hospitals, and healthcare workers (HCWs) have comprised a large proportion of SARS cases worldwide. We present a stochastic model of a SARS outbreak in a community and its hospital. For a range of basic reproductive numbers (R(0)) corresponding to conditions in different cities (but with emphasis on R(0) approximately 3 as reported for Hong Kong and Singapore), we evaluate contact precautions and case management (quarantine and isolation) as containment measures. Hospital-based contact precautions emerge as the most potent measures, with hospital-wide measures being particularly important if screening of HCWs is inadequate. For R(0) = 3, case isolation alone can control a SARS outbreak only if isolation reduces transmission by at least a factor of four and the mean symptom-onset-to-isolation time is less than 3 days. Delays of a few days in contact tracing and case identification severely degrade the utility of quarantine and isolation, particularly in high-transmission settings. Still more detrimental are delays between the onset of an outbreak and the implementation of control measures; for given control scenarios, our model identifies windows of opportunity beyond which the efficacy of containment efforts is reduced greatly. By considering pathways of transmission in our system, we show that if hospital-based transmission is not halted, measures that reduce community-HCW contact are vital to preventing a widespread epidemic. The implications of our results for future emerging pathogens are discussed.  相似文献   

14.
The aim of this study was to identify and characterize 97 methicillin-resistant Staphylococcus aureus (MRSA) isolates. Two conventional multiplex PCR assays, a real-time PCR assay and two PCR-based genotyping techniques including the spa - and hypervariable region (HVR)-typing methods were used to identify and characterize 97 MRSA strains isolated between April 2006 to September 2007 from the Steve Biko Academic Hospital. All MRSA isolates were positive for 16S rRNA gene, 99% were positive for the mec A gene and 4% positive for the Panton–Valentine leukocidin (PVL) gene. Staphylococcal cassette chromosome mec (SCC mec ) typing showed 67% of isolates were SCC mec II [health-care-associated MRSA (HA-MRSA)], 14% were SCC mec III (HA-MRSA) and 4% were SCC mec IVd [community-associated MRSA (CA-MRSA)]. These CA-MRSA isolates showed a prevalence of 100% for the PVL gene. Using spa typing, three distinct clusters could be identified while HVR typing revealed six different clusters. CA-MRSA isolates were clustered together using spa and HVR typing. This study showed the prevalence of the CA-MRSA strains, PVL genes, the SCC mec types and the clonality of the MRSA strains. The high prevalence of the PVL gene in CA-MRSA isolates already residing in intensive care units was alarming and indicated the emergence of new MRSA lineages with a particular fitness for community and hospital transmission.  相似文献   

15.

Background

The incidence of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infection is rising in the developed world but appears to be rare in developing countries. One explanation for this difference is that resource poor countries lack the diagnostic microbiology facilities necessary to detect the presence of CA-MRSA carriage and infection.

Methodology and Principal Findings

We developed diagnostic microbiology capabilities at the Angkor Hospital for Children, Siem Reap, western Cambodia in January 2006 and in the same month identified a child with severe community-acquired impetigo caused by CA-MRSA. A study was undertaken to identify and describe additional cases presenting between January 2006 and December 2007. Bacterial isolates underwent molecular characterization using multilocus sequence typing, staphylococcal cassette chromosome mec (SCCmec) typing, and PCR for the presence of the genes encoding Panton-Valentine Leukocidin (PVL). Seventeen children were identified with CA-MRSA infection, of which 11 had skin and soft tissue infection and 6 had invasive disease. The majority of cases were unrelated in time or place. Molecular characterization identified two independent MRSA clones; fifteen isolates were sequence type (ST) 834, SCCmec type IV, PVL gene-negative, and two isolates were ST 121, SCCmec type V, PVL gene-positive.

Conclusions

This represents the first ever report of MRSA in Cambodia, spread of which would pose a significant threat to public health. The finding that cases were mostly unrelated in time or place suggests that these were sporadic infections in persons who were CA-MRSA carriers or contacts of carriers, rather than arising in the context of an outbreak.  相似文献   

16.
新型冠状病毒肺炎的迅速传播和扩散警示着疾病风险评估的重要性。但现有的风险评估方法受数据限制,缺少实时性和准确性。此外,多数研究以行政统计单元作为分析尺度,存在可变面元问题。为解决这些问题,耦合精细尺度下武汉市疫情数据及多源地理数据,基于随机森林算法构建社区尺度的市域疫情传播风险评估模型并进行了疫情风险制图。模型测试精度达到0.85,Kappa系数达到0.70。此外,本研究还建立基于随机森林算法的社区及场所尺度的"空间变量-感染风险"模型,评估了不同场所设施疫情传播的风险程度。研究表明,(1)武汉中心区域感染风险最高并呈现出向外围递减的趋势;(2)感染风险排名前五的一级场所类型分别为购物服务、医疗服务、金融服务、交通设施以及公共设施;(3)小学、中学的疫情传播风险较低,而高等院校传播风险较高;(4)社区尺度下的疫情风险程度,预测购物场所与交通场所是疫情传播风险最高的驱动因子。本研究基于精细尺度提出风险评估新方法,可为未来疾病风险评估提供新思路,为疫情防控提供决策支持,人民群众提供安全保障。  相似文献   

17.
We describe a new approach for investigating the control strategies of compartmental disease transmission models. The method rests on the construction of various alternative next-generation matrices, and makes use of the type reproduction number and the target reproduction number. A general metapopulation SIRS (susceptible–infected–recovered–susceptible) model is given to illustrate the application of the method. Such model is useful to study a wide variety of diseases where the population is distributed over geographically separated regions. Considering various control measures such as vaccination, social distancing, and travel restrictions, the procedure allows us to precisely describe in terms of the model parameters, how control methods should be implemented in the SIRS model to ensure disease elimination. In particular, we characterize cases where changing only the travel rates between the regions is sufficient to prevent an outbreak.  相似文献   

18.
Many factors influencing disease transmission vary throughout and across populations. For diseases spread through multiple transmission pathways, sources of variation may affect each transmission pathway differently. In this paper we consider a disease that can be spread via direct and indirect transmission, such as the waterborne disease cholera. Specifically, we consider a system of multiple patches with direct transmission occurring entirely within patch and indirect transmission via a single shared water source. We investigate the effect of heterogeneity in dual transmission pathways on the spread of the disease. We first present a 2-patch model for which we examine the effect of variation in each pathway separately and propose a measure of heterogeneity that incorporates both transmission mechanisms and is predictive of R0. We also explore how heterogeneity affects the final outbreak size and the efficacy of intervention measures. We conclude by extending several results to a more general n-patch setting.  相似文献   

19.
Interleukin (IL)-17 is a key member of the Th17 cytokines and has been reported to be involved in the pathomechanisms underlying various diseases, including infectious diseases. Infections with community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) have garnered worldwide attention, and the representative USA300 strain is known to cause pneumonia in healthy people, which can be lethal. However, little is known about the role of IL-17 in CA-MRSA pneumonia. In this study, we investigated the role of IL-17 in a CA-MRSA pneumonia animal model. Mortality was higher and occurred at an earlier stage of infection in the IL-17A-knockout mice than in the wild-type (P < 0.01) and IL-17A/F-knockout mice (P < 0.05); however, no significant difference in the intrapulmonary bacterial counts was observed among the three groups of mice. Moreover, the IL-17A-knockout group showed significantly higher levels of IL-17F and granulocyte-colony stimulating factor (G-CSF) and a significantly higher neutrophil count in the bronchoalveolar lavage fluid than the other groups. These results confirmed that G-CSF expression significantly increased, and significant neutrophilic inflammation occurred under conditions of IL-17A deficiency in the murine CA-MRSA pneumonia model.  相似文献   

20.
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) threatens public health worldwide, and epidemiologic data suggest that the Panton-Valentine Leukocidin (PVL) expressed by most CA-MRSA strains could contribute to severe human infections, particularly in young and immunocompetent hosts. PVL is proposed to induce cytolysis or apoptosis of phagocytes. However, recent comparisons of isogenic CA-MRSA strains with or without PVL have revealed no differences in human PMN cytolytic activity. Furthermore, many of the mouse studies performed to date have failed to demonstrate a virulence role for PVL, thereby provoking the question: does PVL have a mechanistic role in human infection? In this report, we evaluated the contribution of PVL to severe skin and soft tissue infection. We generated PVL mutants in CA-MRSA strains isolated from patients with necrotizing fasciitis and used these tools to evaluate the pathogenic role of PVL in vivo. In a model of necrotizing soft tissue infection, we found PVL caused significant damage of muscle but not the skin. Muscle injury was linked to induction of pro-inflammatory chemokines KC, MIP-2, and RANTES, and recruitment of neutrophils. Tissue damage was most prominent in young mice and in those strains of mice that more effectively cleared S. aureus, and was not significant in older mice and mouse strains that had a more limited immune response to the pathogen. PVL mediated injury could be blocked by pretreatment with anti-PVL antibodies. Our data provide new insights into CA-MRSA pathogenesis, epidemiology and therapeutics. PVL could contribute to the increased incidence of myositis in CA-MRSA infection, and the toxin could mediate tissue injury by mechanisms other than direct killing of phagocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号