首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Chloride transport mechanisms in the gills of the estuarine spotted green pufferfish (Tetraodon nigroviridis) were investigated. Protein abundance of Na(+)/K(+)-ATPase (NKA) and the other four chloride transporters, i.e., Na(+)/K(+)/2Cl(-) cotransporter (NKCC), cystic fibrosis transmembrane conductance regulator (CFTR), Cl(-)/HCO(3)(-) anion exchanger 1 (AE1), and chloride channel 3 (CLC-3) in gills of the seawater- (SW; 35 per thousand) or freshwater (FW)-acclimatized fish were examined by immunoblot analysis. Appropriate negative controls were used to confirm the specificity of the antibodies to the target proteins. The relative protein abundance of NKA was higher (i.e., 2-fold) in gills of the SW group compared to the FW group. NKCC and CFTR were expressed in gills of the SW group but not in the FW group. In contrast, the levels of relative protein abundance of branchial AE1 and CLC-3 in the FW group were 23-fold and 2.7-fold higher, respectively, compared to those of the SW group. This study is first of its kind to provide direct in vivo evidence of the protein expression of CLC-3 in teleostean gills, as well as to examine the simultaneous protein expression of the Cl(-) transporters, especially AE1 and CLC-3 of FW- and SW-acclimatized teleosts. The differential protein expression of NKA, chloride transporters in gills of the FW- and SW-acclimatized T. nigroviridis observed in the present study shows their close relationship to the physiological homeostasis (stable blood osmolality), as well as explains the impressive ionoregulatory ability of this euryhaline species in response to salinity challenges.  相似文献   

2.
The Mozambique tilapia (Oreochromis mossambicus) is prone to osmoregulatory disturbances when faced with fluctuating ambient temperatures. To investigate the underlying causes of this phenomenon, freshwater (FW)- and seawater (SW)-acclimated tilapia were transferred to 15, 25, or 35°C for 2 weeks, and along with typically used indicators of osmoregulatory status [plasma osmolality and branchial and intestinal specific Na+, K+-ATPase (NKA) activity], we used tissue microarrays (TMA) and laser-scanning cytometry (LSC) to characterize the effects of temperature acclimation. Tissue microarrays were stained with fluorescently labeled anti-Na+, K+-ATPase antibodies that allowed for the quantification of NKA abundance per unit area within individual branchial mitochondria-rich cells (MRCs) as well as sections of renal tissue. Mitochondria-rich cell counts and estimates of size were carried out for each treatment by the detection of DASPMI fluorescence. The combined analyses showed that SW fish have larger but fewer MRCs that contain more NKA per unit area. After a 2-week acclimation to 15°C tilapia experienced osmotic imbalances in both FW and SW that were likely due to low NKA activity. SW-acclimated fish compensated for the low activity by increasing MRC size and subsequently the concentration of NKA within MRCs. Although there were no signs of osmotic stress in FW-acclimated tilapia at 25°C, there was an increased NKA capacity that was most likely mediated by a higher MRC count. We conclude on the basis of the different responses to temperature acclimation that salinity-induced changes in the NKA concentration of MRCs alter thermal tolerance limits of tilapia.  相似文献   

3.
In the branchial mitochondrion-rich (MR) cells of euryhaline teleosts, the Na+/K+/2Cl cotransporter (NKCC) is an important membrane protein that maintains the internal Cl concentration, and the branchial Na+/K+-ATPase (NKA) is crucial for providing the driving force for many other ion-transporting systems. Hence this study used the sailfin molly (Poecilia latipinna), an introduced aquarium fish in Taiwan, to reveal that the potential roles of NKCC and NKA in sailfin molly were correlated to fish survival rates upon salinity challenge. Higher levels of branchial NKCC were found in seawater (SW)-acclimated sailfin molly compared to freshwater (FW)-acclimated individuals. Transfer of the sailfin molly from SW to FW revealed that the expression of the NKCC and NKA proteins in the gills was retained over 7 days in order to maintain hypoosmoregulatory endurance. Meanwhile, their survival rates after transfer to SW varied with the duration of FW-exposure and decreased significantly when the SW-acclimated individuals were acclimated to FW for 21 days. Double immunofluorescence staining showed that in SW-acclimated sailfin molly, NKCC signals were expressed on the basolateral membrane of MR cells, whereas in FW-acclimated molly, they were expressed on the apical membrane. This study illustrated the correlation between the gradual reductions in expression of branchial NKCC and NKA (i.e., the hypoosmoregulatory endurance) and decreasing survival rates after hyperosmotic challenge in sailfin molly.  相似文献   

4.
Gill mitochondrion-rich (MR) cells contain different molecules to carry out functionally distinct mechanisms. To date, the putative mechanism of Cl(-) uptake through the basolateral chloride channel, however, is less understood. To clarify the Cl(-)-absorbing mechanism, this study explored the molecular and morphological alterations in branchial MR cells of tilapia acclimated to seawater (SW), freshwater (FW), and deionized water (DW). Scanning electron microscopic observations revealed that three subtypes of MR cells were exhibited in gill filament epithelia of tilapia. Furthermore, in DW-acclimated tilapia, the subtype I (ion-absorbing subtype) of MR cells predominantly occurred in gill filament as well as lamellar epithelia. Whole-mount double immunofluorescent staining revealed that branchial ClC-3-like protein and Na(+)/K(+)-ATPase (NKA), the basolateral marker of MR cells, were colocalized in tilapia. In SW-acclimated tilapia, all MR cells of gill filament epithelia exhibited faint fluorescence of ClC-3-like protein. In contrast, only some MR cells in gill filament epithelia of FW and DW tilapia expressed basolateral ClC-3-like protein; however, the fluorescence was more intense in FW and DW tilapia than in SW fish. In hyposmotic groups, the number of MR cells immunopositive for ClC-3-like protein was significantly higher in DW-exposed tilapia. Meanwhile, in gill lamellar epithelia of DW tilapia, all MR cells (subtype I) were ClC-3-like protein immunopositive. Double immunostaining of ClC-3-like protein and Na(+)/Cl(-) cotransporter (NCC) revealed that basolateral ClC-3-like protein and apical NCC were colocalized in some MR cells in FW and DW tilapia. Moreover, both mRNA and protein amounts of branchial ClC-3-like protein were significantly higher in DW-acclimated tilapia. To identify whether the expression of branchial ClC-3-like protein responded to changes in environmental [Cl(-)], tilapia were acclimated to artificial waters with normal [Na(+)]/[Cl(-)] (control), lower [Na(+)] (low Na), or lower [Cl(-)] (low Cl). Immunoblotting of crude membrane fractions for gill ClC-3-like protein showed that the protein abundance was evidently enhanced in tilapia acclimated to the low-Cl environment compared with the other groups. Our findings integrated morphological and functional classifications of ion-absorbing MR cells and indicated that ion-deficient water elevated the numbers of subtype I MR cells in both filament and lamellar epithelia of gills with positive ClC-3-like protein immunostaining and increased the expression levels of ClC-3-like protein. This study is the first to illustrate the exhibition of a basolateral chloride channel potentially responsible for Cl(-) absorption in the ion-absorbing subtype of gill MR cells of tilapia.  相似文献   

5.
6.
Euryhaline tilapia (Oreochromis mossambicus) survived in brackish water (BW; 20‰) but died in seawater (SW; 35‰) within 6 h when transferred directly from fresh water (FW). The purpose of this study was to clarify responses in gills of FW tilapia to various hyperosmotic shocks induced by BW or SW. In FW-acclimated tilapia, scanning electron micrographs of gills revealed three subtypes of MR cell apical surfaces: wavy-convex (subtype I), shallow-basin (subtype II), and deep-hole (subtype III). Density of apical surfaces of mitochondrion-rich (MR) cell in gills of the BW-transfer tilapia decreased significantly within 3 h post-transfer due to disappearance of subtype I cells, but increased from 48 h post-transfer because of increasing density of subtype III cells. SW-transfer individuals, however, showed decreased density of MR cell openings after 1 h post-transfer because subtype I MR cell disappeared. On the other hand, relative branchial Na+/K+-ATPase (NKA) α1-subunit mRNA levels, protein abundance, and NKA activity of the BW-transfer group increased significantly at 6, 12, and 12 h post-transfer, respectively. In the SW-transfer group, relative mRNA and protein abundance of gill NKA α1-subunit did not change while NKA activity declined before dying in 5 h. Upon SW transfer, dramatic increases (nearly 2-fold) of plasma osmolality, [Na+], and [Cl] were found prior to death. For the BW-transfer group, plasma osmolality was eventually controlled by 96 h post-transfer by enhancement of NKA expression and subtype III MR cell. The success or failure of NKA activation from gene to functional protein as well as the development of specific SW subtype in gills were crucial for the survival of euryhaline tilapia to various hyperosmotic shocks.  相似文献   

7.
Changes in expression of Na, K-ATPase (NKA) and morphometry of mitochondrion-rich (MR) cells in gills of tilapia were investigated on a 96-hr time course following transfer from seawater (SW) to fresh water (FW). A transient decline in plasma osmolality and Na+, Cl- concentrations occurred from 3 hrs onward. Gills responded to FW transfer by decreasing NKA activity as early as 3 hrs from transfer. This response was followed by a significant decrease in the NKA isoform alpha1-mRNA abundance, which was detected by real-time PCR at 6 hrs post transfer. Next, a decrease of alpha1-protein amounts were observed from 6 hrs until 24 hrs post transfer. Additionally, during the time course of FW transfer, modifications in number and size of subtypes of gill MR cells were observed although no significant difference was found in densities of all subtypes of MR cells. These modifications were found as early as 3 hrs, evident at 6 hrs (exhibition of 3 subtypes of MR cells), and mostly completed by 24 hrs post transfer. Such rapid responses (in 3 hrs) as concurrent changes in branchial NKA expression and modifications of MR cell subtypes are thought to improve the osmoregulatory capacity of tilapia in acclimation from hypertonic SW to hypotonic FW.  相似文献   

8.
A population of the Australian mudskipper, Periophthalmus minutus, was found to inhabit mudflat that remained uncovered by tide for more than 20 days in some neap tides. During these prolonged emersion periods, P. minutus retreated into burrows containing little water, with a highest recorded salinity of 84 ± 7.4 psu (practical salinity unit). To explore the mechanical basis for this salinity tolerance in P. minutus, we determined the densities of mitochondria-rich cells (MRCs) in the inner and outer opercula and the pectoral fin skin, in comparison with P. novaeguineaensis, from an adjacent lower intertidal habitat, and studied morphological responses of MRCs to exposure to freshwater (FW), and 100% (34-35 psu) and 200% seawater (SW). Periophthalmus minutus showed a higher density of MRCs in the inner operculum (3365 ± 821 cells mm(-2)) than in the pectoral fin skin (1428 ± 161) or the outer operculum (1100 ± 986), all of which were higher than the MRC densities in p. novaeguineaensis. No mortality occurred in 100% or 200% SW, but half of the fish died within four days in FW. Neither 200% SW nor FW exposure affected MRC density. Transfer to 200% SW doubled MRC size after 9-14 days with no change in the proportion of MRCs with apical pits or plasma sodium concentration. In contrast, transfer to FW resulted in a rapid closing of pits and a significant reduction in plasma sodium concentration. These results suggest that P. minutus has evolved morphological and physiological mechanisms to withstand hypersaline conditions that they may encounter in their habitat.  相似文献   

9.
The structure and immunolocalization of the ion transporters Na(+) ,K(+) -ATPase (NKA), Na(+) /H(+) exchanger (NHE3) and vacuolar-type H(+) -ATPase (VHA) were examined in the gills of teleosts of the family Blenniidae, which inhabit rocky shores with vertical zonation in subtropical seas. These features were compared among the following species with different ecologies: the amphibious rockskipper blenny Andamia tetradactylus, the intertidal white-finned blenny Praealticus tanegasimae and the purely marine yaeyama blenny Ecsenius yaeyamaensis. Light and electron microscopic observations indicated that thick gill filaments were arranged close to each other and alternately on two hemibranches of a gill arch in the opercular space of A. tetradactylus. Many mucous cells (MC) and mitochondrion-rich cells (MRC) were present in the interlamellar regions of the gill filament. An immunohistochemical study demonstrated that numerous NKA, NHE3 and some VHA were located predominantly on presumed MRCs of gill filaments and at the base of the lamellae. Analyses using serial (mirror image) sections of the gills indicated that only a few NKA immunoreactive cells (IRC) were colocalized with VHA on some MRCs in the filaments. In the gills of P. tanegasimae, NKA- and NHE3-IRCs were observed in the interlamellar region of the filaments and at the base of the lamellae. VHA-IRCs were located sparsely on the lamellae and filaments. In the gills of E. yaeyamaensis, the lamellae and filaments were thin and straight, respectively. MCs were located at the tip as well as found scattered in the interlamellar region of gill filaments. NKA-, NHE3- and VHA-IRCs were moderately frequently observed in the filaments and rarely on the lamellae. This study shows that the structure and distribution of ion transporters in the gills differ among the three blennid species, presumably reflecting their different ecologies.  相似文献   

10.
The study tests the physiological responses of Persian sturgeon, Acipenser persicus, during the abrupt release of juveniles from freshwater (FW) into brackish waters (BW = 11‰) of the Caspian Sea. Fish weight at release was 2‐3 g (2.55 ± 0.41 g; 8.8 ± 0.58 cm TL). Totals of 160 individuals were randomly distributed into four fiber‐glass aerated tanks (volume 60‐L). Two tanks served as controls (FW groups), and two as exposure tanks for BW (Caspian Sea water = CSW). Fish were sampled at 0, 3, 6, 12, 24, 48 and 96 hr after abrupt transfer to CSW. Plasma osmolality, immunolocalization of Na+, K+ ‐ATPase (NKA) and Na+/K+/2Cl (NKCC) Co‐transporter, NKA activity and the NKA α‐subunit mRNA expression were analyzed. Blood osmolality of fish transferred from FW to CSW increased significantly within hours post‐transfer (p < .05) and remained at a high level for up to 96 hr. Immunolocalization of NKCC indicated co‐localization with NKA in the chloride cells in the gill epithelium. A partial sequence of the NKA α‐subunit (632 bp) is described. Its expression levels were up‐regulated at 12 and 48 hr following salinity transfer (p < .05). However, NKA activity sharply increased in CSW specimens by almost 2.8‐fold (p < .05) between 48 and 96 hr after transfer. Gill NKCC co‐transporter abundance increased, coinciding with increased gill NKA activity. The increased activity of NKCC during salt excretion in CSW may lead to an influx of Na+ into the chloride cells. Consequently, NKA activity increases to maintain intracellular Na+ homeostasis.  相似文献   

11.
Juvenile milkfish Chanos chanos (Forssk?l, 1775) were transferred from a local fish farm to fresh water (FW; 0 per thousand ), brackish water (BW; 10 per thousand, 20 per thousand ) and seawater (SW; 35 per thousand ) conditions in the laboratory and reared for at least two weeks. The blood and gill of the fish adapted to various salinities were analyzed to determine the osmoregulatory ability of this euryhaline species. No significant difference was found in plasma osmolality, sodium or chloride concentrations of milkfish adapted to various salinities. In FW, the fish exhibited the highest specific activity of Na, K-ATPase (NKA) in gills, while the SW group was found to have the lowest. Relative abundance of branchial NKA alpha-subunit revealed similar profiles. However, in contrary to other euryhaline teleosts, i.e. tilapia, salmon and eel, the naturally SW-dwelling milkfish expresses higher activity of NKA in BW and FW. Immunocytochemical staining has shown that most Na, K-ATPase immunoreactive (NKIR) cells in fish adapted to BW and SW were localized to the filaments with very few on the lamellae. Moreover, in FW-adapted milkfish, the number of NKIR cells found on the lamellae increased significantly. Such responses as elevated NKIR cell number and NKA activity are thought to improve the osmoregulatory capacity of the milkfish in hyposaline environments.  相似文献   

12.
13.
Previous studies on non-diadromous euryhaline teleosts introduced a hypothesis that the lowest level of gill Na+/K+-ATPase (NKA) activity occurs in the environments with salinity close to the primary natural habitats of the studied species. To provide more evidence of the hypothesis, two medaka species, Oryzias latipes and O. dancena, whose primary natural habitats are fresh water (FW) and brackish water (BW) environments, respectively, were compared from levels of mRNA to cells in this study. The plasma osmolalities of O. latipes and O. dancena were lowest in the FW individuals. The muscle water contents of O. latipes decreased with elevated external salinities, but were constant among FW-, BW-, and seawater (SW)-acclimated O. dancena. Expression of NKA, the primary driving force of ion transporters in gill ionocytes, revealed different patterns in the two Oryzias species. The highest NKA α-subunit mRNA abundances were found in the gills of the SW O. latipes and the FW O. dancena, respectively. The pattern of NKA activity and α-subunit protein abundance in the gills of O. latipes revealed that the FW group was the lowest, while the pattern in O. dancena revealed that the BW group was the lowest. Immunohistochemical staining showed similar profiles of NKA immunoreactive (NKIR) cell activities (NKIR cell number × cell size) in the gills of these two species among FW, BW, and SW groups. Taken together, O. latipes exhibited better hyposmoregulatory ability, while O. dancena exhibited better hyperosmoregulatory ability. Our results corresponding to the hypothesis indicated that the lowest branchial NKA activities of these two medaka species were found in the environments with salinities similar to their natural habitats.  相似文献   

14.
Freshwater (FW) spotted green pufferfish (Tetraodon nigroviridis) were transferred directly from a local aquarium to fresh water (FW; 0 per thousand ), brackish water (BW; 15 per thousand ), and seawater (SW; 35 per thousand ) conditions in the laboratory and reared for at least two weeks. No mortality was found. To investigate the efficient mechanisms of osmoregulation in the euryhaline teleost, distribution and expression of Na,K-ATPase (NKA) in gill and kidney of the pufferfish were examined and the osmolality, [Na+] and [Cl-] of the blood were assayed. The lowest levels of both relative protein abundance and activity were found to be exhibited in the BW group, and higher levels in the SW group than FW group. In all salinities, branchial NKA immunoreactivity was found in epithelial cells of the interlamellar region of the filament and not on the lamellae. Relative abundance of kidney NKA alpha-subunit, as well as the NKA activity, was found to be higher in the FW pufferfish than fish in BW or SW. Renal NKA appeared in the epithelial cells of distal tubules, proximal tubules, and collecting tubules, but not in glomeruli, in fish groups of various salinities. Plasma osmolality and chloride levels were significantly lower in FW pufferfish than those in BW and SW, whereas plasma sodium did not differ among the groups. Although identical distributions of NKA were found in either gill or kidney of FW-, BW- or SW-acclimated spotted green pufferfish, differential NKA expression in fish of various salinity groups was associated with physiological homeostasis (stable blood osmolality), and illustrated the impressive osmoregulatory ability of this freshwater and estuarine species in response to salinity challenge.  相似文献   

15.
In this cytological and immunohistological study, we clarified the localization of the membrane transporters Na+, K+‐ATPase (NKA), vacuolar‐type H+‐ATPase (VHA), and epithelial sodium channel (ENaC) and distinguished ionocyte subtypes in the gill of the Japanese salamander (Hynobius nigrescens). In larvae (IY stages 43–65), NKA immunoreactivity was observed on the basolateral plasma membrane in more than 60% cells and less than 20% cells in the primary filaments and secondary lamellae of the external gills, respectively. VHA immunoreactivity was observed on the apical membrane of some epithelial cells in the secondary lamellae of the external gills. High ENaCα immunoreactivity was widely observed on the apical cell membrane of a population of squamous cells, presumably pavement cells (PVCs), and mitochondria‐rich cells (MRCs), in the primary filaments and secondary lamellae of the external gills. Using double immunofluorescence microscopy, epithelial cell types involved in ionic regulation were characterized and divided into three ionocyte types: NKA‐, NKA‐ and ENaC‐, and VHA‐positive cells. VHA‐immunoreactive cells as well as NKA‐positive cells were observed during IY stages 43–65 of the salamander larvae. During late stages of metamorphosis, NKA, VHA, and ENaCα immunoreactivities in the external gills decreased and finally disappeared during the completion of metamorphosis (IY stage 68). PVCs and MRCs in the external gills are probably involved in acid–base balance regulation and osmoregulation in urodele amphibian larvae. The results are discussed in relation to the ionocytes previously reported in fish gills and the frog skin epithelium. J. Morphol., 2011. © 2011Wiley‐Liss, Inc.  相似文献   

16.
The milkfish (Chanos chanos) is an economic species in Southeast Asia. In Taiwan, the milkfish are commercially cultured in environments of various salinities. Na+/K+-ATPase (NKA) is a key enzyme for fish iono- and osmoregulation. When compared with gills, NKA and its potential role were less examined by different approaches in the other osmoregulatory organs (e.g., kidney) of euryhaline teleosts. The objective of this study was to investigate the correlation between osmoregulatory plasticity and renal NKA in this euryhaline species. Muscle water contents (MWC), plasma, and urine osmolality, kidney histology, as well as distribution, expression (mRNA and protein), and specific activity of renal NKA were examined in juvenile milkfish acclimated to fresh water (FW), seawater (SW 35‰), and hypersaline water (HSW 60‰) for at least two weeks before experiments. MWC showed no significant difference among all groups. Plasma osmolality was maintained within the range of physiological homeostasis in milkfish acclimated to different salinities, while, urine osmolality of FW-acclimated fish was evidently lower than SW- and HSW-acclimated individuals. The renal tubules were identified by staining with periodic acid Schiff’s reagent and hematoxylin. Moreover, immunohistochemical staining showed that NKA was distributed in the epithelial cells of proximal tubules, distal tubules, and collecting tubules, but not in glomeruli, of milkfish exposed to different ambient salinities. The highest abundance of relative NKA α subunit mRNA was found in FW-acclimated milkfish rather than SW- and HSW-acclimated individuals. Furthermore, relative protein amounts of renal NKA α and β subunits as well as NKA-specific activity were also found to be higher in the FW group than SW and the HSW groups. This study integrated diverse levels (i.e., histological distribution, gene, protein, and specific activity) of renal NKA expression and illustrated the potential role of NKA in triggering ion reabsorption in kidneys of the marine euryhaline milkfish when acclimated to a hypotonic FW environment.  相似文献   

17.
In teleosts, prolactin (PRL) and growth hormone (GH) act at key osmoregulatory tissues to regulate hydromineral balance. This study was aimed at characterizing patterns of expression for genes encoding receptors for the GH/PRL-family of hormones in the gill and kidney of Mozambique tilapia (Oreochromis mossambicus) during freshwater (FW)-acclimation. Transfer of seawater (SW)-acclimated tilapia to FW elicited rapid and sustained increases in plasma levels and pituitary gene expression of PRL177 and PRL188; plasma hormone and pituitary mRNA levels of GH were unchanged. In the gill, PRL receptor 1 (PRLR1) mRNA increased markedly after transfer to FW by 6 h, while increases in GH receptor (GHR) mRNA were observed 48 h and 14 d after the transfer. By contrast, neither PRLR2 nor the somatolactin receptor (SLR) was responsive to FW transfer. Paralleling these endocrine responses were marked increases in branchial gene expression of a Na+/Cl? cotransporter and a Na+/H+ exchanger, indicators of FW-type mitochondrion-rich cells (MRCs), at 24 and 48 h after FW transfer, respectively. Expression of Na+/K+/2Cl? cotransporter, an indicator of SW-type MRCs, was sharply down-regulated by 6 h after transfer to FW. In kidney, PRLR1, PRLR2 and SLR mRNA levels were unchanged, while GHR mRNA was up-regulated from 6 h after FW transfer to all points thereafter. Collectively, these results suggest that the modulation of the gene expression for PRL and GH receptors in osmoregulatory tissues represents an important aspect of FW-acclimation of tilapia.  相似文献   

18.
19.
When the stenohaline catfish Heteropneustes fossilis was transferred from fresh water (FW) to 30% seawater (SW), the Na(+)/K(+)-ATPase activity significantly increased in the kidney, while in gills it remained more or less constant. A reverse pattern was observed for succinic dehydrogenase (SDH) activity inasmuch as it significantly increased in gills and remained unchanged in the kidney. Plasma osmolality significantly increased within 3 days of transfer to 30% SW and remained significantly higher throughout the duration of experiment. These results suggest that catfish gills may not be able to reverse their function from salt uptake in FW to salt excretion at higher salinity, and that the elimination of monovalent as well as divalent ions is performed by the kidney but not the gills. The significant decline in plasma cortisol (F) levels following transfer to higher salinity may not be due to reduced production but rather to an enhanced utilization and clearance rate, a conclusion supported by the fact that exogenous administration of cortisol acetate (FA) resulted in significant increases in branchial and renal Na(+)/K(+)-ATPase in FW and 30% SW. FA also improved the plasma osmotic regulatory ability of the catfish, possibly due to a change in branchial function from salt-absorption to salt excretion, as was evident from a significant increase in branchial Na(+)/K(+)-ATPase activity in the fish in 30% SW pretreated with FA for 5 days. Consistently higher levels of plasma thyroxine (T4) following transfer to higher salinity suggest the involvement of this hormone at higher salinity.  相似文献   

20.
A noninvasive technique, the scanning ion-selective electrode technique (SIET) was applied to measure Na(+) and Cl(-) transport by the yolk-sac skin and individual mitochondrion-rich cells (MRCs) in intact medaka larvae (Oryzias latipes). In seawater (SW)-acclimated larvae, significant outward Na(+) and Cl(-) gradients were measured at the yolk-sac surface, indicating secretions of Na(+) and Cl(-) from the yolk-sac skin. With Na(+) pump immunostaining and microscopic observation, two groups of MRCs were identified on the yolk-sac skin of SW-larvae. These were single MRCs (s-MRCs), which do not have an accompanying accessory cell (AC), and multicellular complex MRCs (mc-MRCs), which usually consist of an MRC and an accompanying AC. The percentage of mc-MRC was ~60% in 30 parts per thousand of SW, and it decreased with the decrease of external salinity. By serial SIET probing over the surface of the MRCs and adjacent keratinocytes (KCs), significant outward fluxes of Na(+) and Cl(-) were detected at the apical opening (membrane) of mc-MRCs, whereas only outward Cl(-) flux, but not Na(+) flux, was detected at s-MRCs. Treatment with 100 μM ouabain or bumetanide effectively blocked the Na(+) and Cl(-) secretion. Following freshwater (FW) to SW transfer, Na(+) and Cl(-) secretions by the yolk-sac skin were fully developed in 5 h and 2 h, respectively. In contrast, both Na(+) and Cl(-) secretions downregulated rapidly after SW to FW transfer. Sequential probing at individual MRCs found that Na(+) and Cl(-) secretions declined dramatically after SW to FW transfer and Na(+)/Cl(-) uptake was detected at the same s-MRCs and mc-MRCs after 5 h. This study provides evidence demonstrating that ACs are required for Na(+) excretion and MRCs possess a functional plasticity in changing from a Na(+)/Cl(-)-secreting cell to a Na(+)/Cl(-)-absorbing cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号