首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 798 毫秒
1.
Previous studies on non-diadromous euryhaline teleosts introduced a hypothesis that the lowest level of gill Na+/K+-ATPase (NKA) activity occurs in the environments with salinity close to the primary natural habitats of the studied species. To provide more evidence of the hypothesis, two medaka species, Oryzias latipes and O. dancena, whose primary natural habitats are fresh water (FW) and brackish water (BW) environments, respectively, were compared from levels of mRNA to cells in this study. The plasma osmolalities of O. latipes and O. dancena were lowest in the FW individuals. The muscle water contents of O. latipes decreased with elevated external salinities, but were constant among FW-, BW-, and seawater (SW)-acclimated O. dancena. Expression of NKA, the primary driving force of ion transporters in gill ionocytes, revealed different patterns in the two Oryzias species. The highest NKA α-subunit mRNA abundances were found in the gills of the SW O. latipes and the FW O. dancena, respectively. The pattern of NKA activity and α-subunit protein abundance in the gills of O. latipes revealed that the FW group was the lowest, while the pattern in O. dancena revealed that the BW group was the lowest. Immunohistochemical staining showed similar profiles of NKA immunoreactive (NKIR) cell activities (NKIR cell number × cell size) in the gills of these two species among FW, BW, and SW groups. Taken together, O. latipes exhibited better hyposmoregulatory ability, while O. dancena exhibited better hyperosmoregulatory ability. Our results corresponding to the hypothesis indicated that the lowest branchial NKA activities of these two medaka species were found in the environments with salinities similar to their natural habitats.  相似文献   

2.
The Mozambique tilapia (Oreochromis mossambicus) is prone to osmoregulatory disturbances when faced with fluctuating ambient temperatures. To investigate the underlying causes of this phenomenon, freshwater (FW)- and seawater (SW)-acclimated tilapia were transferred to 15, 25, or 35°C for 2 weeks, and along with typically used indicators of osmoregulatory status [plasma osmolality and branchial and intestinal specific Na+, K+-ATPase (NKA) activity], we used tissue microarrays (TMA) and laser-scanning cytometry (LSC) to characterize the effects of temperature acclimation. Tissue microarrays were stained with fluorescently labeled anti-Na+, K+-ATPase antibodies that allowed for the quantification of NKA abundance per unit area within individual branchial mitochondria-rich cells (MRCs) as well as sections of renal tissue. Mitochondria-rich cell counts and estimates of size were carried out for each treatment by the detection of DASPMI fluorescence. The combined analyses showed that SW fish have larger but fewer MRCs that contain more NKA per unit area. After a 2-week acclimation to 15°C tilapia experienced osmotic imbalances in both FW and SW that were likely due to low NKA activity. SW-acclimated fish compensated for the low activity by increasing MRC size and subsequently the concentration of NKA within MRCs. Although there were no signs of osmotic stress in FW-acclimated tilapia at 25°C, there was an increased NKA capacity that was most likely mediated by a higher MRC count. We conclude on the basis of the different responses to temperature acclimation that salinity-induced changes in the NKA concentration of MRCs alter thermal tolerance limits of tilapia.  相似文献   

3.
We investigated a change in tissue fluid osmolality and developmental sequences of mitochondria-rich (MR) cells during embryonic and larval stages of Mozambique tilapia, Oreochromis mossambicus, developing in freshwater. Tissue osmolality, representing body fluid osmolality, ranged from 300 to 370 mOsm/kg during embryonic and larval stages. This suggests that tilapia embryos and larvae are also able to regulate body fluid osmolality to some extent, although the levels are somewhat higher and fluctuate more greatly in embryos and larvae than in adults. Na+/K+-ATPase-immunoreactive MR cells were first detected in the yolk-sac membrane 3 days before hatching (day − 3), followed by their appearance in the body skin on day − 2. Subsequently, MR cells in both the yolk-sac membrane and body skin increased in number, and most densely observed on days − 1 and 0. Whereas yolk-sac and skin MR cells decreased after hatching, MR cells in turn started developing in the gills after hatching. Thus, the principal site for MR cell distribution shifted from the yolk-sac membrane and body skin during embryonic stages to the gills during larval stages, and tilapia could maintain continuously their ion balance through those MR cells during early life stages.  相似文献   

4.
This study examined the osmoregulatory status of the euryhaline elasmobranch Carcharhinus leucas acclimated to freshwater (FW) and seawater (SW). Juvenile C. leucas captured in FW (3 mOsm l–1 kg–1) were acclimated to SW (980–1,000 mOsm l–1 kg–1) over 16 days. A FW group was maintained in captivity over a similar time period. In FW, bull sharks were hyper-osmotic regulators, having a plasma osmolarity of 595 mOsm l–1 kg–1. In SW, bull sharks had significantly higher plasma osmolarities (940 mOsm l–1 kg–1) than FW-acclimated animals and were slightly hypo-osmotic to the environment. Plasma Na+, Cl, K+, Mg2+, Ca2+, urea and trimethylamine oxide (TMAO) concentrations were all significantly higher in bull sharks acclimated to SW, with urea and TMAO showing the greatest increase. Gill, rectal gland, kidney and intestinal tissue were taken from animals acclimated to FW and SW and analysed for maximal Na+/K+-ATPase activity. Na+/K+-ATPase activity in the gills and intestine was less than 1 mmol Pi mg–1 protein h–1 and there was no difference in activity between FW- and SW-acclimated animals. In contrast Na+/K+-ATPase activity in the rectal gland and kidney were significantly higher than gill and intestine and showed significant differences between the FW- and SW-acclimated groups. In FW and SW, rectal gland Na+/K+-ATPase activity was 5.6±0.8 and 9.2±0.6 mmol Pi mg–1 protein h–1, respectively. Na+/K+-ATPase activity in the kidney of FW and SW acclimated animals was 8.4±1.1 and 3.3±1.1 Pi mg–1 protein h–1, respectively. Thus juvenile bull sharks have the osmoregulatory plasticity to acclimate to SW; their preference for the upper reaches of rivers where salinity is low is therefore likely to be for predator avoidance and/or increased food abundance rather than because of a physiological constraint.  相似文献   

5.
The tilapia (Oreochromis mossambicus) is a euryhaline fish exhibiting adaptive changes in cell size, phenotype, and ionoregulatory functions upon salinity challenge. Na+/Cl? cotransporter (NCC) and Na+/K+/2Cl? cotransporter (NKCC) are localized in the apical and basolateral membranes of mitochondria‐rich (MR) cells of the gills. These cells are responsible for chloride absorption (NCC) and secretion (NKCC), respectively, thus, the switch of gill NCC and NKCC expression is a crucial regulatory mechanism for salinity adaptation in tilapia. However, little is known about the interaction of cytoskeleton and these adaptive changes. In this study, we examined the time‐course of changes in the localization of NKCC/NCC in the gills of tilapia transferred from fresh water (FW) to brackish water (20‰) and from seawater (SW; 35‰) to FW. The results showed that basolateral NKCC disappeared and NCC was expressed in the apical membrane of MR cells. To further clarify the process of these adaptive changes, colchicine, a specific inhibitor of microtubule‐dependent cellular regulating processes was used. SW‐acclimated tilapia were transferred to SW, FW, and FW with colchicine (colchicine‐FW) for 96 h. Compared with the FW‐treatment group, in the MR cells of colchicine‐FW‐treatment group, (1) the average size was significantly larger, (2) only wavy‐convex‐subtype apical surfaces were found, and (3) the basolateral (cytoplasmic) NKCC signals were still exhibited. Taken together, our results suggest that changes in size, phenotype, as well as the expression of NCC and NKCC cotransporters of MR cells in the tilapia are microtubule‐dependent. J. Morphol. 277:1113–1122, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
In the branchial mitochondrion-rich (MR) cells of euryhaline teleosts, the Na+/K+/2Cl cotransporter (NKCC) is an important membrane protein that maintains the internal Cl concentration, and the branchial Na+/K+-ATPase (NKA) is crucial for providing the driving force for many other ion-transporting systems. Hence this study used the sailfin molly (Poecilia latipinna), an introduced aquarium fish in Taiwan, to reveal that the potential roles of NKCC and NKA in sailfin molly were correlated to fish survival rates upon salinity challenge. Higher levels of branchial NKCC were found in seawater (SW)-acclimated sailfin molly compared to freshwater (FW)-acclimated individuals. Transfer of the sailfin molly from SW to FW revealed that the expression of the NKCC and NKA proteins in the gills was retained over 7 days in order to maintain hypoosmoregulatory endurance. Meanwhile, their survival rates after transfer to SW varied with the duration of FW-exposure and decreased significantly when the SW-acclimated individuals were acclimated to FW for 21 days. Double immunofluorescence staining showed that in SW-acclimated sailfin molly, NKCC signals were expressed on the basolateral membrane of MR cells, whereas in FW-acclimated molly, they were expressed on the apical membrane. This study illustrated the correlation between the gradual reductions in expression of branchial NKCC and NKA (i.e., the hypoosmoregulatory endurance) and decreasing survival rates after hyperosmotic challenge in sailfin molly.  相似文献   

7.
The recent model showed that seawater (SW) mitochondrion-rich (MR) cells with hole-type apical openings secrete Cl? through the transporters including the Na+, K+-ATPase (NKA), Na+, K+, 2Cl? cotransporter (NKCC), and cystic fibrosis transmembrane conductance regulator (CFTR). The present study focused on the dynamic elimination of the Cl? secretory capacity and illustrated different phases (i.e., acute and regulatory phases) of branchial MR cells in response to hypoosmotic challenge. Time-course remodeling of the cell surfaces and the altered expressions of typical ion transporters were observed in the branchial MR cells of SW-acclimated brackish medaka (Oryzias dancena) when exposed to fresh water (FW). On the 1st day post-transfer, rapid changes were shown in the acute phase: the flat-type MR cells with large apical surfaces replaced the hole-type cells, the gene expression of both Odnkcc1a and Odcftr decreased, and the apical immunostaining signals of CFTR protein disappeared. The basolateral immunostaining signals of NKCC1a protein decreased throughout the regulatory phase (> 1 day post-transfer). During this period, the size and number of NKA-immunoreactive MR cells were significantly reduced and elevated, respectively. Branchial NKA expression and activity were maintained at constant levels in both phases. The results revealed that when SW-acclimated brackish medaka were transferred to hypoosmotic FW for 24 h, the Cl? secretory capacity of MR cells was eliminated, whereas NKCC1a protein was retained to maintain the hypoosmoregulatory endurance of the gills. The time-course acute and regulatory phases of gill MR cells showed different strategies of the euryhaline medaka when subjected to hypoosmotic environments.  相似文献   

8.
We have assessed the activity of Na+/K+-ATPase, cAMP, free fatty acids (FFA) and metallothionein (MT) in the posterior gills of the brackish water shore crab Carcinus aestuarii during acclimation to 10 ppt dilute seawater (DSW). Following 3–18 days acclimation in DSW specific activity of Na+/K+-ATPase in native gill homogenates and partially purified membrane vesicles was progressively increased, from 1.7- to 3.9-fold. After short-term acclimation of crabs in DSW with added sucrose to make media isosmotic with the haemolymph the specific Na+/K+-ATPase activity in homogenates was not increased, relative to SW enzyme activity. Moreover, hyposmotic conditions led to depletion of cAMP in gills.In partially purified membrane vesicles isolated from posterior gills, fatty acids with compositions 16:0, 18:0, 18:1, 20:4 and 20:5 dominated in both SW- and DSW-acclimated Carcinus. During a year in which the metabolic activity of crabs was increased, the arachidonic/linoleic acids ratio (ARA/LA) for DSW-acclimated crabs was markedly increased relative to that in SW. Increased Na+ K+-ATPase activity under hyposmotic stress may be modulated at least partially by the changed proportion of fatty acids in the purified membranes of posterior gills. Long-term acclimation of shore crabs to DSW resulted in a 2.6-fold increase in cytosolic metallothionein (MT) content in posterior gills over those in SW crabs. Assuming an antioxidant role of MT associated with intracellular zinc partitioning, the observed MT induction in posterior gills may be considered an adaptive response of C. aestuarii to hyposmotic stress.  相似文献   

9.
Changes in expression of Na, K-ATPase (NKA) and morphometry of mitochondrion-rich (MR) cells in gills of tilapia were investigated on a 96-hr time course following transfer from seawater (SW) to fresh water (FW). A transient decline in plasma osmolality and Na+, Cl- concentrations occurred from 3 hrs onward. Gills responded to FW transfer by decreasing NKA activity as early as 3 hrs from transfer. This response was followed by a significant decrease in the NKA isoform alpha1-mRNA abundance, which was detected by real-time PCR at 6 hrs post transfer. Next, a decrease of alpha1-protein amounts were observed from 6 hrs until 24 hrs post transfer. Additionally, during the time course of FW transfer, modifications in number and size of subtypes of gill MR cells were observed although no significant difference was found in densities of all subtypes of MR cells. These modifications were found as early as 3 hrs, evident at 6 hrs (exhibition of 3 subtypes of MR cells), and mostly completed by 24 hrs post transfer. Such rapid responses (in 3 hrs) as concurrent changes in branchial NKA expression and modifications of MR cell subtypes are thought to improve the osmoregulatory capacity of tilapia in acclimation from hypertonic SW to hypotonic FW.  相似文献   

10.
Summary To identify ion transport systems involved in the maintenance of vascular smooth muscle cell volume the effects of incubation medium osmolality and ion transport inhibitors on the volume and 86Rb and 22Na transport in cultured smooth muscle cells from rat aorta (VSMC) have been studied. A decrease of medium osmolality from 605 to 180 mosm increased intracellular water volume from 0.6 to 1.3 l per 106 cells. Under isosmotic conditions, cell volume was decreased by ouabain (by 10%, P< 0.005) but was not influenced by bumetanide, furosemide, EIPA and quinidine. These latter compounds were also ineffective in cell volume regulation under hypotonic buffer conditions. Under hyperosmotic conditions, cell volume was decreased by bumetanide (by 7%, P<0.05) and by ethylisopropyl amiloride (by 13%, P< 0.005). Ouabain-sensitive 86Rb influx was decreased by 30–40% under hypoosmotic conditions. An increase in medium osmolality from 275 to 410 mosm resulted in an eightfold increase in bumetanide-inhibited 86Rb influx and 86Rb efflux. The (ouabain and bumetanide)-insensitive component of 86Rb influx was not dependent on the osmolality of the incubation medium. However (ouabain and bumetanide)-insensitive 86Rb efflux was increased by 1.5–2 fold in VSMC incubated in hypotonic medium. Ethylisopropyl amiloride-inhibited 22Na influx was increased by sixfold following osmotic-shrinkage of VSMC. The data show that both Na+/H+ exchange and Na+/K+/2Cl cotransport may play a major role in the regulatory volume increase in VSMC. Basal and shrinkage-induced activities of Na+/K+/2Cl cotransport in VSMC were similarly sensitive to inhibition by either staurosporin, forskolin, R24571 or 2-nitro4-carboxyphenyl N,N-diphenylcarbomate (NCDC). In contrast basal and shrinkage-induced Na+/K+/2Cl cotransport were differentially inhibited by NaF (by 30 and 65%, respectively), suggesting an involvement of guanine nucleotide binding proteins in the volume-sensitive activity of this carrier. Neither staurosporin, forskolin, R24571 nor NCDC influenced shrinkage-induced Na+/H+ exchange activity. NaF increased Na+/H+ exchanger activity under both isosmotic and hyperosmotic conditions. These data demonstrate that different intracellular signalling mechanisms are involved in the volume-dependent activation of the Na+/K+/2Cl cotransporter and the Na+/H+ exchanger.The authors gratefully acknowledge the financial support of the Swiss National Foundation, grant No. 3.817.087. Bernadette Weber is thanked for preparing the figures.  相似文献   

11.
The kidney is an organ playing an important role in ion regulation in both freshwater (FW) and seawater (SW) fish. The mechanisms of ion regulation in the fish kidney are less well studied than that of their gills, especially at the level of transporter proteins. We have found striking differences in the pattern of Na+/K+/2Cl- cotransporter (NKCC) expression between species. In the killifish kidney, NKCC is apically localized in the distal and collecting tubules and basolaterally localized in the proximal tubules. However, in the SW killifish gill, NKCC is basolaterally co-localized with Na+/K+-ATPase, whereas in FW, NKCC immunoreactivity is primarily apical, although still colocalized within the same mitochondria-rich cell with basolateral Na+/K+-ATPase. Rainbow trout kidney has NKCC only in the apical membrane of the distal and collecting tubules in both environments, with no signal being detected in the proximal tubule. On the other hand, in the trout gill, NKCC is found basolaterally in both FW and SW environments. An important observation is that, in the gills of rainbow trout, the trailing edge of the filament possesses mostly Na+/K+-ATPase-positive but NKCC-negative mitochondria-rich cells, whereas in the region between and at the roots of the gill lamellae, most mitochondria-rich cells exhibit both Na+/K+-ATPase- and NKCC-positive immunoreactivity. These results suggest that the differential localization of transporters between the two species represents differences in function between these two euryhaline fishes with different life histories and strategies. Funding for this research was provided by NSERC Discovery Grants to G.G.G. and W.S.M., an Alberta Ingenuity Fund PDF, and a fellowship from the NSERC Research Capacity Development Grant to F.K.  相似文献   

12.
The metabolic aspects of ionic and osmotic regulation in fish are not well understood. The objective of this study was to examine changes in carbohydrate metabolism during seawater (SW) acclimation in the euryhaline tilapia (Oreochromis mossambicus). Hepatic activities of three key enzymes of the intermediary metabolism, phosphofructokinase, glycogen phosphorylase and glucose 6-phosphate dehydrogenase, together with glycogen content and plasma glucose concentration were measured at 0, 0.5, 1, 2, 3, 6, 12, 24, 48 and 96 h after the direct transfer of tilapia from fresh water (FW) to 70% SW. Plasma growth hormone, prolactin177 and prolactin188, Na+ and Cl concentrations were also measured. Plasma Na+ and Cl levels were highest at 12 h, but returned to FW levels at 24 h after transfer, suggesting the tilapia were able to osmoregulate within 24 h after transfer. Plasma glucose levels were significantly higher in 70% SW than in FW during the course of acclimation, especially in the early stages. Hepatic enzyme activities and glycogen content did not change significantly during the acclimation period. Our results suggest the possibility that glucose is an important energy source for osmoregulation during the acclimation to hyperosmotic environments in O. mossambicus.  相似文献   

13.
We used a central composite rotatable experimental design and response surface methodology to evaluate the effects of temperature (18–37 °C), salinity (0–20‰), and their interaction on specific growth rate (SGR), feed efficiency (FE), plasma osmolality, and gill Na+, K+-ATPase activity in GIFT tilapia juveniles. The linear and quadratic effects of temperature and salinity on SGR, plasma osmolality, and gill Na+, K+-ATPase activity were statistically significant (P<0.05). The interactive effects of temperature and salinity on plasma osmolality were significant (P<0.05). In contrast, the interaction term was not significant for SGR, FE, and gill Na+, K+-ATPase activity (P>0.05). The regression equations for SGR, FE, plasma osmolality, and gill Na+, K+-ATPase activity against the two factors of interest had coefficients of determination of 0.944, 0.984, 0.966, and 0.960, respectively (P<0.01). The optimal temperature/salinity combination was 28.9 °C/7.8‰ at which SGR (2.26% d1) and FE (0.82) were highest. These values correspond to the optimal temperature/salinity combination (29.1 °C/7.5‰) and the lowest plasma osmolality (348.38 mOsmol kg−1) and gill Na+, K+-ATPase activity (1.31 µmol Pi. h−1 g−1 protein), and resulted in an energy-saving effect on osmoregulation, which promoted growth.  相似文献   

14.
The aim of this study was to illustrate the phenotypic modification of mitochondrion-rich (MR) cells and Na(+)/K(+)-ATPase (NKA) responses, including relative protein abundance, specific activity, and immunolocalization in gills of euryhaline tilapia exposed to deionized water (DW) for one week. The plasma osmolality was not significantly different between tilapia of the local fresh water (LFW) group and DW group. Remodeling of MR cells occurred in DW-exposed fish. After transfer to DW for one week, the relative percentage of subtype-I (wavy-convex) MR cells with apical size ranging from 3 to 9 microm increased and eventually became the dominant MR cell subtype. In DW tilapia gills, relative percentages of lamellar NKA immunoreactive (NKIR) cells among total NKIR cells increased to 29% and led to significant increases in the number of NKIR cells. In addition, the relative protein abundance and specific activity of NKA were significantly higher in gills of the DW-exposed fish. Our study concluded that tilapia require the development of subtype-I MR cells, the presence of lamellar NKIR cells, and enhancement of NKA protein abundance and activity in gills to deal with the challenge of an ion-deficient environment.  相似文献   

15.
Gill mitochondrion-rich (MR) cells contain different molecules to carry out functionally distinct mechanisms. To date, the putative mechanism of Cl(-) uptake through the basolateral chloride channel, however, is less understood. To clarify the Cl(-)-absorbing mechanism, this study explored the molecular and morphological alterations in branchial MR cells of tilapia acclimated to seawater (SW), freshwater (FW), and deionized water (DW). Scanning electron microscopic observations revealed that three subtypes of MR cells were exhibited in gill filament epithelia of tilapia. Furthermore, in DW-acclimated tilapia, the subtype I (ion-absorbing subtype) of MR cells predominantly occurred in gill filament as well as lamellar epithelia. Whole-mount double immunofluorescent staining revealed that branchial ClC-3-like protein and Na(+)/K(+)-ATPase (NKA), the basolateral marker of MR cells, were colocalized in tilapia. In SW-acclimated tilapia, all MR cells of gill filament epithelia exhibited faint fluorescence of ClC-3-like protein. In contrast, only some MR cells in gill filament epithelia of FW and DW tilapia expressed basolateral ClC-3-like protein; however, the fluorescence was more intense in FW and DW tilapia than in SW fish. In hyposmotic groups, the number of MR cells immunopositive for ClC-3-like protein was significantly higher in DW-exposed tilapia. Meanwhile, in gill lamellar epithelia of DW tilapia, all MR cells (subtype I) were ClC-3-like protein immunopositive. Double immunostaining of ClC-3-like protein and Na(+)/Cl(-) cotransporter (NCC) revealed that basolateral ClC-3-like protein and apical NCC were colocalized in some MR cells in FW and DW tilapia. Moreover, both mRNA and protein amounts of branchial ClC-3-like protein were significantly higher in DW-acclimated tilapia. To identify whether the expression of branchial ClC-3-like protein responded to changes in environmental [Cl(-)], tilapia were acclimated to artificial waters with normal [Na(+)]/[Cl(-)] (control), lower [Na(+)] (low Na), or lower [Cl(-)] (low Cl). Immunoblotting of crude membrane fractions for gill ClC-3-like protein showed that the protein abundance was evidently enhanced in tilapia acclimated to the low-Cl environment compared with the other groups. Our findings integrated morphological and functional classifications of ion-absorbing MR cells and indicated that ion-deficient water elevated the numbers of subtype I MR cells in both filament and lamellar epithelia of gills with positive ClC-3-like protein immunostaining and increased the expression levels of ClC-3-like protein. This study is the first to illustrate the exhibition of a basolateral chloride channel potentially responsible for Cl(-) absorption in the ion-absorbing subtype of gill MR cells of tilapia.  相似文献   

16.
Renoguanylin (REN) is a recently described member of the guanylin family, which was first isolated from eels and is expressed in intestinal and specially kidney tissues. In the present work we evaluate the effects of REN on the mechanisms of hydrogen transport in rat renal tubules by the stationary microperfusion method. We evaluated the effect of 1 μM and 10 μM of renoguanylin (REN) on the reabsorption of bicarbonate in proximal and distal segments and found that there was a significant reduction in bicarbonate reabsorption. In proximal segments, REN promoted a significant effect at both 1 and 10 μM concentrations. Comparing control and REN concentration of 1 μM, JHCO3, nmol cm− 2 s− 1 − 1,76 ± 0,11control × 1,29 ± 0,08REN 10 μM; P < 0.05, was obtained. In distal segments the effect of both concentrations of REN was also effective, being significant e.g. at a concentration of 1 μM (JHCO3, nmol cm− 2 s− 1 − 0.80 ± 0.07control × 0.60 ± 0.06REN 1 μM; P < 0.05), although at a lower level than in the proximal tubule. Our results suggest that the action of REN on hydrogen transport involves the inhibition of Na+/H+exchanger and H+-ATPase in the luminal membrane of the perfused tubules by a PKG dependent pathway.  相似文献   

17.
Summary A comparative study of the mechanisms of Na+ absorption through brush border membranes of enterocytes from freshwater (FW) and seawater (SW) adapted trout were carried out using purified vesicle preparations. In contrast to FW trout, SW trout were found to possess a Na+–K+–Cl cotransport process. This finding is regarded as a major adaptation to SW since this cotransport allows an increase of ions and water absorption. Both FW and SW trout were equipped with a Na+–H+ exchange. In FW, the intestine of the trout had both a Na+–Na+ exchange and a Na+ conductance which may be responsible for enterocyte Na+ uptake along the potential gradient.  相似文献   

18.
We have explored the possible mechanisms by which mineralocorticoid (MR) and glucocorticoid (GR) receptors regulate the response to freshwater transfer in the gills of the euryhaline killifish Fundulus heteroclitus. Killifish were implanted with RU486 (GR antagonist) or spironolactone (MR antagonist) at doses of 0.1–1.0 mg g−1, and subsequently transferred from 10‰ brackish water to freshwater. Compared to brackish water sham fish, mRNA expression of CFTR and NKCC1 decreased in the gills of sham fish transferred to freshwater, whereas Na+,K+–ATPase α1a mRNA expression and α protein abundance, as well as cell proliferation (detected using BrdU) increased. Spironolactone inhibited the normal increase in cell proliferation and Na+,K+-ATPase expression after freshwater transfer. RU486 increased plasma cortisol levels and may have slightly inhibited Na+,K+–ATPase activity, but did not change α 1a expression. RU486 had no effect on cell proliferation in the non-lamellar region of the gills, but increased proliferation in the lamellar region. Neither antagonist inhibited the suppression of CFTR or NKCC1 expression after freshwater transfer. Glucocorticoid receptor expression was reduced in all sham and antagonist treatments compared to untreated controls, but no other consistent differences were observed. The effects of spironolactone suggest that MR is important for regulating ion transport in killifish gills after freshwater transfer.  相似文献   

19.
The sublingual salt gland is the primary site of salt excretion in sea snakes; however, little is known about the mechanisms mediating ion excretion. Na+/K+–ATPase (NKA) and Na+/K+/2Cl cotransporter (NKCC) are two proteins known to regulate membrane potential and drive salt secretion in most vertebrate secretory cells. We hypothesized that NKA and NKCC would localize to the basolateral membranes of the principal cells comprising the tubular epithelia of sea snake salt glands. Although there is evidence of NKA activity in salt glands from several species of sea snake, the localization of NKA and NKCC and other potential ion transporters remains unstudied. Using histology and immunohistochemistry, we localized NKA and NKCC in salt glands from three species of laticaudine sea snake: Laticauda semifasciata, L. laticaudata, and L. colubrina. Antibody specificity was confirmed using Western blots. The compound tubular glands of all three species were found to be composed of serous secretory epithelia, and NKA and NKCC were abundant in the basolateral membranes. These results are consistent with the morphology of secretory epithelia found in the rectal salt glands of marine elasmobranchs, the nasal glands of marine birds and the gills of teleost fishes, suggesting a similar function in regulating ion secretion.  相似文献   

20.
Salinity is a major environmental factor that strongly influences cellular and organismal function. We have used the euryhaline fish Oreochromis mossambicus to identify and annotate immediate hyperosmotic stress responsive molecular mechanisms and biological processes in gill epithelial cells. Using a suppression subtractive hybridization (SSH) approach, we have identified and cloned 20 novel immediate early genes whose mRNAs are induced in gill epithelial cells 4 h after transfer of fish from freshwater (FW) to seawater (SW). Full-length or partial sequences of open reading frames (ORFs) were obtained using the rapid amplification of cDNA ends (RACE) technique. Kinetics of induction was analyzed for all hyperosmotic stress-induced genes. Most genes show a robust transient increase in mRNA abundance characteristic of immediate early stress response genes with peak levels observed between 2 and 8 h after seawater transfer. The newly identified genes were classified according to their sequence similarity with other vertebrate homologs and based on their predicted functions. Pathway analysis revealed that more than half of the identified immediate hyperosmotic stress genes interact closely within a cellular stress response signaling network. Moreover, the 20 genes cluster together in six molecular processes that are rapidly activated in tilapia gills upon salinity transfer. These processes are (1) stress response signal transduction, (2) compatible organic osmolyte accumulation, (3) energy metabolism, (4) lipid transport and cell membrane protection, (5) actin-based cytoskeleton dynamics, and (6) protein and mRNA stability. Our identification and analysis of a set of novel osmo-responsive tilapia genes provides insight into critical physiological processes and pathways constituting the hyperosmotic stress adaptation program in gill epithelial cells of euryhaline fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号