首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, three major hemocyte types were identified in the Sydney rock oyster. They were characterized primarily by light and electron microscopy based on the presence or absence of granules and nucleus to cytoplasm ratios. Hemoblast-like cells were the smallest cell type 4.0+/-0.4microm and comprised 15+/-3% of the hemocyte population. They had large nuclei and scanty basic cytoplasm. This cell type also had some endoplasmic reticuli and mitochondria. The second major type were hyalinocytes. Hyalinocytes represented 46+/-6% of all hemocytes. They were large cells (7.1+/-1.0microm) that had low nucleus:cytoplasm ratios and agranular basic or acidic cytoplasm. Hyalinocytes had the ability to phagocytose yeast cells and formed the core of hemocyte aggregates associated with agglutination. Four discrete sub-populations of hyalinocytes were identified. The third major cell type were the granulocytes, comprising 38+/-1% of the hemocyte population. These cells were large (9.3+/-0.3microm) and were characterized by cytoplasm containing many acidic or basic granules. Granulocytes were more phagocytic than hyalinocytes and they formed the inner layer of hemocytes during the encapsulation of fungal hyphae. Five discrete sub-populations of granulocytes were identified based on the types of granules in their cytoplasm. Flow cytometry showed that the hemocytes of rock oysters could be divided into between two and four major cell types based on their light scattering properties. The most common of the cell types identified by flow cytometry corresponded to hyalinocytes and granulocytes. Cytochemical assays showed that most enzymes associated with immunological activity were localized in granulocytes. Their granules contained acid phosphatase, peroxidase, phenoloxidase, superoxide and melanin. Hyalinocytes were positive only for acid phosphatase. All of these observations suggest that Sydney rock oysters have a broad variety of functionally specialized hemocytes, many of which are involved in host defense.  相似文献   

2.
The green-lipped mussel Perna viridis is distributed widely in the estuarine and coastal areas of the Indo-Pacific region and extensively cultured as an inexpensive protein source. Morphology and immunological activities of hemocytes of P. viridis were investigated using flow cytometry and light and electron microscopy. Three major types of hemocytes were identified in the hemolymph, including dense-granulocyte, semi-granulocyte (small and large size) and hyalinocyte. Other hemocytes, which occurred in low numbers, included granulocytes with different electron-dense/lucent granules and hemoblast-like cells. Based on flow cytometry, two subpopulations were identified. Granulocytes were larger cells, and the more abundant, containing numerous granules in the cytoplasm, and hyalinocytes were the smaller and less abundant with the fewest granules. Flow cytometry revealed that the granulocytes were more active in cell phagocytosis, contained the higher lysosomal content, and showed higher esterase activity and reactive oxygen species (ROS) generation compared with hyalinocytes. Immune functions assessed by the flow cytometry indicated that the granulocytes were the main hemocytes involved in the cellular defence in P. viridis.  相似文献   

3.
Two basic cell types occur in the hemolymph of Bulinus truncatus rohlfsi: granulocytes and hyalinocytes. Granulocytes are divided into three subtypes: (1) Granulocytes I, which account for 19% of the hemocytes, are small, young amoebocytes with 1–20 filopodia and small numbers of cytoplasmic granules, including some lysosomes; (2) granulocytes II, which account for 78% of the cells, are large, fully developed amoebocytes that possess 1–20 filopodia and many granules, both acidophilic and basophilic, including numerous lysosomes, phagosomes, and mitochondria; and (3) spent granulocytes, which are rare, have few filopodia, large accumulations of glycogen granules and prominent vacuoles in addition to lysosomes in the cytoplasm. These three subtypes of granulocytes probably represent ontogenetic stages within a single cell line. In addition, granulocytes with 40 or more filopodia and little ectoplasm, found in only 1 of 45 snails examined, probably reflect a pathologic condition. Hyalinocytes, which account for 3% of all hemocytes, are similar in size to mature granulocytes, but have few or no cytoplasmic granules and lack filopodia and glycogen granules. Total hemocyte concentration in hemolymph is 328,000 ± 188,000 cells/ml.  相似文献   

4.
Adamowicz A 《Tissue & cell》2005,37(2):125-133
Microscope techniques, light microscope (LM), transmission electron microscope (TEM), scanning electron microscope (SEM) were employed to describe and classify coelomocytes of the oligochaete Dendrobaena veneta. Three main cell types were distinguished in the coelomic fluid: eleocytes, amoebocytes and granulocytes. Eleocytes are large, oval cells containing characteristic granules called chloragosomes. Amoebocytes are most numerous coelomocytes and have been divided into two types (I and II). Both amoebocytes of the types I and II often form aggregations of a few to about a dozen cells. Granulocytes are oval cells with spherical nuclei and cytoplasm containing polymorphic, electron dense granules. Contrary to the amoebocytes, the granulocytes do not form aggregations. Morphology and ultrastructure of coelomocytes are presented on micrographs: similarities and differences are compared to coelomocytes of related species.  相似文献   

5.
Hemocytes in the circulation and kidney islets, as well as their phagocytic responses to microorganisms and fluorescent beads, have been studied in Pomacea canaliculata, using flow cytometry, light microscopy (including confocal laser scanning microscopy) and transmission electron microscopy (TEM). Three circulating hemocyte types (hyalinocytes, agranulocytes and granulocytes) were distinguished by phase contrast microscopy of living cells and after light and electron microscopy of fixed material. Also, three different populations of circulating hemocytes were separated by flow cytometry, which corresponded to the three hemocyte types. Hyalinocytes showed a low nucleus/cytoplasm ratio, and no apparent granules in stained material, but showed granules of moderate electron density under TEM (L granules) and at least some L granules appear acidic when labeled with LysoTracker Red. Both phagocytic and non-phagocytic hyalinocytes lose most (if not all) L granules when exposed to microorganisms in vitro. The phagosomes formed differed whether hyalinocytes were exposed to yeasts or to Gram positive or Gram negative bacteria. Agranulocytes showed a large nucleus/cytoplasm ratio and few or no granules. Granulocytes showed a low nucleus/cytoplasm ratio and numerous eosinophilic granules after staining. These granules are electron dense and rod-shaped under TEM (R granules). Granulocytes may show merging of R granules into gigantic ones, particularly when exposed to microorganisms. Fluorescent bead exposure of sorted hemocytes showed phagocytic activity in hyalinocytes, agranulocytes and granulocytes, but the phagocytic index was significantly higher in hyalinocytes.Extensive hemocyte aggregates (''islets'') occupy most renal hemocoelic spaces and hyalinocyte-like cells are the most frequent component in them. Presumptive glycogen deposits were observed in most hyalinocytes in renal islets (they also occur in the circulation but less frequently) and may mean that hyalinocytes participate in the storage and circulation of this compound. Injection of microorganisms in the foot results in phagocytosis by hemocytes in the islets, and the different phagosomes formed are similar to those in circulating hyalinocytes. Dispersed hemocytes were obtained after kidney collagenase digestion and cell sorting, and they were able to phagocytize fluorescent beads. A role for the kidney as an immune barrier is proposed for this snail.  相似文献   

6.
The morphology and cytochemistry of Pinctada imbricata haemocytes were studied in vitro. Three distinct blood cell types were identified; hyalinocytes, granulocytes, and serous cells. Haemocytes were classified based on the presence/absence of granules, and nucleus to cytoplasm ratio. Granulocytes were the most common cell type (62 ± 2.81%), followed by hyalinocytes (36 ± 2.35%), and serous cells (2 ± 0.90%). Granulocytes, and hyalinocytes were found to be immunologically active, with the ability to phagocytose Congo red stained yeast. Of the cells involved in phagocytosis, granulocytes were the most active with 88.8 ± 3.9% of these haemocytes engulfing yeast. Cytochemical stains (phenoloxidase, peroxidase, superoxide, melanin, neutral red) showed that enzymes associated with phagocytic activity were localised in granules within granulocytes. Based on their affinities for Giemsa/May-Grünwald stain, haemocytes were also defined as either acidic, basic or neutral. Hyalinocytes and serous cells were found to be eosinophilic, whilst granulocytes were either basophilic (large granulocytes), eosinophilic (small granulocytes) or a combination of the two (combination granulocytes). Light, differential interference contrast and epi-fluorescence microscopy identified three sub-populations of granulocytes based on size and granularity; small (4.00-5.00 μm in diameter, with small granules (0.05-0.5 μm in diameter), large (5.00-9.00 μm in diameter, with large granules (0.50-2.50 μm in diameter) and combination (5.00-9.00 μm in diameter, with both large and small granules). These observations demonstrate that P. imbricata have a variety of morphologically and functionally specialized haemocytes, many of which maybe associated with immunological functions.  相似文献   

7.
In the context of comparative studies on immunity defence mechanisms of adults and larvae of the coleopteran Cetonischema aeruginosa (Drury, 1770) the ultrastructure of the circulating hemocytes of the third instar larval stage has been investigated by means of light and transmission electron microscopy (TEM). Six types of hemocytes were found in the hemolymph of C. aeruginosa and they were identified as prohemocytes, granulocytes, plasmatocytes, coagulocytes, oenocytoids and spherule cells. In order to identify the "professional" phagocyte cell, phagocytosis assays were performed in vivo by injection of 0.9 microm carboxylate-modified polystyrene latex beads. It was demonstrated that the granulocytes and the oenocytoids of C. aeruginosa were the only hemocyte types involved in this cellular response.  相似文献   

8.
Bos taurus indicus cattle are less susceptible to infestation with Rhipicephalus (Boophilus) microplus than Bos taurus taurus cattle but the immunological basis of this difference is not understood. We compared the dynamics of leukocyte infiltrations (T cell subsets, B cells, major histocompatibility complex (MHC) class II-expressing cells, granulocytes) in the skin near the mouthparts of larvae of R. microplus in B. t. indicus and B. t. taurus cattle. Previously naïve cattle were infested with 50,000 larvae (B. t. indicus) or 10,000 larvae (B. t. taurus) weekly for 6 weeks. One week after the last infestation all of the animals were infested with 20,000 larvae of R. microplus. Skin punch biopsies were taken from all animals on the day before the primary infestation and from sites of larval attachment on the day after the first, second, fourth and final infestations. Infiltrations with CD3+, CD4+, CD8+ and γδ T cells followed the same pattern in both breeds, showing relatively little change during the first four weekly infestations, followed by substantial increases at 7 weeks post-primary infestation. There was a tendency for more of all cell types except granulocytes to be observed in the skin of B. t. indicus cattle but the differences between the two breeds were consistently significant only for γδ T cells. Granulocyte infiltrations increased more rapidly from the day after infestation and were higher in B. t. taurus cattle than in B. t. indicus. Granulocytes and MHC class II-expressing cells infiltrated the areas closest to the mouthparts of larvae. A large volume of granulocyte antigens was seen in the gut of attached, feeding larvae.  相似文献   

9.
The hemocytes of Leiobunum limbatum, Mitopus morio, and Opilio ravennae number from about 8,000 (juveniles) to 41,000 (pregnant females) per microliter of hemolymph. Five different types of hemocytes occur in all three species and both sexes. According to their ultrastructural appearance and their similarities to other arthropod hemocytes these five types are designated as prohemocyte, plasmatocyte, granulocyte, coagulocyte, and spherulocyte. From the ultrastructural point of view the prohemocytes are interpreted as stem cells for plasmatocytes which on their part differentiate into granulocytes. Transitional stages which would indicate the origin of coagulocytes and spherulocytes could not be found. Granulocytes and spherulocytes are interpreted as being storage cells; coagulocytes burst when hemolymph is transferred to a microscopic slide. Plasmatocytes are involved in the removal of dead cells or cell fragments. Plasmatocytes are demonstrated as being able to phagocytize and digest bacteria.  相似文献   

10.
Hemocytes of Crassostrea virginica were video recorded and tracked to determine their locomotive rates and to assign these rates to Wright-stained morphological variants. From 24 oysters examined in January, February, March, and May, 1571 hemocytes were video recorded, identified, and their rate of locomotion (ROL) measured. Granulocytes (three types) and agranulocytes (one lymphoid and three nonlymphoid types) were recognized. Focusing on 15 oysters in March and May, 20,318 hemocytes were counted from duplicate slides to verify the classification and to show that predominant hemocytes vary greatly between samples and among individual oysters, yet population differences can be detected. Measured rates of locomotion indicate that the granulocyte subpopulation moved significantly faster (3.3 microns/min) than the agranulocyte subpopulation (0.7 microns/min) because most (81%) agranulocytes were not mobile. Of the mobile hemocytes, granulocytes were also significantly faster (4.8 microns/min vs. 3.5 microns/min, P less than 0.0001), and basophilic granulocytes (BASOs) were the most active and abundant cell type. Examination of monthly percentages of cells and ROL indicates, however, that granulocyte dominance and ROL are not invariable. Granulocyte percentages of more than 60% in January, February, and March decreased to 32% in May, and BASO dominance was reduced to 15%. Further, percentages of mobile granulocytes decreased from greater than 65% in January, February, and March to 50% in May. ROL for all cells decreased from greater than 2.3 microns/min in these months to 1.0 microns/min in May. The fewer mobile hemocytes tracked in May had significantly (P less than .05) lower average ROL (4.0 microns/min) than those in January and March (4.7 microns/min each). Agranulocytes increased in May due to an increase in nonlymphoid cells.  相似文献   

11.
红褐斑腿蝗血细胞的形态与分类   总被引:1,自引:0,他引:1  
王世贵  周志军  郑哲民 《昆虫知识》2007,44(2):241-244,F0004
利用光学显微镜和显微数码拍照系统,对红褐斑腿蝗Catantops pinguis(Stal)血细胞的形态进行观察和分类。结果在红褐斑腿蝗血淋巴中观察到5种血细胞,分别是原血胞、浆血胞、粒血胞、珠血胞和囊血胞。原血胞为小型圆形细胞,边缘圆滑、清晰,核质比例很大。粒血胞多为中型,形状不规则,边缘凹突不平,内含较大的异质性溶酶体颗粒。浆血胞多为中型,刚离体时形状较规则,常呈圆形、卵圆形。浆血胞内缺乏大的颗粒,细胞核大而圆形,细胞质内具许多小型颗粒状物质。浆血胞离体后形状变化较多,常发展出伪足,呈丝状、短芒状、钩状或片状伪足。珠血胞多为大、中型,外形大体呈圆形,但边缘由于大小不等的珠形内含物突出,呈花瓣状。囊血胞多为中型,圆形或椭圆形,细胞质内具有大小不一的带有折光性的颗粒或块状物,细胞边缘比较光滑。  相似文献   

12.
The hemocytes of two palaemonids and one penaeid were characterized using light and transmission electron microscopy (TEM). The blood cells in all three species were classified as hyaline hemocytes (HH), small granule hemocytes (SGH), and large granule hemocytes (LGH). The HH are unstable hemocytes with a characteristic high nucleo-cytoplasmic ratio. Their cytoplasm appears particularly dense and has from few to numerous granules that often exhibit a typical striated substructure. In both palaemonids, the great majority of the HH contain numerous granules, whereas in Penaeus paulensis, a small number of these cells have few or no granules. The cytoplasm of some HH of the penaeid exhibits typical electron-dense deposits. The granulocytes, LGH and SGH, contain abundant electron-dense granules that are usually smaller in the SGH. In both hemocyte types, the cytosol, but not the granules, is rich in carbohydrates (PAS positive) and numerous vesicles contain acid phosphatase (Gomori reactive). In all studied shrimps, the SGH and LGH were actively phagocytic when examined on blood cell monolayers incubated with the yeast Saccharomyces cerevisiae. A few mitotic figures (less than 1%) were observed in the granulocytes of P. paulensis, but not in the palaemonids. SGH is the main circulating blood cell type in both palaemonids, whereas HH is predominant in the penaeid. Based on morphological and functional features, it appears that the hyaline and the granular hemocytes of the three shrimp species represent different cell lineages. J. Morphol. 236:209–221, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Previous research established different interactions of the insect pathogen, Xenorhabdus nematophila and nonpathogen, Bacillus subtilis, with antimicrobial hemocytes and humoral factors of larval Malacosoma disstria [Giannoulis, P., Brooks, C.L., Dunphy, G.B., Mandato, C.A., Niven, D.F., Zakarian, R.J., 2007. Interaction of the bacteria Xenorhabdus nematophila (Enterobacteriaceae) and Bacillus subtilis (Bacillaceae) with the hemocytes of larval Malacosoma disstria (Insecta: Lepidoptera: Lasicocampidae). J. Invertebr. Pathol. 94, 20-30]. The antimicrobial systems were inhibited by X. nematophila and stimulated by B. subtilis. The bacterial surface antigens participating in these reactions were unknown. Thus, herein the effects of lipopolysaccharide (endotoxin) from X. nematophila and lipoteichoic acid from B. subtilis on the larval M. disstria immune factors, the hemocytes and phenoloxidase, were determined. Endotoxin elevated the level of damaged hemocytes limiting the removal of X. nematophila from the hemolymph and enhancing the rapid release of bacteria trapped by nodulation. Similar effects were observed with the lipid A moiety of the endotoxin. The effects of lipopolysaccharide and lipid A on the hemocyte activities were abrogated by polymyxin B (an antibiotic that binds to lipid A) confirming lipopolysaccharide as the hemocytotoxin by virtue of the lipid A moiety. Lipoteichoic acid elicited nodulation and enhanced phenoloxidase activation and/or activity. Although lipoidal endotoxin and lipid A inhibited phenoloxidase activation they enhanced the activity of the enzyme. Apolipophorin-III precluded the effects of lipopolysaccharide, lipid A, and lipoteichoic acid on the hemocytes and prophenoloxidase until the antigens exceeded a critical threshold.  相似文献   

14.
Malacosoma disstria larvae are a pest of deciduous trees. Little is known on the interaction of bacteria with the immediate hemocytic antimicrobial responses of these insects. Incubating dead Xenorhabdus nematophila and Bacillus subtilis with a mixture of serum-free granular cells and plasmatocytes in vitro revealed differential bacterial-hemocyte adhesion and differential discharge of lysozyme and phenoloxidase but not total protein. Although active phenoloxidase adhered equally to both bacterial species, X. nematophila limited enzyme activation whereas B. subtilis enhanced activation. Serum with active phenoloxidase (as opposed to tropolone-inhibited phenoloxidase) and purified insect lysozyme increased bacterial-hemocyte adhesion of both bacterial species. An apolipophorin-III-like protein when incubated with hemocytes, limited their responses to glass slides and bacterial adhesion. However, initial binding of the protein to both bacteria increased granular cell levels with bacteria while lowering the plasmatocyte levels with adhering procaryotes. The protein also increased lysozyme and phenoloxidase activities. Although B. subtilis in vivo elicited a nodulation-based decline in total hemocyte counts and did not affect hemocyte viability, dead X. nematophila elevated hemocyte counts and damaged the hemocytes as lipopolysaccharide levels increased and X. nematophila emerged into the hemolymph. Apolipophorin-III-like protein once bound to the bacteria slowed their removal from the hemolymph.  相似文献   

15.
Primary cultures of hemocytes from the Caribbean spiny lobster Panulirus argus were developed for studies on the in vitro propagation of Panulirus argus Virus 1 (PaV1). A modified Leibovitz L-15 medium supported the best survival of hemocytes in in vitro primary cultures. However, degradation of the cultures occurred rapidly in the presence of granulocytes. A Percoll step gradient was used to separate hemocytes into three subpopulations enriched in hyalinocytes, semigranulocytes, and granulocytes, respectively. When cultured separately, hyalinocytes and semigranulocytes maintained higher viability ( approximately 80%) after 18 days incubation compared with granulocytes, which degraded over 2-3 days. Susceptibility of the cell types was investigated in challenge studies with PaV1. Hyalinocytes and semigranulocytes were susceptible to PaV1. Cytopathic effects (CPE) were observed as early as 12h post-inoculation, and as the infection progressed, CPE became more apparent, with cell debris and cellular exudates present in inoculated cultures. Cell lysis was noticeable within 24h of infection. The presence of virus within cells was further confirmed by in situ hybridization using a specific DNA probe. The probe gave a unique staining pattern to cells infected with PaV1 24-h post-inoculation. Cells in the control treatment were intact and negative to hybridization. This assay was further applied to the quantification of infectious virus in hemolymph using a 50% tissue culture infectious dose assay (TCID(50)) based on CPE. These tools will now allow the quantification of PaV1 using established culture-based methods.  相似文献   

16.
In contrast to the situation with egg-larval and larval endoparasitic wasps, little is known about the effects of pupal endoparasitoids and their secretions on the hemocytes of their insect hosts. This study focuses on the pupal endoparasitoid, Pteromalus puparum, and its host, the small white butterfly, Pieris rapae. Parasitism by P. puparum, resulted in a significant increase in the total number of host hemocytes up to day five after parasitization. From day one to day four after parasitization, the percentage of plasmatocytes significantly decreased, and the proportion of granular cells increased. Moreover, from 12 h to day three after parasitization, hemocyte mortality in parasitized pupae was noticeably higher. When P. rapae pupae were parasitized by adult females of P. puparum irradiated by gamma-ray (pseudoparasitization), it was clear that the treated wasps could induce similar hemocyte changes. However, such phenomena did not occur in punctured host pupae (mimic-parasitization). After treatment with P. puparum venom, both the percentages of spreading plasmatocytes and encapsulated Sephadex G-25 beads were lessened significantly in vitro. Electron microscopy analysis and visualization of hemocyte F-actin with phalloidin-FITC showed that hemocytes treated with venom had a rounded configuration and neither spread nor extended pseudopods, while there was no marked alteration of hemocyte cytoskeletons after venom treatment. The results suggested that venom of P. puparum could actively suppress the hemocyte immune response of its host, but not by destroying the host hemocyte cytoskeleton.  相似文献   

17.
Blue mussel hemocytes (cells with immunoresponse activities) are suggested as indicators of anthropogenic contamination. We compared hemocyte numbers, granulocytoma (aggregated hemocytes), and parasites among populations of mussels from different areas of Skagerrak (a north and a south), seasons (summer and autumn), and impact levels (close or far from industrial activities). Seasonal hemocyte numbers were larger in the north compared to the south. Northern unimpacted populations had higher hemocyte numbers than populations close to industries, while no differences were found in the south. More uneven tissue distributions were found in populations far from industries in the north area and in populations close to industries in the south area. Parasites were more common in northern mussels than in southern, but no relationship to impact level was found. Mussels with granulocytoma, however, were found in all populations from the impacted sites while in none of the other populations suggesting granulocytoma as a possible indicator of industrial impact.  相似文献   

18.
We assayed European flat oyster, Ostrea edulis, hemocyte parameters, circulating and tissue-infiltrating hemocyte densities, circulating hemocyte type distribution and lysosomal enzyme contents, to possibly relate these hematological parameters to Bonamia ostreae infection. Circulating hemocyte densities were not statistically different between infected and uninfected oysters. In contrast, the number of tissue-infiltrating hemocytes increased with infection intensity suggesting a recruitment process at the site of infection and a possibility for cells to migrate from circulatory system to connective tissues. Lysosomal enzymes were localized mainly in granulocytes both infected and uninfected, and mean of alpha-naphtyl butyrate esterase activity decreased with increasing B. ostreae infection level. The main response observed was a change in hemocyte type distribution between uninfected and infected oysters and greater tissue-infiltrating hemocytes with increased infections. These results suggest that the decrease of circulating granulocytes, and, consequently of some cell enzyme activities may be related with B. ostreae infection.  相似文献   

19.
Maintenance of hemocyte populations is critical for both development and immune responses. In insects, the maintenance of hemocyte populations is regulated by mitotic division of circulating hemocytes and by discharge from hematopoietic organs. We found cell clusters in the hemolymph of Mamestra brassicae larvae that are composed of small, spherical cells. Microscopic observations revealed that the cells in these clusters are similar to immature or precursor cells present in hematopoietic organs. The results of bromodeoxyuridine (BrdU) incorporation experiments demonstrate that these cells are mitotically active. Furthermore, these cells maintain their immature state and proliferate until late in the last larval instar. The results of in vitro experiments showed that most of the cells changed their morphology to one consistent with plasmatocytes or granulocytes, and that the change was promoted by addition of larval hemolymph to the culture medium, in particular when hemolymph was collected at a prepupal stage. Taken together, our results suggested that cells in clusters may be an additional source of hemocytes during larval development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号