首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 594 毫秒
1.
Hemocytes in the circulation and kidney islets, as well as their phagocytic responses to microorganisms and fluorescent beads, have been studied in Pomacea canaliculata, using flow cytometry, light microscopy (including confocal laser scanning microscopy) and transmission electron microscopy (TEM). Three circulating hemocyte types (hyalinocytes, agranulocytes and granulocytes) were distinguished by phase contrast microscopy of living cells and after light and electron microscopy of fixed material. Also, three different populations of circulating hemocytes were separated by flow cytometry, which corresponded to the three hemocyte types. Hyalinocytes showed a low nucleus/cytoplasm ratio, and no apparent granules in stained material, but showed granules of moderate electron density under TEM (L granules) and at least some L granules appear acidic when labeled with LysoTracker Red. Both phagocytic and non-phagocytic hyalinocytes lose most (if not all) L granules when exposed to microorganisms in vitro. The phagosomes formed differed whether hyalinocytes were exposed to yeasts or to Gram positive or Gram negative bacteria. Agranulocytes showed a large nucleus/cytoplasm ratio and few or no granules. Granulocytes showed a low nucleus/cytoplasm ratio and numerous eosinophilic granules after staining. These granules are electron dense and rod-shaped under TEM (R granules). Granulocytes may show merging of R granules into gigantic ones, particularly when exposed to microorganisms. Fluorescent bead exposure of sorted hemocytes showed phagocytic activity in hyalinocytes, agranulocytes and granulocytes, but the phagocytic index was significantly higher in hyalinocytes.Extensive hemocyte aggregates (''islets'') occupy most renal hemocoelic spaces and hyalinocyte-like cells are the most frequent component in them. Presumptive glycogen deposits were observed in most hyalinocytes in renal islets (they also occur in the circulation but less frequently) and may mean that hyalinocytes participate in the storage and circulation of this compound. Injection of microorganisms in the foot results in phagocytosis by hemocytes in the islets, and the different phagosomes formed are similar to those in circulating hyalinocytes. Dispersed hemocytes were obtained after kidney collagenase digestion and cell sorting, and they were able to phagocytize fluorescent beads. A role for the kidney as an immune barrier is proposed for this snail.  相似文献   

2.
Our prior work has shown that the catecholamine hormone, noradrenaline, mediates environmental stress responses in Sydney rock oysters, resulting in impaired immunological function. In the current study, we tested the cellular basis of this stress response. Hemocytes were exposed to noradrenaline in vitro before cell morphology and viability were analyzed. Noradrenaline was shown to induce apoptotic markers, including the loss of mitochondrial membrane potential, DNA fragmentation and plasma membrane blebbing. F-actin appeared to play an important role in the changes observed in hemocytes, being concentrated mostly in the plasma membrane blebs of noradrenaline-treated hemocytes. This may explain why hemocyte adhesion and pseudopodia formation were inhibited by noradrenaline. Cellular dysfunction induced by norarenaline mainly affected the hyalinocyte sub-population of hemocytes, whilst the other major cell type, granulocytes, remained unaffected. Given that hyalinocytes are important immunological effectors, the results of this study help to explain why immunosuppression accompanies noradrenaline-mediated stress responses in oysters.  相似文献   

3.
Two basic cell types occur in the hemolymph of Bulinus truncatus rohlfsi: granulocytes and hyalinocytes. Granulocytes are divided into three subtypes: (1) Granulocytes I, which account for 19% of the hemocytes, are small, young amoebocytes with 1–20 filopodia and small numbers of cytoplasmic granules, including some lysosomes; (2) granulocytes II, which account for 78% of the cells, are large, fully developed amoebocytes that possess 1–20 filopodia and many granules, both acidophilic and basophilic, including numerous lysosomes, phagosomes, and mitochondria; and (3) spent granulocytes, which are rare, have few filopodia, large accumulations of glycogen granules and prominent vacuoles in addition to lysosomes in the cytoplasm. These three subtypes of granulocytes probably represent ontogenetic stages within a single cell line. In addition, granulocytes with 40 or more filopodia and little ectoplasm, found in only 1 of 45 snails examined, probably reflect a pathologic condition. Hyalinocytes, which account for 3% of all hemocytes, are similar in size to mature granulocytes, but have few or no cytoplasmic granules and lack filopodia and glycogen granules. Total hemocyte concentration in hemolymph is 328,000 ± 188,000 cells/ml.  相似文献   

4.
Light microscopic observations were made on the hemocytes of three gastropod species namely Trachea vittata, Indoplanorbis exustus and Pila globosa. It revealed two basic types of hemocytes. They are agranulocytes and granulocytes. Agranulocytes are hyalinocytes which are round, unspread hemocytes and have a large nucleo-cytoplasmic ratio. Granulocytes are spreading hemocytes, forming numerous pseudopodia. For the purpose of differential counting, we present a categorization of the granulocytes into three sub-categories based on cell dimensions, nucleo-cytoplasmic ratio, distribution of granules in the cytoplasm and position of the nucleus. The smaller granulocytes are younger cells, and are termed Granulocytes I (Progranulocytes). The larger ones are fully developed cells that have been differentiated into Granulocyte II (basophilic) and Granulocyte III (eosinophilic).  相似文献   

5.
The morphology and cytochemistry of Pinctada imbricata haemocytes were studied in vitro. Three distinct blood cell types were identified; hyalinocytes, granulocytes, and serous cells. Haemocytes were classified based on the presence/absence of granules, and nucleus to cytoplasm ratio. Granulocytes were the most common cell type (62 ± 2.81%), followed by hyalinocytes (36 ± 2.35%), and serous cells (2 ± 0.90%). Granulocytes, and hyalinocytes were found to be immunologically active, with the ability to phagocytose Congo red stained yeast. Of the cells involved in phagocytosis, granulocytes were the most active with 88.8 ± 3.9% of these haemocytes engulfing yeast. Cytochemical stains (phenoloxidase, peroxidase, superoxide, melanin, neutral red) showed that enzymes associated with phagocytic activity were localised in granules within granulocytes. Based on their affinities for Giemsa/May-Grünwald stain, haemocytes were also defined as either acidic, basic or neutral. Hyalinocytes and serous cells were found to be eosinophilic, whilst granulocytes were either basophilic (large granulocytes), eosinophilic (small granulocytes) or a combination of the two (combination granulocytes). Light, differential interference contrast and epi-fluorescence microscopy identified three sub-populations of granulocytes based on size and granularity; small (4.00-5.00 μm in diameter, with small granules (0.05-0.5 μm in diameter), large (5.00-9.00 μm in diameter, with large granules (0.50-2.50 μm in diameter) and combination (5.00-9.00 μm in diameter, with both large and small granules). These observations demonstrate that P. imbricata have a variety of morphologically and functionally specialized haemocytes, many of which maybe associated with immunological functions.  相似文献   

6.
The green-lipped mussel Perna viridis is distributed widely in the estuarine and coastal areas of the Indo-Pacific region and extensively cultured as an inexpensive protein source. Morphology and immunological activities of hemocytes of P. viridis were investigated using flow cytometry and light and electron microscopy. Three major types of hemocytes were identified in the hemolymph, including dense-granulocyte, semi-granulocyte (small and large size) and hyalinocyte. Other hemocytes, which occurred in low numbers, included granulocytes with different electron-dense/lucent granules and hemoblast-like cells. Based on flow cytometry, two subpopulations were identified. Granulocytes were larger cells, and the more abundant, containing numerous granules in the cytoplasm, and hyalinocytes were the smaller and less abundant with the fewest granules. Flow cytometry revealed that the granulocytes were more active in cell phagocytosis, contained the higher lysosomal content, and showed higher esterase activity and reactive oxygen species (ROS) generation compared with hyalinocytes. Immune functions assessed by the flow cytometry indicated that the granulocytes were the main hemocytes involved in the cellular defence in P. viridis.  相似文献   

7.
Ultrastructures of circulating hemocytes were studied in 9 botryllid ascidians. The hemocytes are classified into five types: hemoblasts, phagocytes, granulocytes, morula cells, and pigment cells. These five types are always found in the 9 species. They should represent the major hemocyte types of the circulating cells in the blood. Hemoblasts are small hemocytes having a high nucleus/cytoplasm ratio. There are few granular or vacuolar inclusions in the cytoplasm. Phagocytes have phagocytic activity and their shape is variable depending on the amount of engulfed materials. In granulocytes, shape and size of granules are different among the species. Morula cells are characterized by several vacuoles filled with electron dense materials. In pigment cells, the bulk of the cytoplasm is occupied by one or a few vacuoles containing pigment granules. We also described some other hemocyte types found in particular species. Furthermore, we encountered free oocytes circulating in the blood in two species, Botryllus primigenus and Botrylloides lentus.  相似文献   

8.
The primary purposes of this research were to describe and classify the circulating hemocytes of Cancer magister and devise a method for making differential hemocyte counts for crustaceans. C. magister hemocytes were classified using two simple criteria: the presence or absence of cytoplasmic granules and staining characteristics of the granules, if present. Hyalinocytes (HC) were devoid of granules, intermediate granulocytes (IG) contained basophilic granules or a mixture of basophilic and acidophilic granules, and eosinophilic granulocytes (EG) contained large, acidophilic granules. Hemocyte renewal and a hypothetical maturation sequence of C. magister hemocytes are described and discussed. Differential counts revealed that granulocytes were more abundant than hyalinocytes. For 22 crabs, the mean percentage (and range) of each hemocyte class was: IG, 65.97 (57.50–73.80); EG, 17.76 (4.70–26.47); and HC, 16.25 (3.40–34.67). After additional data are collected and analyzed, the routine use of differential counts may prove to be a valuable method for monitoring the status and health of C. magister and perhaps other crustaceans as well.  相似文献   

9.
We assayed European flat oyster, Ostrea edulis, hemocyte parameters, circulating and tissue-infiltrating hemocyte densities, circulating hemocyte type distribution and lysosomal enzyme contents, to possibly relate these hematological parameters to Bonamia ostreae infection. Circulating hemocyte densities were not statistically different between infected and uninfected oysters. In contrast, the number of tissue-infiltrating hemocytes increased with infection intensity suggesting a recruitment process at the site of infection and a possibility for cells to migrate from circulatory system to connective tissues. Lysosomal enzymes were localized mainly in granulocytes both infected and uninfected, and mean of alpha-naphtyl butyrate esterase activity decreased with increasing B. ostreae infection level. The main response observed was a change in hemocyte type distribution between uninfected and infected oysters and greater tissue-infiltrating hemocytes with increased infections. These results suggest that the decrease of circulating granulocytes, and, consequently of some cell enzyme activities may be related with B. ostreae infection.  相似文献   

10.
QX disease is a fatal disease in Sydney rock oysters caused by the protozoan parasite Marteilia sydneyi. The current study investigates the phagocytosis of M. sydneyi by Sydney rock oyster hemocytes. It also compares the in vitro phagocytic activities of hemocytes from oysters bred for QX disease resistance (QXR) with those of wild-type oysters. After ingestion of M. sydneyi, hemocyte granules fused with phagosome membranes and the pH of phagosomes decreased. Significantly (p = <0.05) more phagosomes in QXR hemocytes showed obvious changes in pH within 40 min of phagocytosis, when compared with wild-type hemocytes. Phenoloxidase deposition was also evident in phagosomes after in vitro phagocytosis. Most importantly, ingested and melanised M. sydneyi were detected in vivo among hemocytes from infected oysters. Overall, the data suggest that Sydney rock oyster hemocytes can recognise and phagocytose M. sydneyi, and that resistance against QX disease may be associated with enhanced phagolysosomal activity in QXR oysters.  相似文献   

11.
Electron microscopy has revealed that in Bulinus guernei (Gambian strain) snails infected with Schistosoma haematobium (Egyptian strain) daughter sporocysts and cercariae, two kinds of hemocytes called granulocytes and hyalinocytes are found associated with the sporocysts. Granulocytes are small, numerous, plumbophilic, and amoeboid. They contain lysosome-like granules. Hyalinocytes are large, sparse, less plumbophilic than granulocytes, and have intracellular microfilaments (about 9 nm wide), and few or no pseudopods. They are devoid of lysosome-like granules. Granulocytes and hyalinocytes infiltrate near sporocysts, but only granulocytes interact with sporocyst microvilli by contact. Granulocytes induce a restricted multilamellated encapsulation reaction. Extracellular microfilaments (about 12.5 nm wide), with a regular transverse structure pattern of about 50-nm periodicity, frequently are found along the outer surface of granulocytes located adjacent to sporocysts. Intracellular filamentous structures and a prominent glycocalyx also are features of the seemingly more active granulocytes contiguous with sporocysts. Cell adhesions may occur between surfaces of (1) granulocytes and sporocysts, (2) interdigitating pseudopodial processes of capsular granulocytes, and (3) granulocytes and hyalinocytes.  相似文献   

12.
For the first time, morpho-functional characterisation of haemocytes from the cockle Cerastoderma glaucum was performed to identify circulating cell types and to study their involvement in immune responses. Haemocyte mean number was 5.5 (x 10(5)) cells/mL haemolymph. Two main haemocyte types were found in haemolymph: granulocytes (85%), about 10 microm in diameter and with evident cytoplasmic granules, and hyalinocytes (15%), 8 to 14 microm in diameter, with a few or no granules. Most of the cytoplasmic granules stained in vivo with Neutral Red, indicating that they were lysosomes. On the basis of haemocyte staining properties, granulocytes and hyalinocytes were further classified as basophils and acidophils. Acidophil hyalinocytes were the largest haemocyte type (about 14 microm in diameter) and had an eccentric nucleus and a large cytoplasmic vacuole. Both granulocytes and hyalinocytes (except acidophils) were able to phagocytise yeast cells, although the basal phagocytic index was very low (about 2%). It increased significantly (up to 26%) after pre-incubation of yeast in cell-free haemolymph, suggesting that haemolymph has opsonising properties. Haemocytes also produced superoxide anion. Moreover, both granulocytes and hyalinocytes (except acidophils) were positive for some important hydrolytic and oxidative enzymes. Lysozyme-like activity was recorded in both cell-free haemolymph and haemocyte lysate, although enzyme activity in cell lysate was significantly higher. Results indicate that haemocytes from C. glaucum are effective cells in immune responses.  相似文献   

13.
14.
Three cell types were present in Armadillidium vulgare hemolymph. Hyaline cells, 8.2 to 12.0 μm in size with a few fine granules in the cytoplasm, comprised 42% of the cells. Twelve percent of the cells were nonexplosive granulocytes, 8.8 to 15.0 μm, with many cytoplasmic granules of medium size. A third cell type, an explosive 7.2- to 12.0-μm granulocyte with coarse cytoplasmic granules, comprised 46% of the cells. Within 48 hr after adult specimens of A. vulgare were fed eggs of the acanthocephalan, Plagiorhynchus cylindraceus, isopod hemocytes aggregated in the intestinal epithelium surrounding penetrating acanthors. Encapsulation and death of the parasite routinely followed. No significant difference in hematocrit values or in differential hemocyte counts occurred between infected and uninfected control isopods.  相似文献   

15.
Most experimental procedures on molluscs are done after acclimatization of wild animals to lab conditions. Similarly, short-term acclimation is often unavoidable in a field survey when biological analysis cannot be done within the day of sample collection. However, acclimatization can affect the general physiological condition and particularly the immune cell responses of molluscs. Our aim was to study the changes in the hemocyte characteristics of the Pacific oyster Crassostrea gigas and the carpet shell clam Ruditapes decussatus acclimated 1 or 2 days under emersed conditions at 14 ± 1 °C and for 1, 2, 7, or 10 days to flowing seawater conditions (submerged) at 9 ± 1 °C, when compared to hemolymph withdrawn from organisms sampled in the field and immediately analyzed in the laboratory (unacclimated). The hemocyte characteristics assessed by flow cytometry were the total (THC) and differential hemocyte count, percentage of dead cells, phagocytosis, and reactive oxygen species (ROS) production. Dead hemocytes were lower in oysters acclimated both in emersed and submerged conditions (1%-5%) compared to those sampled in the field (7%). Compared to oysters, the percentage of dead hemocytes was lower in clams (0.4% vs. 1.1%) and showed a tendency to decrease during acclimatization in both emersed and submerged conditions. In comparison to organisms not acclimated, the phagocytosis of hemocytes decreased in both oysters and clams acclimated under submerged conditions, but was similar in those acclimated in emersed conditions. The ROS production remained stable in both oysters and clams acclimated in emersed conditions, whereas in submerged conditions ROS production did not change in both the hyalinocytes and granulocytes of oysters, but increased in clams. In oysters, the THC decreased when they were acclimated 1 and 2 days in submerged conditions and was mainly caused by a decrease in granulocytes, but the decrease in THC in oysters acclimated 2 days in emersed conditions was caused by a decrease in hyalinocytes and small agranular cells. In clams, the THC was significantly lower in comparison to those not acclimated, regardless of the conditions of the acclimatization. These findings demonstrate that hemocyte characteristics were differentially affected in both species by the tested conditions of acclimatization. The phagocytosis and ROS production in clams and phagocytosis in oysters were not different in those acclimated for 1 day under both conditions, i.e. emersed and submerged, and those sampled in the field (unacclimated). The THC was significantly affected by acclimatization conditions, so the differences between clams and oysters should be considered in studies where important concentrations of hemocytes are required. The difference in the immune response between both species could be related to their habitat (epifaunal vs. infaunal) and their ability of resilience to manipulation and adaptation to captivity. Our results suggest that functional characteristics of hemocytes should be analyzed in both oysters and clams during the first 1 or 2 days, preferably acclimated under emersed rather than submerged conditions.  相似文献   

16.
In mussel (Mytilus sp.) hemocytes, differential functional responses to injection with different types of live and heat-killed Vibrio species have been recently demonstrated.In this work, responses of Mytilus hemocytes to heat-killed Vibrio splendidus LGP32 and the mechanisms involved were investigated in vitro and the results were compared with those obtained with Vibrio anguillarum (ATCC 19264). Adhesion of hemocytes after incubation with bacteria was evaluated by flow cytometry: both total hemocyte counts (THC) and percentage of hemocyte sub-populations were determined in non-adherent cells. Functional parameters such as lysosomal membrane stability, lysozyme release, extracellular ROS production and NO production were evaluated, as well as the phosphorylation state of the stress-activated p38 MAPK and PKC. Neither Vibrio affected total hemocyte adhesion, while both induced similar lysosomal destabilization and NO production. However, V. splendidus decreased adhesion of large granulocytes, induced rapid and persistent lysozyme release and stimulated extracellular ROS production: these effects were associated with persistent activation of p38 MAPK and PKC. In contrast, V. anguillarum decreased adhesion of large semigranular hemocytes and increased that of hyalinocytes, had no effect on the extracellular ROS production, and induced significantly lower lysozyme release and phosphorylation of p-38 MAPK and PKC than V. splendidus. These data reinforced the existence of specific interactions between mussel hemocytes and V. splendidus LGP32 and suggest that this Vibrio strain affects bivalve hemocytes through disregulation of immune signaling. The results support the hypothesis that responses of bivalve hemocytes to different bacterial stimuli may depend not only on the nature of the stimulus, but also on the cell subtype, thus leading to differential activation of signaling components.  相似文献   

17.
Cytochemical aspects of Mercenaria mercenaria hemocytes.   总被引:2,自引:0,他引:2  
The hemocytes of the hard clam M. mercenaria were of three types: an agranulocyte, a small, and a large granulocyte. The agranulocyte, with only a thin periphery of cytoplasm surrounding the nucleus, had no visible cytoplasmic granules in living preparations but did exhibit a few centers of nonspecific esterase activity. This cell type represented 2% of the hemocyte population. The small granulocyte possessed four distinct granule types and comprised 61% of the total cell population. Large granulocytes accounted fro 37% of all hemocytes. While they contained the same four granule types identified in the small granulocyte, only one-third the total number were present. The nucleus of all three hemocyte types appeared morphologically similar. The four types of granules observed were a blunt, dot-like, a refractile and a filamentous granule. Blunt granules were identified as mitochondria, based on their ability to reduce Janus Green B to diethyl safranin, the presence of NADH dehydrogenase activity and boundary staining with Sudan black B. Dot-like granules were identified as lysosomes on the basis of neutral red staining, localization of acid phosphatase and nonspecific esterase activity and staining with Sudan black B. Refractile granules were demonstrated to be membrane-bound, lipid-filled structures that reacted positively with Sudan black B and Oil red O, respectively; these granules act as lipid storage centers. Nuclear similarity of the three cell types suggest that these cells might represent different stages of maturity, rather than three distinct cell lines. This was also indicated by the similar yet graded cytochemical reactions and the varying degree of motility and phagocytic activity demonstrated by hemocyte types.  相似文献   

18.
In the context of comparative studies on immunity defence mechanisms of adults and larvae of the coleopteran Cetonischema aeruginosa (Drury, 1770) the ultrastructure of the circulating hemocytes of the third instar larval stage has been investigated by means of light and transmission electron microscopy (TEM). Six types of hemocytes were found in the hemolymph of C. aeruginosa and they were identified as prohemocytes, granulocytes, plasmatocytes, coagulocytes, oenocytoids and spherule cells. In order to identify the "professional" phagocyte cell, phagocytosis assays were performed in vivo by injection of 0.9 microm carboxylate-modified polystyrene latex beads. It was demonstrated that the granulocytes and the oenocytoids of C. aeruginosa were the only hemocyte types involved in this cellular response.  相似文献   

19.
Molluscs bivalves have been widely used as bioindicators to monitor contamination levels in coastal waters. In addition, many studies have attempted to analyze bivalve organs, considered pollutant-targets, to understand the bio-accumulation process and to characterize the effects of pollutants on the organisms. Here we analyzed the effects of mercury exposure on flat oyster hemocytes. Optical and electronic microscope procedures were used to characterize hemocyte morphology. In addition, cell solutions treated with acridine orange were analyzed by flow cytometry and laser scanning cytometry in order to evaluate the variations of cytoplasmic granules (red fluorescence, ARF) and cell size (green fluorescence, AGF) of hemocyte populations over time. Light and electron microscopical studies enabled us to differentiate four hemocyte subpopulations, agranulocytes (Types I and II) and granulocytes (Types I and II). Slight morphological differences were observed between control and Hg-exposed cells only in granulocytes exposed to Hg for 30 days, where condensed chromatin and partially lysed cytoplasmic regions were detected. Flow and laser scanning cytometry studies allowed us to differentiate three hemocyte populations, agranulocytes (R1) and granulocytes (R2 and R3). The exposure time to Hg increased the average red fluorescence (ARF) of agranulocytes and small granulocytes, while there was no change in large granulocytes, which showed a loss of membrane integrity. In control oysters, the three hemocyte populations showed an increase of ARF after 19 days of exposure although initial values were restored after 30 days. The average green fluorescence (AGF) was more stable than the ARF throughout the experiment. In Hg-exposed oysters, the values of AGF of agranulocytes showed an increase at half Hg-exposure period while the AGF values of large granulocytes decreased throughout the experiment, confirming the instability of these types of cells. The relative percentage of small granulocytes and granulocytes showed time variations in both control and exposed oysters. However, the values of small granulocytes remained constant during the whole experiment. The fact that there were only changes in agranulocytes and large granulocytes suggested a possible relationship between these two types of cells. In a quantitative study, we found a significant linear relationship between the agranulocytes and large granulocytes.  相似文献   

20.
Primary cultures of hemocytes from the Caribbean spiny lobster Panulirus argus were developed for studies on the in vitro propagation of Panulirus argus Virus 1 (PaV1). A modified Leibovitz L-15 medium supported the best survival of hemocytes in in vitro primary cultures. However, degradation of the cultures occurred rapidly in the presence of granulocytes. A Percoll step gradient was used to separate hemocytes into three subpopulations enriched in hyalinocytes, semigranulocytes, and granulocytes, respectively. When cultured separately, hyalinocytes and semigranulocytes maintained higher viability ( approximately 80%) after 18 days incubation compared with granulocytes, which degraded over 2-3 days. Susceptibility of the cell types was investigated in challenge studies with PaV1. Hyalinocytes and semigranulocytes were susceptible to PaV1. Cytopathic effects (CPE) were observed as early as 12h post-inoculation, and as the infection progressed, CPE became more apparent, with cell debris and cellular exudates present in inoculated cultures. Cell lysis was noticeable within 24h of infection. The presence of virus within cells was further confirmed by in situ hybridization using a specific DNA probe. The probe gave a unique staining pattern to cells infected with PaV1 24-h post-inoculation. Cells in the control treatment were intact and negative to hybridization. This assay was further applied to the quantification of infectious virus in hemolymph using a 50% tissue culture infectious dose assay (TCID(50)) based on CPE. These tools will now allow the quantification of PaV1 using established culture-based methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号