首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
As known from literature lateral buds from pea ( Pisum sativum ) plants are released from apical dominance when repeatedly treated with exogenous cytokinins. Little is known, however, about the endogenous role of cytokinins in this process and whether they interact with basipolar transported IAA, generally regarded as the main signal controlling apical dominance. This paper presents evidence that such an interaction exists.
The excision of the apex of pea plants resulted in the release of inhibited lateral buds from apical dominance (AD). This could be entirely prevented by applying 1-naphthylacetic acid (NAA) to the cut end of the shoot. Removal of the apex also resulted in a rapid and rather large increase in the endogenous concentrations of zeatin riboside (ZR), isopentenyladenosine (iAdo) and an as yet unidentified polar zeatin derivative in the node and internode below the point of decapitation. This accumulation of ZR and iAdo, was strongly reduced by the application of NAA. The observed increase in cytokinin concentration preceded the elongation of the lateral buds, suggesting that endogenous cytokinins play a significant role in the release of lateral buds from AD. However, the effect of NAA on the concentration of cytokinins clearly demonstrated the dominant role of the polar basipetally transported auxin in AD. The results suggest a mutual interaction between the basipolar IAA transport system and cytokinins obviously produced in the roots and transported via the xylem into the stem of the pea plants.  相似文献   

2.
The character of branching for two chrysanthemum (Chrysanthemum × morifolium) cvs. Jinghai and Jingyun was observed, and the changes of endogenous hormones in apical and lateral buds were investigated to determine the relationship between the pattern of hormone distribution, apical dominance, and lateral bud outgrowth. The growth rate of Jinghai lateral buds was higher than that of Jingyun. In vegetative growth stage, IAA level in apical buds of Jingyun was significantly higher than in Jinghai. After flower induction, IAA level in apical buds of two cultivars decreased remarkably, but the IAA level decreased in Jingyun faster than in Jinghai. These results showed that the higher was the IAA level in apical buds the stronger was inhibition of lateral bud outgrowth. An increase in IAA and iP/iPA and a decrease in ABA concentrations were closely associated with lateral bud growth alterations in chrysanthemum.  相似文献   

3.
菊苣薄层培养花芽,营养芽分化中内源激素的动态变化   总被引:4,自引:0,他引:4  
菊苣(Cichorium intybusL.)花梗薄层细胞培养于MS附加NAA 和BA 或IAA 和BA 的MS培养基上有花芽或营养芽分化. 花芽分化中内源IAA、DHZ+ DHZR、iPA 含量明显增加,而Z+ ZR变化不明显.营养芽分化中内源细胞分裂素含量增加明显,而IAA 在培养前7 d 含量下降,随后有所增加,在原基形成时含量达原初水平的2/3. 可见,花芽分化比营养芽分化所需内源IAA/CTK 比值要高  相似文献   

4.
Organogenesis in thin cell layers of Nicotiana tabacum L. was studied in relation to the effects of natural and synthetic auxins in combination with various cytokinins. All cytokinins tested, benzyladenine (BA), kinetin, zeatin (Z), zeatin riboside (ZR), N62-isopentenyl) adenine (IPA), dihydrozeatin [(diH)Z] and dihydrozeatin riboside [(diH)ZR], seem to be active in flower bud formation. In addition to the initiation of flower buds, vegetative buds or roots were also formed on the explants in the presence of BA, Z or IPA as exogenous cytokinins. Only dihydrozeatin and its riboside stimulated the initation of flower buds alone (as is known for kinetin), especially if supplemented with indole-3-acetic acid (IAA) as exogenous auxin. A high number of explants with flower buds was also found with high cytokinin/2,4-D ratios. In these conditions the presence of (diH)Z yielded the higest number of flower buds per explant.  相似文献   

5.
It has previously been shown that boron (B) deficiency inhibits growth of the plant apex, which consequently results in a relatively weak apical dominance, and a subsequent sprouting of lateral buds. Auxin and cytokinins (CKs) are the two most important phytohormones involved in the regulation of apical dominance. In this study, the possible involvement of these two hormones in B-deficiency-induced changes in apical dominance was investigated by applying B or the synthetic CK CPPU to the shoot apex of pea plants grown in nutrient solution without B supply. Export of IAA out of the shoot apex, as well as the level of IAA, Z/ZR and isopentenyl-adenine/isopentenyl-adenosine (i-Ade/i-Ado) in the shoot apex were assayed. In addition, polar IAA transport capacity was measured in two internodes of different ages using 3H-IAA. In B-deficient plants, both the level of auxin and CKs were reduced, and the export of auxin from the shoot apex was considerably decreased relative to plants well supplied with B. Application of B to the shoot apex restored the endogenous Z/ZR and IAA level to control levels and increased the export of IAA from the shoot apex, as well as the 3H-IAA transport capacity in the newly developed internodes. Further, B application to the shoot apex inhibited lateral bud growth and stimulated lateral root formation, presumably by stimulated polar IAA transport. Applying CPPU to the shoot apex, a treatment that stimulates IAA export under adequate B supply, considerably reduced the endogenous Z/ZR concentration in the shoot apex, but had no stimulatory effect on IAA concentration and transport in B-deficient plants. A similar situation appeared to exist in lateral buds of B-deficient plants as, in contrast to plants well supplied with B, application of CKs to these plants did not stimulate lateral bud growth. In contrast to the changes of Z/ZR levels in the shoot apex, which occurred after application of B or CPPU, the levels of i-Ade/i-Ado stayed more or less constant. These results suggest that there is a complex interaction between B supply and plant hormones, with a B-deficiency-induced inhibition of IAA export from the shoot apex as one of the earliest measurable events.  相似文献   

6.
The sectioned thin cell layers (TCL) of flower stalk of Cichorium intybus L. were cultured in MS medium supplemented with NAA and BA or IAA and BA where floral and vegetative buds were developed from the explant. Endogenous IAA, DHZ+DHZR, iPA increased significantly during the floral bud formation, while Z+ZR remained changed. The levels of cytokinins, DHZ +DHZR, iPA, and Z-f-ZR all increased significantly during the vegetative bud formation, however IAA level was reduced during the first 7 days of culture and increased to two-thirds of initial values on the day when the bud primordia were formed. The results suggested that the initiation of floral buds was associated with a high IAA/CTK ratio, whereas the induction of vegetative bud differentiation was related to a low IAA/CTK ratio.  相似文献   

7.
Axillary buds from the second primary scale excised from 21-day-old pea(Pisum sativum L. cv. Vladan) plants were used as a modelsystem for studying the release of buds from apical dominance. The isolatedbudswere transferred onto basal medium with or without a supplement of growthregulators and cultivated up to 24 h in short-term and up to 4weeks in long-term experiments. In both sets of experiments endogenous IAA,cytokinins and the uptake of labelled zeatin were analysed. The development ofbuds was monitored by image analysis, estimation of their weight, and byanatomical studies. Generative meristems were found in isolated axillary budsalready in 21-day-old plants at the beginning of the experimental period. Theonset of bud growth was recorded as soon as 2 h after the budexcision by image analysis. The bud growth was accompanied by a rapid transientincrease of the endogenous IAA level within the first 2 h,followedby an increase of iPA within 24 h. The uptake of the exogenouscytokinin ([3H]Z) reached its peak between the 6 and 8hafter the release from apical dominance. The cytokinin analyses of bothshort-term and long-term bud cultures revealed the increase of free cytokininsand their glucosides, indicating de novo synthesis ofcytokinins in the buds themselves.  相似文献   

8.
棉花花芽分化时期茎尖内源激素的变化   总被引:20,自引:2,他引:18  
实验结果表明,从子叶展平后到肉眼可花芽(现蕾),所测几种激素(ABA、IAA、GA3、iPA、ZR)的含量均表现出明显的动态变化,而且在花芽分化临界期表现出最显著的变化(出现高峰或出现低峰)。推测所测几种激素均与花芽分化有密切关系。其中ABA、GA3和CTK(iPA、ZR)在花芽分化临界期时,其含量变化均呈现出一个高峰;而IAA则在花芽分化临界期时出现一个低峰。经比较分析得知,随着花芽分化的进行,ABA/IAA、GA3/IAA、CTK/IAA均表现一个较明显的变化规律。即从子叶展平时起,其比值开始上升,到花芽开始分化时达到一个峰值,之后逐渐下降,并维持在一个较稳定的水平。显然,ABA/IAA、GA3/IAA、CTK/IAA在棉花的花芽分化过程中起着重要的调控作用。由此推测,增加植物体内的ABA、GA3、CTK的含量或降低IAA的含量,都可以促进棉花的花芽分化;反之则抑制棉花的花芽分化。  相似文献   

9.
香荚兰花芽分化至萌发期内源激素的变化   总被引:8,自引:0,他引:8  
以香荚兰 (Vanillafragrans)为材料 ,研究不同栽培条件下花芽分化和萌发期内源激素变化 ,分析和探讨内源激素在花芽分化和萌发中的作用 ,香荚兰花芽分化时期茎里的激素含量降低 ,芽里激素含量升高 ,其中相对高的ZR和ZR ABA有利于分化 ,IAA和IAA ABA的一定增加也利于分化 ,过高或没有IAA的增加则不利于花芽分化。大多数花芽形成于倒垂茎蔓上 ,花芽分化期 (11~ 12月 ) ,倒垂茎蔓的茎里生长类激素含量降低大于竖立茎蔓 ,芽的激素含量增高则多于竖立茎蔓 ,倒垂茎蔓的这种变化可能是有利于花芽分化。香荚兰生长中顶端优势明显 ,去顶后侧芽里ZR、GA、IAA增高 ,这与 11~ 12月去顶促进倒垂茎蔓开花可能有关。  相似文献   

10.
The accumulation and metabolism of exogenously applied and endogenously produced auxins and cytokinins were studied in relation to organogenesis in thin cell layers of Nicotiana tabacum L. It was shown that, in order to obtain maximal flower bud formation, both exogenous auxin and cytokinin needed to be present during the first 4 days of culture (to the formation of a subepidermal meristematic zone) whereas cytokinins needed to be present for at least 4 days more (until formation of organogenic centres). Explants taken from floral branches have higher endogenous indole-3-acetic acid (IAA) levels compared with explants from the basal part of the stem which form only vegetative buds. This might be related to a different IAA metabolism in these two types of explants as was shown by the different accumulation of exogenously applied IAA. Both 'floral' and 'vegetative' cells layers contained comparable amounts of zeatin riboside (ZR) as their major cytokinin. Free bases, zeatin (Z) and dihydrozeatin [(diH)Z], given exogenously, were largely metabolised to their respective ribosides. The observation that Z was less effective than (diH)Z in the induction of flower buds could be related to (diH)ZR apparently not being a substrate for cytokinin oxidase.  相似文献   

11.
Reducing rooting volume restricted root growth during theproduction of Petunia x hybrida'Orchid and resulted in an unfavorable increase in apicaldominance. Exposing young petunia seedlings to ethylene counteracted theeffects of root restriction. Rooting volumes of 9, 28, 58, or 160mL restricted the development of lateral shoots, therebyincreasing apical dominance compared to plants grown in 162 mLrooting volumes. Ethephon, an ethylene-producing compound, increased thedevelopment of lateral shoots of seedlings grown in rooting volumes rangingfrom 28 mL to 160 mL. At a rooting volume of 9mL, ethylene exposure was not capable of reducing the growth ofthe main shoot; apical dominance remained strong in both the control andethephon-treated plants. Because lateral shoot development was not restrictedby rooting volumes greater than 160 mL, exposing these plants toethylene did not result in supplementary lateral shoot development. Levels ofindole-3-acetic acid (IAA), isopentenyladenosine (iPA), and zeatin riboside(ZR) decreased on a whole shoot basis as rooting volume decreased from 162 to58 mL. Indoleacetic acid levels in ethephon-exposed plantsdecreased 20% compared to the control. The cytokinins iPA and ZR showedno response to ethylene exposure; however, the ratio of auxin/cytokinindecreased 24% compared to the control. The decrease in theauxin/cytokinin ratio was associated with an increase in the number and lengthof lateral shoots.  相似文献   

12.
Endogenous indole-3-acetic acid (IAA), abscisic acid (ABA) and cytokinins [zeatin (Z) zeatin riboside, dihydrozeatin, dihydrozeatin riboside, N6-isopentenyl adenine (iP) and N6-isopentenyladenine riboside] were evaluated in hazelnut (Corylus avellana L.) cotyledons of different developmental stage and genetic source for their somatic embryogenic capacity. There was an inverse correlation between the embryogenic potential of cotyledons and the degree of maturity of zygotic embryos, the first characteristic being associated with iP-type cytokinins and the second with Z-type cytokinins. Although the differences in total cytokinin, ABA and IAA contents between the cotyledons were small, the IAA/ABA and, mainly, the iP-type/Z-type cytokinin ratios were found to be two good indexes of the embryogenic competence of explants, suggesting that the endogenous hormonal balance is a very important factor defining the in vitro potential of hazelnut cotyledons. Received: 6 January 1997 / Revision received: 3 March 1997 / Accepted 1 April 1997  相似文献   

13.
The effects of the antioxidant Ambiol and 2-chlorethylphosphonic acid (2-CEPA) on individual concentrations and concentration ratios of phytohormones, photosynthesis and photophosphorylation rates, sucrose and starch content in tubers, and plant productivity were studied in potato (Solanum tuberosum L). Ambiol increased the ratio of indoleacetic acid (IAA) to abscisic acid (ABA), IAA/ABA, and that of zeatin (Z) and zeatin riboside (ZR) to ABA, (Z + ZR)/ABA. These effects were underlain by an increase in the content of auxins and cytokinins and a decrease in ABA. Unlike Ambiol, 2-CEPA increased the level of ABA, the effect being the most pronounced in the tubers. Ambiol increased the rates of photosynthesis and noncyclic photophosphorylation in chloroplasts isolated from potato leaves. The relation of this phenomenon to auxin and cytokinin accumulation, Ambiol- and 2-CEPA-induced changes in the hormonal balance of potato tubers, carbon metabolism, and plant productivity is discussed.  相似文献   

14.
Evidence that cytokinin controls bud size and branch form in Norway spruce   总被引:3,自引:0,他引:3  
Shoot elongation in many coniferous species is predetermined during bud formation the year before the shoot extends. This implies that formation of the primordial shoot within the bud is the primary event in annual shoot growth. Hormonal factors regulating bud formation are consequently of utmost importance. We followed the levels of the endogenous cytokinins zeatin riboside (ZR) and isopentenyladenosine (iPA) in terminal buds, whorl buds and lower lateral buds of the uppermost current-year whorl shoots of 15- to 20-year-old trees of Norway spruce [ Picea abies (L.) Karst.] from June to September. Cytokinins were isolated with affinity chromatography columns, purified by high performance liquid chromatography, and quantified by ELISA. The level of ZR was low in June but increased gradually in all buds until September. Throughout the measurement period, the ZR level was highest in terminal buds and lowest in the scattered lateral, buds, with the whorl buds intermediate. The level of iPA peaked in July and decreased later without any consistent differences among the three classes of buds. The development of different kinds of buds was followed by scanning electron microscopy. We found that bud growth was greatest during August and September. The final size of primordial shoots within the buds varied considerably and the weight of the terminal bud was three times that of the whorl buds and more than five times that of the other lateral buds.
We conclude that the increase in ZR level during the period of active bud development is indicative of the importance of cytokinin for this process. Furthermore, the positive correlation between the level of ZR and bud growth during the period of predetermination of next year's branch growth suggests that this hormone indirectly controls the form of single branches in the spruce tree.  相似文献   

15.
Shoot elongation in many coniferous species is predetermined during bud formation the year before the shoot extends. This implies that formation of the primordial shoot within the bud is the primary event in annual shoot growth. Hormonal factors regulating bud formation are consequently of utmost importance. We followed the levels of the endogenous cytokinins zeatin riboside (ZR) and isopentenyladenosine (iPA) in terminal buds, whorl buds and lower lateral buds of the uppermost current-year whorl shoots of 15- to 20-year-old trees of Norway spruce [ Picea abies (L.) Karst.] from June to September. Cytokinins were isolated with affinity chromatography columns, purified by high performance liquid chromatography, and quantified by ELISA. The level of ZR was low in June but increased gradually in all buds until September. Throughout the measurement period, the ZR level was highest in terminal buds and lowest in the scattered lateral, buds, with the whorl buds intermediate. The level of iPA peaked in July and decreased later without any consistent differences among the three classes of buds. The development of different kinds of buds was followed by scanning electron microscopy. We found that bud growth was greatest during August and September. The final size of primordial shoots within the buds varied considerably and the weight of the terminal bud was three times that of the whorl buds and more than five times that of the other lateral buds.
We conclude that the increase in ZR level during the period of active bud development is indicative of the importance of cytokinin for this process. Furthermore, the positive correlation between the level of ZR and bud growth during the period of predetermination of next year's branch growth suggests that this hormone indirectly controls the form of single branches in the spruce tree.  相似文献   

16.
Involvement of cytokinins (CKs) in axillary bud growth of miniature rose was studied. Variation in root formation and axillary bud growth was induced by two indole 3-butyric acid (IBA) pretreatments in two cutting sizes. At six physiological developmental stages around the onset of axillary bud growth, concentrations of CKs were determined in both root and axillary bud tissue by liquid chromatography combined with electrospray tandem mass spectrometry (LC-ESP-MS/MS). Chronological early onset of axillary bud growth occurred in long cuttings pretreated at low IBA concentration, whereas physiological early root formation was associated with long cuttings and high IBA concentration. The CKs zeatin (Z), isopentenyl adenine (iP), zeatin riboside (ZR), dihydrozeatin riboside (DHZR), isopentenyl adenosine (iPA), zeatin O-glucoside (ZOG), zeatin riboside O-glucoside (ZROG), zeatin riboside 5-monophosphate (ZRMP), and isopentenyl adenosine 5-monophosphate (iPAMP) were detected. Concentrations of CKs in axillary bud tissue far exceeded those in root tissue. Indole 3-butyric acid pretreatment influenced the concentration of CKs in axillary bud tissue more than did cutting size, whereas pretreatments only slightly affected CKs in root tissue. The dominant CKs found were iPAMP and ZR. An early and large increase in iPAMP indicated rapid CK biosynthesis in rootless cuttings, suggesting that green parts, including the axillary bud, can synthesize CKs. At the onset of axillary bud growth an increase in concentration of Z, ZR, ZRMP, ZOG, and ZROG was largely coincident with a decrease in iPAMP, iPA, iP, and DHZR. After the onset of axillary bud growth, CK content largely decreased. These results strongly indicate a positive role for CKs in axillary bud growth, and presumably ZRMP, ZR, and Z are active in miniature rose.  相似文献   

17.
In lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm), cone initiation and gender differentiation are site-specific in long-shoot buds, with female cones in the distal portion and male cones in the proximal portion. By using high-performance liquid chromatography–electrospray ionization tandem mass spectrometry (HPLC–ESI–MS/MS) in multiple-reaction monitoring (MRM) mode, cytokinins, indole-3-acetic acid (IAA), abscisic acid (ABA), and their selected metabolites were investigated in developing long-shoot buds from multiple genotypes. Spatially, higher concentrations of trans-zeatin riboside (t-ZR) and dihydrozeatin riboside (dhZR) existed in the distal parts of long-shoot buds, whereas concentrations of isopentenyl adenosine (iPA), IAA, ABA glucose ester (ABA-GE), and phaseic acid (PA) were higher in the proximal parts in all investigated genotypes. In long-shoot buds of genotypes with a history of high female cone yield, concentrations of t-ZR and the ratio of zeatin-type to isopentenyl-type cytokinins were higher in the entire buds, whereas dhZR or IAA was higher in either the distal or the proximal part, respectively. In low female cone yielding genotypes, concentrations of c-ZR, iPA, ABA-GE, and PA were higher in both of the parts. Temporally, concentrations of several hormone-related compounds showed obvious changes in late June and late July, prior to male and female cone bud differentiation. This study reveals that the local hormonal status in a long-shoot bud at specific developmental stages may play an important role in gender determination and cone yield.  相似文献   

18.
The effects of the antioxidant Ambiol and 2-chlorethylphosphonic acid (2-CEPA) on individual concentrations and concentration ratios of phytohormones, photosynthesis and photophosphorylation rates, sucrose and starch content in tubers, and plant productivity were studied in potato (Solanum tuberosum L). Ambiol increased the ratio of indoleacetic acid (IAA) to abscisic acid (ABA), IAA/ABA, and that of zeatin (Z) and zeatin riboside (ZR) to ABA, (Z + ZR)/ABA. These effects were underlain by an increase in the content of auxins and cytokinins and a decrease in ABA. Unlike Ambiol, 2-CEPA increased the level of ABA, the effect being the most pronounced in the tubers. Ambiol increased the rates of photosynthesis and noncyclic photophosphorylation in chloroplasts isolated from potato leaves. The relation of this phenomenon to auxin and cytokinin accumulation, as well as Ambiol- and 2-CEPA-induced changes in the hormonal balance of potato tubers, carbon metabolism, and plant productivity, is discussed.  相似文献   

19.
Indole acetic acid (IAA). abscisic acid (ABA), and zeatin plus zeatin riboside (Z + ZR) were determined daily in cuttings of Lycopersicon esculentum Mill. cv. Craigella (C) and the Craigella Lateral Suppressor (CLS) mutant during the first 5 days of the root-forming process. A solid-phase enzyme immunoassay using specific anti-hormone antibodies was used following a one-step HPLC purification procedure. The hormone measurements were made in cuttings divided into 4 parts. The main variations occurred in the terminal bud and in the basal part of the hypocotyl of the two tomato varieties, i.e. significant IAA and ABA increases during the first 2 days followed by a more or less fast return to the initial values at day 4 or 5. This is probably due to the ablation of the root system. Z + ZR levels dramatically decreased in the basal part of the Craigella hypocotyl 1 day after cutting. Contrary to CLS, C hypocotyls recovered the initial high levels when roots regenerated (day 5). This is probably linked to the greater ability of roots to produce cytokinins in C plants than in CLS ones. The first step of root formation (reactivation of the pericyclic cells and formation of root primordia) corresponded to a high IAA/Z + ZR ratio in the root-forming tissue, whereas the second step (elongation of young roots) was characterized by a low ratio with low levels of hormones.  相似文献   

20.
Although the co-ordination of promotive root-sourced cytokinin (CK) and inhibitory shoot apex-sourced auxin (IAA) is central to all current models on lateral bud dormancy release, control by those hormones alone has appeared inadequate in many studies. Thus it was hypothesized that the IAA : CK model is the central control but that it must be considered within the relevant timeframe leading to lateral bud release and against a backdrop of interactions with other hormone groups. Therefore, IAA and a wide survey of cytokinins (CKs), were examined along with abscisic acid (ABA) and polyamines (PAs) in released buds, tissue surrounding buds and xylem sap at 1 and 4 h after apex removal, when lateral buds of chickpea are known to break dormancy. Three potential lateral bud growth inhibitors, IAA, ABA and cis -zeatin 9-riboside (ZR), declined sharply in the released buds and xylem following decapitation. This is in contrast to potential dormancy breaking CKs like trans -ZR and trans -zeantin 9-riboside 5'phosphate (ZRMP), which represented the strongest correlative changes by increasing 3.5-fold in xylem sap and 22-fold in buds. PAs had not changed significantly in buds or other tissues after 4 h, so they were not directly involved in the breaking of bud dormancy. Results from the xylem and surrounding tissues indicated that bud CK increases resulted from a combination synthesis in the bud and selective loading of CK nucleotides into the xylem from the root.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号