首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The elution profiles of 17 aminoacyl-tRNA synthetases from chromatography of 149 000 x g supernatant on Sephadex G-200 were determined as well as the influence of different methods of homogenization and of chromatography on DEAE-cellulose on the elution profiles. With gentle homogenization all synthetases were eluted in the void volume in four different peaks, containing (a) leucyl- and phenylalanyl-, (b) lysyl-, prolyl-, isoleucyl-, methionyl-, glycl-, and valyl-, (c) arginyl-, alanyl-, and asparaginyl- and (d) aspartyl-, histidyl-, seryl-, threonyl-, glutaminyl-, and tyrosyl- tRNA synthetases. With less gentle homogenization, peaks of lower molecular weight appeared. More than two peaks for each aminoacyl-tRNA synthetases were never found. Of the aminoacyl-tRNA synthetases examined, alanyl-,arginyl-, aspartyl-, leucyl- and lysyl-tRNA synthetases were not inactivated by chromatography on DEAE-cellulose, whereas phenylalanyl- and seryl-tRNA synthetases lost 60% of their activity.  相似文献   

2.
Fifteen aminoacyl-transfer ribonucleic acids (tRNA's) from vegetative cells (trophozoites) and mature cysts of Acanthamoeba castellanii were compared by reversed-phase 5 chromatography. Little or no differences were detected in reversed-phase 5 chromatography elution profiles of alanyl-, arginyl-, isoleucyl-, phenylalanyl-, prolyl-, seryl-, threonyl-, tryptophanyl- and valyl-tRNA's. Significant differences in the relative proportions of isoaccepting species of leucyl-, lysyl-, methionyl-, aspartyl-, histidyl-, and tyrosyl-tRNA's were observed. Based upon the criterion of cyanogen bromide reactivity with the modified nucleoside queuosine, the content of queuosine in aspartyl-tRNA of A, castellanii is significantly greater in mature cysts than in trophozoites. The similarity of change in reversed-phase 5 chromatography elution profiles of aspartyl-, histidyl-, and tyrosyl-tRNA suggests that a common mechanism is responsible for alterations in the chromatographic patterns.  相似文献   

3.
4.
Transfer ribonucleic acid (tRNA) from exponentially growing cells (trophozoites) and from precysts of Acanthamoeba castellanii were examined by reversed-phase column (RPC-2) chromatography. This system gave excellent resolution of isoaccepting species of tRNA. The tRNAs for 12 amino acids were studied. A comparison of trophozoite and precyst tRNA elution profiles revealed no apparent differences in the number of isoaccepting species of alanyl-, arginyl-, asparaginyl-, glycyl-, leucyl-, lysyl-, methionyl-, phenylalanyl-, tryptophanyl-, or valyl-tRNAs. Seryl-tRNAs from trophozoites were eluted as three components, whereas precyst seryl-tRNAs were eluted as only two components. Precharged trophozoite and precyst isoleucyl-tRNAs were both eluted as single components; however, post-chromatography charging of trophozoite tRNA resulted in three components of activity for tRNA(Ile) and only one component for precyst tRNA(Ile). None of the observed changes could be attributed to differences in synthetases or to the presence of altered tRNA lacking the CCA terminus or partially degraded by nucleases. The possible significance of these observations is discussed.  相似文献   

5.
Aminoacyl-tRNA synthetases (ARSs) ligate amino acids to their cognate tRNAs. It has been suggested that mammalian ARSs are linked to the EF-1 complex for efficient channeling of aminoacyl tRNAs to ribosome. Here we systemically investigated possible interactions between human ARSs and the subunits of EF-1 (alpha, beta, gamma, and delta) using a yeast two-hybrid assay. Among the 80 tested pairs, leucyl- and histidyl-tRNA synthetases were found to make strong and specific interaction with the EF-1gamma and beta while glu-proly-, glutaminyl-, alanyl-, aspartyl-, lysyl-, phenylalanyl-, glycyl-, and tryptophanyl-tRNA synthetases showed moderate interactions with the different EF-1 subunits. The interactions of leucyl- and histidyl-tRNA synthetase with the EF-1 complex were confirmed by immunoprecipitation and in vitro pull-down experiments. Interestingly, the aminoacylation activities of these two enzymes, but not other ARSs, were stimulated by the cofactor of EF-1, GTP. These data suggest that a systematic interaction network may exist between mammalian ARSs and EF-1 subunits probably to enhance the efficiency of in vivo protein synthesis.  相似文献   

6.
A high molecular mass aminoacyl-tRNA synthetase complex has been isolated from a murine erythroleukemia cell line. This multienzyme complex contains activities for the arginyl-, aspartyl-, glutamyl-, glutaminyl-, isoleucyl,- leucyl-, lysyl-, methionyl-, and prolyl-tRNA synthetases. This enzyme composition, the polypeptide pattern observed upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the relative stoichiometry of the component polypeptides are characteristic of high molecular mass complexes of aminoacyl-tRNA synthetases isolated from a variety of mammalian tissues and cell types. Negatively stained preparations of native complex and of glutaraldehyde-treated material have been examined by electron microscopy. In both cases, a distinctive particle is observed which appears in several orientations. The most common views are of two different projections of a squarish particle that measures approximately 27 x 27 nm. Other commonly observed views are of a "U" shape, a rectangle, and a triangle. All of these views are seen in both gradient-purified samples and those prepared directly from material as isolated. These data are consistent with a model for the multienzyme aminoacyl-tRNA synthetase complex as a "cup" or elongated U structure. These studies demonstrate that the high molecular mass complex of eukaryotic aminoacyl-tRNA synthetases does have a coherent structure that can be visualized by electron microscopy.  相似文献   

7.
To study the role of 5-methylcytidine in the aminoacylation of mammalian tRNA, bulk tRNA specifically deficient in 5-methylcytidine was isolated from the livers of mice treated with 5-azacytidine (18 mg/kg) for 4 days. For comparison, more extensively altered tRNA was isolated from the livers of mice treated with DL-ethionine (100 mg/kg) plus adenine (48 mg/kg) for 3 days. The amino acid acceptor capacity of these tRNAs was determined by measuring the incorporation of one of eight different 14C-labeled amino acids or a mixture of 14C-labeled amino acids in homologous assays using a crude synthetase preparation isolated from untreated mice. The 5-methylcytidine-deficient tRNA incorporated each amino acid to the same extent as fully methylated tRNA. The tRNA from DL-ethionine-treated livers showed an overall decreased amino-acylation capacity for all amino acids tested. The 5-methylcytidine-deficient tRNA from DL-ethionine-treated mice were further characterized as substrates in homologous rate assays designed to determine the Km and V of the aminoacylation reaction using four individual 14C-labeled amino acids and a mixture of 14C-labeled amino acids. The Km and V of the reactions for all amino acids tested using 5-methylcytidine-deficient tRNA as substrate were essentially the same as for fully methylated tRNA. However, the Km and V were increased when liver tRNA from mice treated with DL-ethionine plus adenine was used as substrate in the rate reaction with [14C]lysine as label. Our results suggest that although extensively altered tRNA is a poorer substrate than control tRNA in both extent and rate of aminoacylation, 5-methylcytidine in mammalian tRNA is not involved in the recognition of the tRNA by the synthetase as measured by aminoacylation activity.  相似文献   

8.
Abstract— The level of tRNA in mouse brain tissue was measured at various stages of postnatal development. The amount of tRNA per unit of brain wet weight was little, if at all, altered during the first 22 days after birth and decreased by 26 and 32 per cent by 56 days and maturity, respectively. On a DNA or cellular basis, there was no maturation-dependent decrease in tRNA content. The total amino acid acceptor activity of tRNA for seven different amino acids was measured during neural development. There were considerable differences in the tRNA acceptor activities of individual amino acids within an age group; however on a DNA basis, there was little difference between tRNA preparations obtained from newborn and adult mouse brain tissue. The in vivo levels of aminoacylated-tRNA for the seven amino acids of interest, were measured in brain tissue of 1–, 9–, 34, 70–day-old and adult (over 9 months old) mice. Alterations in tRNA level, total tRNA acceptor activity, for each amino acid, and the levels of in uivo aminoacylation of tRNA were shown to be independent of developmental alterations in brain amino acid pool sizes. The results are discussed with regard to the availability of cellular amino acids for translational events during early mammalian brain development.  相似文献   

9.
An intracellular alpha-aminoacyl-peptide hydrolase (EC 3.4.11.-) from Naegleria fowleri nN68 (ATCC 30894) has been characterized. The enzyme preparation hydrolyzed phenylalanyl-, tyrosyl-, leucyl-, arginyl-, alanyl-, tryptophanyl-, histidyl-, methionyl-, and lysyl-naphthylamide but not benzoylleucyl-, leucylglycyl-, glycylprolylleucyl-, glycyl-, threonyl-, aspartyl-, or glutamyl-naphthylamide. The aminopeptidase activity was inhibited by the cysteine-protease inhibitors--hydroxymercuribenzoate, chloromercurisulfate, and iodoacetate--by the aminopeptidase inhibitors--bestatin and trans-epoxysuccinyl-leucyl-agmatine--by an inhibitor of soluble alanyl aminopeptidase EC 3.4.11.14, puromycin, and by the metalloprotease inhibitor, o-phenanthroline. The exopeptidase activity was not inhibited by the chelator, ethylenediaminetetraacetate, or the serine-protease inhibitor, phenylmethylsulfonylfluoride. The pH optimum of the exopeptidase was between 7.0 and 8.0. Enzyme activity was stable at 55 degrees C for 30 min, but all activity was lost after 15 min at 80 degrees C. Enzyme activity was inhibited by 100 microM HgCl2 and CdCl2 but not by 1 mM CoCl2, CuCl2, MnCl2, NiCl2, FeCl3, or ZnCl2. Enzyme activity was inhibited by 0.1% sodium dodecyl sulfate but not by 0.2% Brij 35, Tween 20, Tween 80, or Triton X-100.  相似文献   

10.
The present study shows unilateral aminoacylation specificity between bovine mitochondria and eubacteria (Escherichia coli and Thermus thermophilus) in five amino acid-specific aminoacylation systems. Mitochondrial synthetases were capable of charging eubacterial tRNA as well as mitochondrial tRNA, whereas eubacterial synthetases did not efficiently charge mitochondrial tRNA. Mitochondrial phenylalanyl-, threonyl-, arginyl-, and lysyl-tRNA synthetases were shown to charge and discriminate cognate E. coli tRNA species from noncognate ones strictly, as did the corresponding E. coli synthetases. By contrast, mitochondrial seryl-tRNA synthetase not only charged cognate E. coli serine tRNA species but also extensively misacylated noncognate E. coli tRNA species. These results suggest a certain conservation of tRNA recognition mechanisms between the mitochondrial and E. coli aminoacyl-tRNA synthetases in that anticodon sequences are most likely to be recognized by the former four synthetases, but not sufficiently by the seryl-tRNA synthetase. The unilaterality in aminoacylation may imply that tRNA recognition mechanisms of the mitochondrial synthetases have evolved to be, to some extent, simpler than their eubacterial counterparts in response to simplifications in the species-number and the structural elements of animal mitochondrial tRNAs.  相似文献   

11.
Distribution of the aminoacyl-tRNA synthetase activity has been studied in the normal rabbit liver cells and in the model of protein synthesis damage, i.e. under experimental myocardial infarction (EMI). The activity of a number of aminoacyl-tRNA synthetases in postmitochondrial and postribosomal extracts from rabbit liver homogenate has been determined to increase 12 h after EMI. Gel filtration of the postribosomal extract on Sepharose 6B shows that the activity of aminoacyl-tRNA synthetases is distributed among the fractions with Mr 1.82 x 10(6), 0.84 x 10(6) and 0.12 = 0.35 x 10(6). The first two fractions (high-molecular-weight aminoacyl-tRNA synthetase complexes) contain arginyl-, glutamyl-, isoleucyl-, leucyl-, lysyl- and valyl-tRNA synthetases, whereas the low-molecular-weight fraction contains alanyl-, arginyl-, glycyl-, phenylalanyl-, seryl-, threonyl-, tryptophanyl- and tyrosyl-tRNA synthetases. In a case of EMI all the aminoacyl-tRNA synthetases translocate from the complexes with Mr 1.82 x 10(6) into the complexes with Mr 0.84 x 10(6), what provided evidence for the possibility to regulate protein synthesis by changes in compartmentalization of aminoacyl-tRNA synthetases.  相似文献   

12.
Low-molecular-weight RNA from transforming viruses (Rous sarcoma virus-Rous-associated virus 1, Schmidt-Ruppin strain of Rous sarcoma virus, and sarcoma-B(77)), from nontransforming viruses (Rous-associated virus 1 and sarcoma-NTB(77)), and from chicken liver, chicken embryo fibroblast, and Rous sarcoma virus-Rous-associated virus 1-transformed chicken embryo fibroblast was isolated and purified. To determine if there are modified, qualitatively or quantitatively different isoaccepting species of tRNA in these avian sarcoma viruses as compared with the cell of virus origin, chicken embryo fibroblast or normal chicken liver, methionyl-, arginyl-, and lysyl-tRNA (with high amino acid acceptance activity), and aspartyl- and glutamyl-tRNA from viral-trans-formed cells (with low viral amino acid acceptance activity) were co-chromatographed on reversed phase-5 chromatography columns, and elution profiles were compared. Although in each case the elution profile between a particular viral and host cell tRNA differed quantitatively, there was no qualitative difference in the profiles of corresponding tRNAs from either transforming or nontransforming viruses examined. Minor quantitative differences in the elution profiles might be a reflection of the metabolic state of the cells, since all evidence points to acceptor activity being of host rather than viral origin. Since, with the exception of selective packaging of methionyl-tRNA (IV) species by both transforming and nontransforming viruses, no selectivity was found for isoacceptor species of other tRNAs, it seems that such preferential packaging of methionyl-tRNA (IV) species has no bearing on the event of viral transformation.  相似文献   

13.
Populations of transfer ribonucleic acid (tRNA) extracted from control and type 2 adenovirus (Ad2)-infected KB cells were compared. No consistent differences in acceptor activity for 11 amino acids were observed. Comparison of methylated albumin-kieselguhr (MAK) elution profiles of arginyl-tRNA from control and infected cells revealed a minor modification in that the proportion of arginyl-tRNA eluting at high salt concentration was somewhat greater in infected cells. No similar differences were observed in MAK elution profiles of aspartyl-, isoleucyl-, leucyl-, phenylalanyl-, seryl-, tyrosyl-, and valyl-tRNA. Hybridization of 4S RNA from infected cells labeled by incorporation of 3H-uridine with Ad2 deoxyribonucleic acid revealed the presence of a complementary species of RNA in this preparation. Hybridization of 3H-arginyl-tRNA and of 3H-aminoacyl-tRNA labeled by charging with 3H-arginine or a 3H-mixture of amino acids, respectively, failed to detect the presence of virus-specific tRNA in Ad2-infected cells.  相似文献   

14.
The aminoacyl-tRNA synthetase complex from rabbit liver possesses an endogenous protein kinase activity. The associated protein kinase in the complex was defined as casein kinase I. Using FPLC, a fraction of the supramolecular complex with a high level of metabolic activity was isolated; this preparation was found to be enriched in the casein kinase activity. Incubation of this fraction with [gamma-32P] ATP leads to the intensive incorporation of labeled phosphate into 12 polypeptides of the complex, i.e., glutamyl-, isoleucyl-, leucyl-, methionyl-, lysyl-, arginyl- and aspartyl-tRNA synthetases. An addition of free homologous casein kinase I does not change the spectrum or level of phosphorylation of the complex substrates. The homologous casein kinase II phosphorylates polypeptides with Mr of 65, 43 and 20 kDa in the complex.  相似文献   

15.
Reverse-phase column profiles of the isoaccepting species of lysyl-, seryl-, aspartyl-, methionyland alanyl-tRNAs present in two developmental stages of Oncopeltus fasciatus embryos, before (48-hour) and after (120-hour) gastrulation have been shown. Quantitative differences in the seryl-, aspartyl- and methionyl-tRNAs were evident. In addition, seryl-tRNAs possibly exhibit qualitative changes. Little variation was detected in the isoaccepting species of lysyl- and alanyl-tRNAs.  相似文献   

16.
Transfer RNAs in dry lupin seeds are aminoacylated to a low extent (Kedzierski, W. and Pawe?kiewicz, J. (1977) Phytochemistry 16, 503-504) and are partly degraded at the acceptor terminus (Dziegielewski, T. and Pawe?kiewicz, J. (1977) Bull. Acad. Polon. Sci. Ser. Biol. 7, 4oo-435). Increase in the levels of tRNA aminoacylation and disappearance of defective tRNA molecules during seed germination are not accompanied by significant changes in the levels of phenylalanyl-, arginyl-, valyl-tRNA synthetases and tRNA nucleotidyltransferase. Additionally, no inhibitor of aminoacylation of valine tRNA has been detected in dry seeds. However, dry seeds contain very low ATP amounts, which increase dramatically during germination. The above results suggest that a very low ATP level is a factor limiting the aminoacylation and reparation of tRNA molecules at early stages of seed germination.  相似文献   

17.
An intracellular alpha-aminoacyl-peptide hydrolase (EC 3.4.11.-) from Naegleria fowteri nN68 (ATCC 30894) has been characterized. The enzyme preparation hydrolyzed phenylalanyl-, tyrosyl-, leucyl-, arginyl-, alanyl-, tryptophanyl-, histidyl-, methionyl-, and lysyl-naphthylamide but not benzoylleucyl-, leucylglycyl-, glycylprolylleucyl-, glycyl-, threonyl-, aspartyl-, or glutamyl-naphthylamide. The aminopeptidase activity was inhibited by the cysteine-protease inhibitors—hydroxymercuribenzoate, chloromercurisulfate, and iodoacetate- by the aminopeptidase inhibitors-bestatin and trans-epoxysuccinyl-leucyl-agmatine- by an inhibitor of soluble alanyl aminopeptidase EC 3.4.11.14, puromycin, and by the metalloprotease inhibitor, o-phenanthroline. The exopeptidase activity was not inhibited by the chelator, ethylenediaminetetraacetate, or the serine-protease inhibitor, phenylmethylsulfonylfluoride. The pH optimum of the exopeptidase was between 7.0 and 8.0. Enzyme activity was stable at 55°C for 30 min, but all activity was lost after 15 min at 80°C. Enzyme activity was inhibited by 100 μM HgCI2 and CdCl2 but not by 1 mM CoCl2, CuCl2, MnCl2, NiCl2, FeCl2, or ZnCl2. Enzyme activity was inhibited by 0.1% sodium dodecyl sulfate but not by 0.2% Brij 35, Tween 20, Tween 80, or Triton X-100.  相似文献   

18.
Treatment of rats with ethionine was found to cause severe impairment in the aminoacylation capacity of tRNA. This effect was only observed when assayed in injected oocytes, while invitro assays of aminoacylation failed to detect differences between normal tRNA and tRNA from ethionine treated animals. The effect of ethionine on the tRNA population was not uniform and differed for various amino acid specific tRNAs. Thus liver tRNA from ethionine treated rats showed a decreased capacity for phenylalanine aminoacylation, while no change was found in the case of leucine. On the other hand, the level of histidine aminoacylation was higher for tRNA from ethionine treated animals. An even more complex response was observed with methionine aminoacylation where tRNA from ethionine treated animals showed an initially faster rate than control tRNA. With more prolonged incubation periods, the methionyl-tRNA from ethionine treated animals was deacylated at an accelerated rate while the level of normal methionyl-tRNA remained almost constant.In addition to the aminoacylation reaction, the participation of aminoacyl-tRNA in protein synthesis was severely impaired. In this case, both the injected oocyte system and the cell-free wheat germ assay revealed these differences which were manifested with various mRNA and viral RNA preparations.  相似文献   

19.
The seven class 2 aminoacyl-tRNA synthetases that are α2 dimers have previously been divided by sequence homology into class 2a (seryl-, threonyl-, prolyl- and histidyl-) and class 2b (aspartyl-, asparaginyl- and lysyl-). It has been more difficult to classify the glycyl-, phenylalanyl- and alanyl-tRNA synthetases which have different subunit stoichiometries and which did not apparently contain all three canonical class 2 motifs. New sequence and structural information relating to the three problematic synthetases will be discussed permitting a step forward to be taken in the understanding of the evolutionary relationships between the class 2 synthetases.  相似文献   

20.
Six fractions of soluble RNA were obtained from phenol extracts of porcine liver and were tested for their acceptance of 14 amino acids under aminoacylation conditions and for their effects on the aminoacylation of tRNA. Two of the fractions contained appreciable amounts of tRNA, and three of the fractions affected the aminoacylation of tRNA. Based on these observations a revised method of tRNA preparation was developed that includes essentially all the tRNA in one fraction but that excludes the RNA-peptidyl complexes. The revised method is rapid and convenient and provides better quality tRNA than three alternate methods to which it is compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号