首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.

Background and aims

Changes in the sex allocation (i.e. in pollen versus seed production) of hermaphroditic plants often occur in response to the environment. In some homosporous ferns, gametophytes choose their gender in response to chemical cues sent by neighbours, such that spores develop as male gametophytes if they perceive a female or hermaphrodite nearby. Here it is considered whether a similar process might occur in the androdioecious angiosperm species Mercurialis annua, in which males co-occur with hermaphrodites; previous work on a Spanish population of M. annua found that individuals were more likely to develop as males at high density.

Methods

Using a novel approach to treat plants with leachate from pots containing males or hermaphrodites of M. annua, the hypothesis that individuals assess their mating opportunities, and adjust their sex expression accordingly, was tested through an exchange of chemical cues through the soil.

Key Results

For the population under study, from Morocco, no evidence was found for soil-signal-dependent sex expression: neither sex ratios nor sex allocation differed among experimental treatments.

Conclusions

The results imply either that the Moroccan population under study behaves differently from that previously studied in Spain (pointing to potential geographical variation in plasticity for sex expression), or that our method failed to capture the signals used by M. annua for adjustment of sex expression.  相似文献   

2.
Hesse E  Pannell JR 《Annals of botany》2011,107(6):1039-1045

Background and Aims

Male-biased sex allocation commonly occurs in wind-pollinated hermaphroditic plants, and is often positively associated with size, notably in terms of height. Currently, it is not well established whether a corresponding pattern holds for dioecious plants: do males of wind-pollinated species exhibit greater reproductive allocation than females? Here, sexual dimorphism is investigated in terms of life history trade-offs in a dioecious population of the wind-pollinated ruderal herb Mercurialis annua.

Methods

The allocation strategies of males and females grown under different soil nutrient availability and competitive (i.e. no, male or female competitor) regimes were compared.

Key Results

Male reproductive allocation increased disproportionately with biomass, and was greater than that of females when grown in rich soils. Sexual morphs differentially adjusted their reproductive allocation in response to local environmental conditions. In particular, males reduced their reproductive allocation in poor soils, whereas females increased theirs, especially when competing with another female rather than growing alone. Finally, males displayed smaller above-ground vegetative sizes than females, but neither nutrient availability nor competition had a strong independent effect on relative size disparities between the sexes.

Conclusions

Selection appears to favour plasticity in reproductive allocation in dioecious M. annua, thereby maintaining a relatively constant size hierarchy between sexual morphs. In common with other dioecious species, there seems to be little divergence in the niches occupied by males and females of M. annua.  相似文献   

3.

Background and Aims

Evolutionary transitions between separate and combined sexes have frequently occurred across various plant lineages. In mosses, which are haploid-dominant, evolutionary transitions from separate to combined sexes are often associated with genome doubling. Polyploidy and hermaphroditism have strong effects on the inbreeding depression of a population, and are subsequently predicted to affect the mating system.

Methods

We tested the association between ploidy (haploid, diploid or triploid gametophytes) and mating system in 21 populations of Atrichum undulatum sensu lato, where sex ratios vary widely. For each population, we measured the sex ratio, estimated selfing rates using allozyme markers and determined the level of ploidy through flow cytometry.

Key Results

Hermaphrodites in A. undulatum were either diploid or triploid. However, many diploid populations were strictly separate-sexed, suggesting that hermaphroditism is not a necessary result of genome doubling. Levels of selfing were strongly supported as being greater than zero in one population with strictly separate-sexed individuals, and one-third of populations with hermaphrodites.

Conclusions

Although hermaphrodites are associated with triploidy, hermaphroditism is not a necessary outcome of genome duplication. Hermaphroditism, but not genome duplication alone, increased estimated selfing rates, probably due to the occurrence of selfing within a gametophyte. Thus, genome duplication can influence the mating system and the associated evolution and maintenance of reproductive traits.  相似文献   

4.
Li J  Koski MH  Ashman TL 《Annals of botany》2012,109(3):545-552

Background and Aims

Gynodioecy is a phylogenetically widespread and important sexual system where females coexist with hermaphrodites. Because dioecy can arise from gynodioecy, characterization of gynodioecy in close relatives of dioecious and sub-dioecious species can provide insight into this transition. Thus, we sought to determine whether Fragaria vesca ssp. bracteata, a close relative to F. chiloensis and F. virginiana, exhibits the functional and population genetic hallmarks of a gynodioecious species.

Methods

We compared reproductive allocation of females and hermaphrodites grown in the greenhouse and estimated genetic diversity (allelic diversity, heterozygosity) and inbreeding coefficients for field-collected adults of both sexes using simple sequence repeat (SSR) markers. We estimated mating system and early seed fitness from open-pollinated families of both sex morphs.

Key Results

Under greenhouse conditions, females and hermaphrodites allocated similarly to all reproductive traits except flower number, and, as a consequence, females produced 30 % fewer seeds per plant than hermaphrodites. Under natural conditions, hermaphrodites produce seeds by self-fertilization approx. 75 % of the time, and females produced outcrossed seeds with very little biparental inbreeding. Consistent with inbreeding depression, seeds from open-pollinated hermaphrodites were less likely to germinate than those from females, and family-level estimates of hermaphrodite selfing rates were negatively correlated with germination success and speed. Furthermore, estimates of inbreeding depression based on genetic markers and population genetic theory indicate that inbreeding depression in the field could be high.

Conclusions

The joint consideration of allocation and mating system suggests that compensation may be sufficient to maintain females given the current understanding of sex determination. Fragaria vesca ssp. bracteata exhibited similar sex morph-dependent patterns of mating system and genetic diversity, but less reproductive trait dimorphism, than its sub-dioecious and dioecious congeners.  相似文献   

5.

Background and aims

Sexually dimorphic populations are often located in drier habitats than cosexual populations. Gender plasticity (GP), whereby hermaphrodites alter female and male functions depending on resources, and sex-differential plasticity (SDP) between hermaphrodites and unisexuals are predicted to affect sexual system stability. Here, GP and SDP are evaluated in cosexual and gynodioecious Wurmbea biglandulosa and sub-dioecious and dioecious W. dioica.

Methods

GP was evaluated under two resource conditions, compared among sexual systems and assessed as to whether (1) males produced perfect flowers and (2) hermaphrodites altered investment in perfect (female function) and total (male function) flowers. SDP was assessed within sexual systems as differences between sex functions of hermaphrodites vs. unisexuals. Males and hermaphrodites were compared to assess whether size thresholds for female function differed among sexual systems. Plasticity costs were evaluated using correlations between female function and male traits in hermaphrodites, and in W. dioica by comparing hermaphrodite and male regressions between plant size and pollen production.

Key Results

In dioecious W. dioica no males exhibited GP, whereas 100 % did in gynodioecious and cosexual W. biglandulosa. In sub-dioecious W. dioica, resources affected GP (high, 66 %; low, 42 %). Hermaphrodites in all sexual systems reduced perfect but not total flowers under low resources. Unisexuals were unaffected, demonstrating SDP for female function only. Thresholds for female function were greater in sub-dioecious W. dioica than in W. biglandulosa. Plasticity costs were detected only in sub-dioecious W. dioica.

Conclusions

SDP for female function could assist female establishment in cosexual populations and maintain females in gynodioecious and sub-dioecious populations. Although the absence of male SDP should stabilize sub-dioecy, plasticity costs would render sub-dioecy unstable, favouring canalized males over hermaphrodites. This study highlights the importance of interactions between environmental conditions and hermaphrodite sex expression for the stability of dimorphic sexual systems.  相似文献   

6.

Background and Aims

Plants exhibit a variety of reproductive systems where unisexual (females or males) morphs coexist with hermaphrodites. The maintenance of dimorphic and polymorphic reproductive systems may be problematic. For example, to coexist with hermaphrodites the females of gynodioecious species have to compensate for the lack of male function. In our study species, Geranium sylvaticum, a perennial gynodioecious herb, the relative seed fitness advantage of females varies significantly between years within populations as well as among populations. Differences in reproductive investment between females and hermaphrodites may lead to differences in future survival, growth and reproductive success, i.e. to differential costs of reproduction. Since females of this species produce more seeds, higher costs of reproduction in females than in hermaphrodites were expected. Due to the higher costs of reproduction, the yearly variation in reproductive output of females might be more pronounced than that of hermaphrodites.

Methods

Using supplemental hand-pollination of females and hermaphrodites of G. sylvaticum we examined if increased reproductive output leads to differential costs of reproduction in terms of survival, probability of flowering, and seed production in the following year.

Key Results

Experimentally increased reproductive output had differential effects on the reproduction of females and hermaphrodites. In hermaphrodites, the probability of flowering decreased significantly in the following year, whereas in females the costs were expressed in terms of decreased future seed production.

Conclusions

When combining the probability of flowering and seed production per plant to estimate the multiplicative change in fitness, female plants showed a 56 % and hermaphrodites showed a 39 % decrease in fitness due to experimentally increased reproduction. Therefore, in total, female plants seem to be more sensitive to the cost of reproduction in terms of seed fitness than hermaphrodites.  相似文献   

7.

Background and Aims

How and why plants evolve to become selfing is a long-standing evolutionary puzzle. The transition from outcrossing to highly selfing is less well understood in self-compatible (SC) mixed-mating (MM) species where potentially subtle interactions between floral phenotypes and the environment are at play. We examined floral morphological and developmental traits across an entire SC MM genus, Collinsia, to determine which, if any, predict potential autonomous selfing ability when pollinators are absent (AS) and actual selfing rates in the wild, sm, and to best define the selfing syndrome for this clade.

Methods

Using polymorphic microsatellite markers, we obtained 30 population-level estimates of sm across 19 Collinsia taxa. Species grand means for the timing of herkogamy (stigma–anther contact) and dichogamy (stigmatic receptivity, SR), AS, floral size, longevity and their genetic correlations were quantified for 22 taxa.

Key Results

Species fell into discrete selfing and outcrossing groups based on floral traits. Loss of dichogamy defines Collinsia''s selfing syndrome. Floral size, longevity and herkogamy also differ significantly between these groups. Most taxa have high AS rates (>80 %), but AS is uncorrelated with any measured trait. In contrast, sm is significantly correlated only with SR. High variance in sm was observed in the two groups.

Conclusions

Collinsia species exhibit clear morphological and developmental traits diagnostic of ‘selfing’ or ‘outcrossing’ groups. However, many species in both the ‘selfing’ and the ‘outcrossing’ groups were MM, pointing to the critical influence of the pollination environment, the timing of AS and outcross pollen prepotency on sm. Flower size is a poor predictor of Collinsia species'' field selfing rates and this result may apply to many SC species. Assessment of the variation in the pollination environment, which can increase selfing rates in more ‘outcrossing’ species but can also decrease selfing rates in more ‘selfing’ species, is critical to understanding mating system evolution of SC MM taxa.  相似文献   

8.

Background and Aims

Plants vary widely in the extent to which seeds are produced via self-fertilization vs. outcrossing, and evolutionary change in the mating system is thought to be accompanied by genetic differentiation in a syndrome of floral traits. We quantified the pattern of variation and covariation in floral traits and the proportion of seeds outcrossed (t) to better understand the evolutionary processes involved in mating system differentiation among and within populations of the short-lived Pacific coastal dune endemic Camissoniopsis cheiranthifolia across its geographic range in western North America.

Methods

We quantified corolla width and herkogamy, two traits expected to influence the mating system, for 48 populations sampled in the field and for a sub-sample of 29 populations grown from seed in a glasshouse. We also measured several other floral traits for 9–19 populations, estimated t for 16 populations using seven allozyme polymorphisms, and measured the strength of self-incompatibility for nine populations.

Key Results

Floral morphology and self-incompatibility varied widely but non-randomly, such that populations could be assigned to three phenotypically and geographically divergent groups. Populations spanned the full range of outcrossing (t = 0·001–0·992), which covaried with corolla width, herkogamy and floral life span. Outcrossing also correlated with floral morphology within two populations that exhibited exceptional floral variation.

Conclusions

Populations of C. cheiranthifolia seem to have differentiated into three modal mating systems: (1) predominant outcrossing associated with self-incompatibility and large flowers; (2) moderate selfing associated with large but self-compatible flowers; and (3) higher but not complete selfing associated with small, autogamous, self-compatible flowers. The transition to complete selfing has not occurred even though the species appears to possess the required genetic capacity. We hypothesize that outcrossing populations in this species have evolved to different stable states of mixed mating.  相似文献   

9.
Brys R  Jacquemyn H 《Annals of botany》2011,107(6):917-925

Background and Aims

Reproductive assurance through autonomous selfing is thought to be one of the main advantages of self-fertilization in plants. Floral mechanisms that ensure autonomous seed set are therefore more likely to occur in species that grow in habitats where pollination is scarce and/or unpredictable.

Methods

Emasculation and pollen supplementation experiments were conducted under laboratory conditions to investigate the capacity for, and timing of autonomous selfing in three closely related Centaurium species (Centaurium erythraea, C. littorale and C. pulchellum). In addition, observations of flower visitors were combined with emasculation and pollen addition experiments in natural populations to investigate the degree of pollinator limitation and pollination failure and to assess the extent to which autonomous selfing conferred reproductive assurance.

Results

All three species were capable of autonomous selfing, although this capacity differed significantly between species (index of autonomous selfing 0·55 ± 0·06, 0·68 ± 0·09 and 0·92 ± 0·03 for C. erythraea, C. littorale and C. pulchellum, respectively). The efficiency and timing of autogamous selfing was primarily associated with differences in the degree of herkogamy and dichogamy. The number of floral visitors showed significant interspecific differences, with 1·6 ± 0·6, 5·4 ± 0·6 and 14·5 ± 2·1 floral visitors within a 2 × 2 m2 plot per 20-min observation period, for C. pulchellum, C. littorale and C. erythraea, respectively. Concomitantly, pollinator failure was highest in C. pulchellum and lowest in C. erythraea. Nonetheless, all three study species showed very low levels of pollen limitation (index of pollen limitation 0·14 ± 0·03, 0·11 ± 0·03 and 0·09 ± 0·02 for C. erythraea, C. littorale and C. pulchellum, respectively), indicating that autonomous selfing may guarantee reproductive assurance.

Conclusions

These findings show that limited availability of pollinators may select for floral traits and plant mating strategies that lead to a system of reproductive assurance via autonomous selfing.  相似文献   

10.
Ivey CT  Carr DE 《Annals of botany》2012,109(3):583-598

Background and Aims

Self-fertilizing taxa are often found at the range margins of their progenitors, where sub-optimal habitats may select for alternative physiological strategies. The extent to which self-fertilization is favoured directly vs. arising indirectly through correlations with other adaptive life history traits is unclear. Trait responses to selection depend on genetic variation and covariation, as well as phenotypic and genetic responses to altered environmental conditions. We tested predictions of the hypothesis that self-fertilization in Mimulus arises through direct selection on physiological and developmental traits that allow seasonal drought escape.

Methods

Phenotypic selection on mating system and drought escape traits was estimated in field populations of M. guttatus. In addition, trait phenotype and phenotypic selection were compared between experimental wet and dry soil in two greenhouse populations each of M. guttatus and M. nasutus. Finally, genetic variation and covariation for traits were compared between wet and dry soil treatments in a greenhouse population of M. guttatus.

Key Results

Consistent with predictions, selection for early flowering was generally stronger than for mating system traits, and selection for early flowering was stronger in dry soil. Inconsistent with predictions, selection for water-use efficiency was largely absent; selection for large flowers was stronger than for drought escape in the field; and most drought escape and mating system traits were not genetically correlated. A positive genetic correlation between flowering time and flower size, which opposed the adaptive contour, emerged only in wet soil, suggesting that variation in water availability may maintain variation in these traits. Plastic responses to soil moisture treatments supported the idea that taxonomic divergence could have been facilitated by plasticity in flowering time and selfing.

Conclusions

The hypothesis that plant mating systems may evolve indirectly via selection on correlated life history characteristics is plausible and warrants increased attention.  相似文献   

11.

Background and Aims

The males and females of many dioecious plant species differ from one another in important life-history traits, such as their size. If male and female reproductive functions draw on different resources, for example, one should expect males and females to display different allocation strategies as they grow. Importantly, these strategies may differ not only between the two sexes, but also between plants of different age and therefore size. Results are presented from an experiment that asks whether males and females of Mercurialis annua, an annual plant with indeterminate growth, differ over time in their allocation of two potentially limiting resources (carbon and nitrogen) to vegetative (below- and above-ground) and reproductive tissues.

Methods

Comparisons were made of the temporal patterns of biomass allocation to shoots, roots and reproduction and the nitrogen content in the leaves between the sexes of M. annua by harvesting plants of each sex after growth over different periods of time.

Key Results and Conclusions

Males and females differed in their temporal patterns of allocation. Males allocated more to reproduction than females at early stages, but this trend was reversed at later stages. Importantly, males allocated proportionally more of their biomass towards roots at later stages, but the roots of females were larger in absolute terms. The study points to the important role played by both the timing of resource deployment and the relative versus absolute sizes of the sinks and sources in sexual dimorphism of an annual plant.  相似文献   

12.

Background and Aims

A shift from outcrossing to selfing is thought to reduce the long-term survival of populations by decreasing the genetic variation necessary for adaptation to novel ecological conditions. However, theory also predicts an increase in adaptive potential as more of the existing variation becomes expressed as homozygous genotypes. So far, relatively few studies have examined how a transition to selfing simultaneously affects means, variances and covariances for characters that might be under stabilizing selection for a spatially varying optimum, e.g. characters describing leaf morphology.

Methods

Experimental crosses within an initially self-sterile population of Crepis tectorum were performed to produce an outbred and inbred progeny population to assess how a shift to selfing affects the adaptive potential for measures of leaf morphology, with special emphasis on the degree of leaf dissection, a major target of diversifying selection within the study species.

Key Results

Three consecutive generations of selfing had a minor impact on survival, the total number of heads produced and the mean leaf phenotype, but caused a proportional increase in the genetic (co)variance matrix for foliar characters. For the degree of leaf dissection, the lowest 50th percentile of the inbred progeny population showed a disproportionate increase in the genetic variance, consistent with the recessive nature of the weakly lobed phenotype observed in interpopulation crosses. Comparison of inbreeding response with large-scale patterns of variation indicates a potential for selection in a (recently) inbred population to drive a large evolutionary reduction in degree of leaf dissection by increasing the frequency of particular sibling lines.

Conclusions

The results point to a positive role for inbreeding in phenotypic evolution, at least during or immediately after a rapid shift in mating system.  相似文献   

13.

Background and Aims

The establishment of plant populations in novel environments may generate pronounced shifts in floral traits and plant mating systems, particularly when pollinators are scarce. In this study, floral morphology and mating system functioning are compared between recently established and older populations of the annual plant Blackstonia perfoliata that occur in different pollinator environments.

Methods

Hand-pollination and emasculation experiments were conducted to assess the extent of pollinator-mediated pollen deposition and pollen limitation, and the contribution of autonomous selfing to total seed production. Detailed measurements of key floral traits were performed to compare the flower morphology and mating system functioning between plants from both pollination environments.

Key Results

Pollinator-mediated pollen deposition was about twice as low in the recently colonized and pollinator-poor environment compared with the old and pollinator-rich sites, but total seed set was little affected by any type of pollen limitation. The contribution of autonomous selfing to total seed production was higher in the pollinator-poor sites than in the pollinator-rich sites (index of reproductive assurance = 0·56 and 0·17, respectively), and seed production was only poorly affected by selfing, whereas in the pollinator-rich populations selfing reduced total reproductive output by about 40 % compared with outcross pollination. Plants originating from pollinator-poor environments produced smaller flowers that showed significantly lower levels of dichogamy (i.e. protogyny) and herkogamy. These reductions resulted in a 2-fold higher capacity for autonomous selfing under pollinator-free conditions (index of autonomous selfing = 0·81 and 0·41 in plants originating from the pollinator-poor and pollinator-rich environment, respectively).

Conclusions

The results illustrate that plant populations colonizing novel environments can differ markedly in floral morphology and mating system functioning. Due to a temporal shift in the male phase, the breeding system of B. perfoliata shifted from delayed selfing under pollinator-rich conditions towards competing selfing in recently established populations, providing greater reproductive assurance when pollinators and/or reproductive partners are limited.  相似文献   

14.

Background and Aims

A reduction in offspring fitness resulting from mating between neighbours is interpreted as biparental inbreeding depression. However, little is known about the relationship between the parents'' genetic relatedness and biparental inbreeding depression in their progeny in natural populations. This study assesses the effect of kinship between parents on the fitness of their progeny and the extent of spatial genetic structure in a natural population of Rhododendron brachycarpum.

Methods

Kinship coefficients between 11 858 pairs of plants among a natural population of 154 R. brachycarpum plants were estimated a priori using six microsatellite markers. Plants were genotyped, and pairs were selected from among 60 plants to vary the kinship from full-sib to unrelated. After a hand-pollination experiment among the 60 plants, offspring fitness was measured at the stages of seed maturation (i.e. ripening) under natural conditions, and seed germination and seedling survival under greenhouse conditions. In addition, spatial autocorrelation was used to assess the population''s genetic structure.

Key Results

Offspring fitness decreased significantly with increasing kinship between parents. However, the magnitude and timing of this effect differed among the life-cycle stages. Measures of inbreeding depression were 0·891 at seed maturation, 0·122 (but not significant) at seed germination and 0·506 at seedling survival. The local population spatial structure was significant, and the physical distance between parents mediated the level of inbreeding between them.

Conclusions

The level of inbreeding between individuals determines offspring fitness in R. brachycarpum, especially during seed maturation. Genetic relatedness between parents caused inbreeding depression in their progeny. Therefore, biparental inbreeding contributes little to reproduction and instead acts as a selection force that promotes outcrossing, as offspring of more distant (less related) parents survive better.  相似文献   

15.

Background and Aims

Abolboda (Xyridaceae) belongs to the Poales, a predominantly wind-pollinated order whose phylogeny has been widely studied in recent years. The reproductive biology of Abolboda pulchella and A. poarchon was studied to determine the main pollination system of these species, providing the first experimental data on reproduction in the Xyridaceae.

Methods

A field study was conducted, including observations on the morphology and biology of the flowers, insect visits and pollinator behaviour. Experimental pollination treatments were performed to assess agamospermy, spontaneous self-pollination and self-compatibility. Pollination success was determined by pollen tube growth, and reproductive success was assessed by fruit- and seed-set.

Key Results

Abolboda pulchella and A. poarchon were pollinated by Apidae, Megachilidae and Halictidae bees. The floral resources were pollen and nectar that was produced by stylar appendages, an uncommom nectary type for monocotyledons. The species were self-compatible, and pollen tube growth from self-pollen was similar to that of cross-pollen. However, herkogamy prevented spontaneous selfing, rendering the plants dependent on the pollinator''s activity. There was no production of seeds by agamospermy.

Conclusions

Melittophily is the main pollination system of these two Abolboda species. Nectar production was first recorded here for Xyridaceae, and along with self-compatibility, herkogamy and bee pollination, is an informative characteristic that can be used in future phylogenetic analyses of the family as well as Poales.  相似文献   

16.

Background and Aims

Delayed selfing is the predominant mode of autonomous self-pollination in flowering plants. However, few delayed selfing mechanisms have been documented. This research aims to explore a new delayed selfing mechanism induced by stigmatic fluid in Roscoea debilis, a small perennial ginger.

Methods

Floral biology and flower visitors were surveyed. The capacity of autonomous selfing was evaluated by pollinator exclusion. The timing of autonomous selfing was estimated by emasculation at different flowering stages. The number of seeds produced from insect-pollination was assessed by emasculation and exposure to pollinators in the natural population. The breeding system was also tested by pollination manipulations.

Key Results

Autonomous self-pollination occurred after flowers wilted. The stigmatic fluid formed a globule on the stigma on the third day of flowering. The enlarged globule seeped into the nearby pollen grains on the fourth flowering day, thus inducing pollen germination. Pollen tubes then elongated and penetrated the stigma. Hand-selfed flowers produced as many seeds as hand-crossed flowers. There was no significant difference in seed production between pollinator-excluded flowers and hand-selfed flowers. When emasculated flowers were exposed to pollinators, they produced significantly fewer seeds than intact flowers. Visits by effective pollinators were rare.

Conclusions

This study describes a new form of delayed autonomous self-pollination. As the predominant mechanism of sexual reproduction in R. debilis, delayed self-pollination ensures reproduction when pollinators are scarce.  相似文献   

17.

Background and Aims

Human-mediated environmental change is increasing selection pressure for the capacity in plants to colonize new areas. Habitat fragmentation combined with climate change, in general, forces species to colonize areas over longer distances. Mating systems and genetic load are important determinants of the establishment and long-term survival of new populations. Here, the mating system of Asplenium scolopendrium, a diploid homosporous fern species, is examined in relation to colonization processes.

Methods

A common environment experiment was conducted with 13 pairs of sporophytes, each from a different site. Together they constitute at least nine distinct genotypes, representing an estimated approx. 95 % of the non-private intraspecific genetic variation in Europe. Sporophyte production was recorded for gametophytes derived from each parent sporophyte. Gametophytes were grown in vitro in three different ways: (I) in isolation, (II) with a gametophyte from a different sporophyte within the same site or (III) with a partner from a different site.

Key Results

Sporophyte production was highest in among-site crosses (III), intermediate in within-site crosses (II) and was lowest in isolated gametophytes (I), strongly indicating inbreeding depression. However, intragametophytic selfing was observed in most of the genotypes tested (eight out of nine).

Conclusions

The results imply a mixed mating system in A. scolopendrium, with outcrossing when possible and occasional selfing when needed. Occasional intragametophytic selfing facilitates the successful colonization of new sites from a single spore. The resulting sporophyte, which will be completely homozygous, will shed large amounts of spores over time. Each year this creates a bed of gametophytes in the vicinity of the parent. Any unrelated spore which arrives is then selectively favoured to reproduce and contribute its genes to the new population. Thus, while selfing facilitates initial colonization success, inbreeding depression promotes genetically diverse populations through outcrossing. The results provide further evidence against the overly simple dichotomous distinction of fern species as either selfing or outcrossing.  相似文献   

18.

Background and Aims

Gynodioecy (coexistence of females and hermaphrodites) is a sexual system that occurs in numerous flowering plant lineages. Thus, understanding the features that affect its maintenance has wide importance. Models predict that females must have a seed fitness advantage over hermaphrodites, and this may be achieved via seed quality or quantity. Females in a population of Fragaria vesca subsp. bracteata, a long-lived gynodioecious perennial, do not demonstrate a seed quantity advantage, so this study explored whether females produced better quality seed via maternal sex effects or avoidance of inbreeding depression (IBD).

Methods

Families of selfed and outcrossed seed were created using hermaphrodite mothers and families of outcrossed seed were created using female mothers. The effects of these pollination treatments were assessed under benign conditions early in life and under varied conditions later in life. To test for an effect of maternal sex, fitness components and traits associated with acclimation to variable environments of progeny of outbred hermaphrodites and females were compared. To test for expression of IBD, fitness parameters between inbred and outbred progeny of hermaphrodites were compared.

Key Results

Offspring of females were more likely to germinate in benign conditions and survive in harsh resource environments than outbred progeny of hermaphrodites. IBD was low across most life stages, and both the effect of maternal sex on progeny quality and the expression of IBD depended on both maternal family and resource condition of the progeny.

Conclusions

The effect of maternal sex and IBD on progeny quality depended on resource conditions, maternal lineage and progeny life stage. In conjunction with known lack of differences in seed quantity, the quality advantages and IBD observed here are still unlikely to be sufficient for maintenance of gynodioecy under nuclear inheritance of male sterility.  相似文献   

19.
Zhang ZQ  Li QJ 《Annals of botany》2008,102(4):531-538

Background and Aims

Reproductive assurance, the ability to produce seeds when pollinators or mates are scarce, is thought to be the major advantage of selfing in flowering plants. However, few studies have performed a direct cost–benefit analysis of the selective advantage of selfing, particularly given a long-term perspective among populations or across several flowering seasons within population. This study examined the fertility consequences of autonomous selfing in Roscoea schneideriana (Zingiberaceae), a small perennial Himalayan ginger typically found in habitats at around 3000 m a.s.l.

Methods

The floral biology of R. schneideriana was studied in natural populations; the capacity for autonomous selfing was estimated using pollinator exclusion experiments; the timing of selfing was quantified by anther removal at different times during flowering; whether autonomous selfing increases seed production was tested by emasculating flowers; and the magnitude of inbreeding depression was estimated by comparing relative performance of progeny from self- and cross-pollinations. Pollinator observations were also conducted in the natural populations.

Key Results

The hooked stigmas of most flowers curl towards the anther and can contact pollen grains at an early stage of anthesis. Flowers with potential pollinators excluded set of as many seeds per fruit as hand-selfed and opened flowers. Autonomous selfing mostly occurs within 2 d of anthesis and can increase seed production by an average of 84 % in four populations during the flowering seasons of 2005–2007. Visits by effective pollinators were extremely rare. The cumulative inbreeding depression of R. schneideriana was 0·226.

Conclusions

Autonomous selfing in R. schneideriana is achieved by stigmas curling towards the anthers early in flowering. It is suggested that under the poor pollination conditions, autonomous selfing has been selected for in this alpine ginger because it provides substantial reproductive assurance with very low costs.Key words: Zingiberaceae, Roscoea, autonomous self-pollination, reproductive assurance, inbreeding depression, pollinator failure, Himalayan species  相似文献   

20.

Background and Aims

If stabilizing selection by pollinators is a prerequisite for pollinator-mediated floral evolution, spatiotemporal variation in the pollinator assemblage may confuse the plant–pollinator interaction in a given species. Here, effective pollinators in a living fossil plant Nelumbo nucifera (Nelumbonaceae) were examined to test whether beetles are major pollinators as predicted by its pollination syndrome.

Methods

Pollinators of N. nucifera were investigated in 11 wild populations and one cultivated population, and pollination experiments were conducted to examine the pollinating role of two major pollinators (bees and beetles) in three populations.

Key Results

Lotus flowers are protogynous, bowl shaped and without nectar. The fragrant flowers can be self-heating during anthesis and produce around 1 million pollen grains per flower. It was found that bees and flies were the most frequent flower visitors in wild populations, contributing on average 87·9 and 49·4 % of seed set in Mishan and Lantian, respectively. Beetles were only found in one wild population and in the cultivated population, but the pollinator exclusion experiments showed that beetles were effective pollinators of Asian sacred lotus.

Conclusions

This study indicated that in their pollinating role, beetles, probable pollinators for this thermoregulating plant, had been replaced by some generalist insects in the wild. This finding implies that contemporary pollinators may not reflect the pollination syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号