首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
This study demonstrates that endopin 2 is a unique secretory vesicle serpin that displays cross-class inhibition of cysteine and serine proteases, indicated by effective inhibition of papain and elastase, respectively. Homology of the reactive site loop (RSL) domain of endopin 2, notably at P1-P1' residues, with other serpins that inhibit cysteine and serine proteases predicted that endopin 2 may inhibit similar proteases. Recombinant N-His-tagged endopin 2 inhibited papain and elastase with second-order rate constants (k(ass)) of 1.4 x 10(6) and 1.7 x 10(5) M(-1) s(-1), respectively. Endopin 2 formed SDS-stable complexes with papain and elastase, a characteristic property of serpins. Interactions of the RSL domain of endopin 2 with papain and elastase were indicated by cleavage of endopin 2 near the predicted P1-P1' residues by these proteases. Endopin 2 did not inhibit the cysteine protease cathepsin B, or the serine proteases chymotrypsin, trypsin, plasmin, and furin. Endopin 2 in neuroendocrine chromaffin cells was colocalized with the secretory vesicle component (Met)enkephalin by confocal immunonfluorescence microscopy, and was present in isolated secretory vesicles (chromaffin granules) from chromaffin cells as a glycoprotein of 72-73 kDa. Moreover, regulated secretion of endopin 2 from chromaffin cells was induced by nicotine and KCl depolarization. Overall, these results demonstrate that the serpin endopin 2 possesses dual specificity for inhibiting both papain-like cysteine and elastase-like serine proteases. These findings demonstrate that endopin 2 inhibitory functions may occur in the regulated secretory pathway.  相似文献   

2.
Hwang SR  Stoka V  Turk V  Hook VY 《Biochemistry》2005,44(21):7757-7767
Molecular cloning revealed the unique serpin endopin 2C that demonstrates selective inhibition of cathepsin L compared to papain or elastase. Endopin 2C, thus, functions as a serpin with the property of cross-class inhibition. Endopin 2C possesses homology in primary sequence to endopin 2A and other isoforms of endopins related to alpha1-antichymotrypsin, yet endopin 2C differs in its target protease specificity. Recombinant endopin 2C showed effective inhibition of cathepsin L with a stoichiometry of inhibition (SI) of 1/1 (molar ratio of inhibitor/protease), with the second-order rate constant, k(ass), of 7.2 x 10(5) M(-1) s(-1). Less effective endopin 2C inhibition of papain and elastase occurred with k(ass) association rate constants of approximately 1 x 10(4) M(-1) s(-1) with high SI values. Endopin 2C formed SDS-stable complexes with cathepsin L, papain, and elastase that are typical of serpins. These results are among the first to demonstrate stable serpin complexes with target cysteine proteases. Interactions of endopin 2C with cathepsin L and elastase were indicated by protease cleavage of the RSL region between P1-P1' residues of Thr-Ser. The hydrophobic Phe residue in the P2 position of the RSL region is consistent with the specificity of cathepsin L for hydrophobic residues in the P2 position of its substrate cleavage site. The NH2-terminal signal sequence of endopin 2C, like that of cathepsin L, predicts their colocalization to subcellular organelles. These findings demonstrate endopin 2C as a novel serpin that possesses cross-class inhibition with selectivity for inhibition of cathepsin L.  相似文献   

3.
Serpins represent a diverse class of endogenous protease inhibitors that regulate important biological functions. In consideration of the importance of regulated proteolysis within secretory vesicles for the production of peptide hormones and neurotransmitters, this study revealed the molecular identity of a novel serpin, endopin 1, that is localized to neurosecretory vesicles of neuropeptide-containing chromaffin cells (chromaffin granules). Endopin 1 of 68-70 kDa was present within isolated chromaffin granules. Stimulated cosecretion of endopin 1 with chromaffin granule components, [Met]enkephalin and a cysteine protease known as "prohormone thiol protease," demonstrated localization of endopin 1 to functional secretory vesicles. Punctate, discrete immunofluorescence cellular localization of endopin 1 in chromaffin cells was consistent with its secretory vesicle localization. Endopin 1 contains a unique reactive site loop with Arg as the predicted P1 residue, suggesting inhibition of basic residue-cleaving proteases; indeed, trypsin was potently inhibited (K(i(app)) of 5 nM), and plasmin was moderately inhibited. Although endopin 1 possesses homology with alpha(1)-antichymotrypsin, chymotrypsin was not inhibited. Moreover, endopin 1 inhibited the chromaffin granule prohormone thiol protease (involved in proenkephalin processing). These results suggest a role for the novel serpin, endopin 1, in regulating basic residue-cleaving proteases within neurosecretory vesicles of chromaffin cells.  相似文献   

4.
Hwang SR  Steineckert B  Hook VY 《Biochemistry》2000,39(30):8944-8952
The primary sequence of the serpin endopin 2 predicts a reactive site loop (RSL) region that possesses high homology to bovine elastase inhibitor, suggesting inhibition of elastase. Moreover, endopin 2 possesses two cysteine residues that implicate roles for reduced Cys residue(s) for inhibitory activity. To test these predicted properties, mutagenesis and chemical modification of recombinant endopin 2 were performed to examine the influence of dithiothreitol (DTT), a reducing agent, on endopin 2 activity. Endopin 2 inhibited elastase in a DTT-dependent manner, with enhanced inhibition in the presence of DTT. The stoichiometry of inhibition in the presence of DTT occurred at a molar ratio of endopin 2 to elastase of 8/1, resulting in complete inhibition of elastase. However, a higher molar ratio (25/1) was required in the absence of DTT. DTT enhanced the formation of SDS-stable complexes of endopin 2 and elastase, a characteristic property of serpins. Site-directed mutagenesis of endopin 2, with substitution of Ala for Cys-232 or Cys-374, demonstrated that Cys-374 (but not Cys-232) was required for the DTT-sensitive nature of endopin 2. Chemical modification of Cys-374 by bis(maleimido)ethane also reduced inhibitory activity. Modified electrophoretic mobilities of mutant endopin 2 suggested the presence of intramolecular disulfide bonds; in addition, chemical modification suggested that Cys-374 influences the electrophoretic and conformational properties of endopin 2. Moreover, the reducing agent glutathione enhanced endopin 2 activity, suggesting that glutathione can function as an endogenous reducing agent for endopin 2 in vivo. These findings demonstrate the importance of Cys-374 for DTT-sensitive inhibition of elastase by endopin 2.  相似文献   

5.
The serpin endopin 2A inhibits the cysteine protease papain in cross-class inhibition. This study demonstrates the novel finding that both the non-RSL NH(2)-domain and the RSL domain with P1-P1' residues participate in endopin 2A inhibition. Production of a chimeric mutant of endopin 2A with replacement of its NH(2)-domain with that of endopin 1 resulted in less effective inhibition of papain, indicated by its lower k(ass) association rate constant compared to wild-type endopin 2A. This chimeric mutant formed complexes with papain, but at lower levels compared to that with wild-type endopin 2A. Papain degradation of a portion of the chimeric mutant suggested a role for the NH(2)-domain in regulating relative amounts of endopin 2A that enter the substrate pathway compared to the serpin inhibitory pathway. Furthermore, site-directed mutagenesis demonstrated that the RSL domain with intact P1-P1' residues was necessary for inhibition. These findings indicate that the NH(2)-domain and the RSL region both participate in endopin 2A inhibition of papain.  相似文献   

6.
This study demonstrates unique differences in the conformational nature of cathepsin L compared to elastase when complexed with the serpin endopin 2C, assessed by susceptibilities of protease/endopin 2C complexes to proteolysis by trypsin. Complexed and uncomplexed cathepsin L were resistant to degradation by trypsin, which indicated that trypsin cleavage sites within cathepsin L remain inaccessible when this cysteine protease is complexed with the endopin 2C serpin. In contrast, elastase in complexes with endopin 2C was degraded by trypsin, but uncomplexed elastase was not degraded. These results demonstrate a change in the conformational properties of trypsin cleavage sites within elastase when it is complexed with endopin 2C, compared to uncomplexed elastase. Cathepsin L complexes with endopin 2C were short-lived, but elastase complexes were stable. Furthermore, cathepsin L dissociated from complexes demonstrated recovery of cathepsin L activity, and reducing conditions provided optimum recovery of cathepsin L activity. These findings suggest that cathepsin L, when complexed with endopin 2C, maintains its general conformation in a manner that allows recovery of cathepsin L activity upon dissociation from endopin 2C. These results demonstrate differences in the relative conformational properties of the cysteine protease cathepsin L, compared to the serine protease elastase, in complexes with the serpin endopin 2C.  相似文献   

7.
The closely related serpins squamous cell carcinoma antigen-1 and -2 (SCCA-1 and -2, respectively) are capable of inhibiting cysteine proteases of the papain superfamily. To ascertain whether the ability to inhibit cysteine proteases is an intrinsic property of serpins in general, the reactive center loop (RCL) of the archetypal serine protease inhibitor alpha(1)-antitrypsin was replaced with that of SCCA-1. It was found that this simple substitution could convert alpha(1)-antitrypsin into a cysteine protease inhibitor, albeit an inefficient one. The RCL of SCCA-1 is three residues longer than that of alpha(1)-antitrypsin, and therefore, the effect of loop length on the cysteine protease inhibitory activity was investigated. Mutants in which the RCL was shortened by one, two, or three residues were effective inhibitors with second-order rate constants of 10(5)-10(7) M(-)(1) s(-)(1). In addition to loop length, the identity of the cysteine protease was of considerable importance, since the chimeric molecules inhibited cathepsins L, V, and K efficiently, but not papain or cathepsin B. By testing complexes between an RCL-mimicking peptide and the mutants, it was found that the formation of a stable serpin-cysteine protease complex and the inhibition of a cysteine protease were both critically dependent on RCL insertion. The results strongly indicate that the serpin body is intrinsically capable of supporting cysteine protease inhibition, and that the complex with a papain-like cysteine protease would be expected to be analogous to that seen with serine proteases.  相似文献   

8.
The viral serpin, crmA, is distinguished by its small size and ability to inhibit both serine and cysteine proteases utilizing a reactive loop shorter than most other serpins. Here, we characterize the mechanism of crmA inhibition of serine proteases and probe the reactive loop length requirements for inhibition with two crmA reactive loop variants. P1 Arg crmA inhibited the trypsin-like proteases, thrombin, and factor Xa, with moderate efficiencies (approximately 10(2)-10(4) M(-1)sec(-1)), near equimolar inhibition stoichiometries, and formation of SDS-stable complexes which were resistant to dissociation (k(diss) approximately 10(-7) sec(-1)), consistent with a serpin-type inhibition mechanism. Trypsin was not inhibited, but efficiently cleaved the variant crmA as a substrate (k(cat)/K(M) of approximately 10(6) M(-1) sec(-1)). N-terminal sequencing confirmed that the P1 Arg-P1'Cys bond was the site of cleavage. Altering the placement of the Arg in a double mutant P1 Gly-P1'Arg crmA resulted in minimal ability to inhibit any of the trypsin family proteases. This variant was cleaved by the proteases approximately 10-fold less efficiently than P1 Arg crmA. Surprisingly, pancreatic elastase was rapidly inhibited by wild-type and P1 Arg crmAs (10(5)-10(6) M(-1)sec(-1)), although with elevated inhibition stoichiometries and higher rates of complex dissociation. N-terminal sequencing showed that elastase attacked the P1'Cys-P2'Ala bond, indicating that crmA can inhibit proteases using a reactive loop length similar to that used by other serpins, but with variations in this inhibition arising from different effective P2 residues. These results indicate that crmA inhibits serine proteases by the established serpin conformational trapping mechanism, but is unusual in inhibiting through either of two adjacent reactive sites.  相似文献   

9.
Viral-encoded proteases cleave precursor polyprotein(s) leading to maturation of infectious virions. Strikingly, human rhinovirus 3C protease shows the trypsin(ogen)-like serine protease fold based on two topologically equivalent six-stranded β-barrels, but displays residue Cys147 as the active site nucleophile. By contrast, papain, which is representative of most cysteine proteases, does not display the trypsin(ogen)-like fold. Remarkably, in human rhinovirus 3C cysteine protease, the catalytic residues Cys147, His40 and Glu71 are positioned as Ser195, His57 and Asp102, respectively, building up the catalytic triad of serine proteases in the chymotrypsin–trypsin–elastase family. However, as compared to trypsin-like serine proteases and their zymogens, residue His40 and the oxyanion hole of human rhinovirus 3C cysteine protease, both key structural components of the active site, are located closer to the protein core. Human rhinovirus 3C cysteine protease cleaves preferentially GlnGly peptide bonds or, less commonly, the GlnSer, GlnAla, GluSer or GluGly pairs. Finally, human rhinovirus 3C cysteine protease and the 3CD cysteine protease–polymerase covalent complex bind the 5′ non-coding region of rhinovirus genomic RNA, an essential function for replication of the viral genome.  相似文献   

10.
The cysteine protease known as "prohormone thiol protease" (PTP) has been identified as a major proenkephalin processing enzyme in secretory vesicles of adrenal medulla (known as chromaffin granules). This study provides the first demonstration that PTP exists as a multicatalytic cysteine protease complex that can be activated by endogenous glutathione present in chromaffin granules. The high molecular mass nature of PTP, of approximately 185 kDa, was demonstrated by elution of a single peak of 35S-enkephalin precursor cleaving activity by Sephacryl S200 gel filtration chromatography and by a single band of 35S-enkephalin precursor cleaving activity detected on radiozymogram gels under native buffer conditions. Importantly, when 0.1% SDS was included in radiozymogram gels, PTP activity was resolved into three bands of proteolytic activity with apparent molecular masses of 88, 81, and 61 kDa. These activities were all cysteine proteases, since they were inhibited by the cysteine protease inhibitor E-64c but not by pepstatin A or EDTA that inhibit aspartyl protease and metalloprotease, respectively. Purification of native PTP by preparative gel electrophoresis indicated that PTP was composed of four polypeptides of 66, 60, 33, and 29 kDa detected on SDS-PAGE gels. These four protein subunits accounted for the three catalytic activities of PTP, as demonstrated on 35S-enkephalin precursor radiozymogram gels. Results also indicated that the electrophoretic mobilities of the four subunits differed under reducing compared to nonreducing conditions. The multicatalytic activities of the PTP complex all require reducing conditions for activity, which can be provided by endogenous reduced glutathione in chromaffin granules. These novel findings provide the first evidence for a role of a multicatalytic cysteine protease complex, PTP, in chromaffin granules that may be involved in the proteolytic processing of proenkephalin and perhaps other precursors into active neuropeptides.  相似文献   

11.
This study demonstrates GTG as a novel, alternative initiation codon for translation of bovine endopin 2B-2, a serpin protease inhibitor. Molecular cDNA cloning revealed the endopin 2B-1 and endopin 2B-2 isoforms that are predicted to inhibit papain and elastase. Notably, GTG was demonstrated as the initiation codon for endopin 2B-2, whereas endopin 2B-1 possesses ATG as its initiation codon. GTG mediated in vitro translation of 46kDa endopin 2B-2. GTG also mediated translation of EGFP by in vitro translation and by expression in mammalian cells. Notably, mutagenesis of GTG to GTC resulted in the absence of EGFP expression in cells. GTG produced a lower level of protein expression compared to ATG. The use of GTG as an initiation codon to direct translation of endopin 2B, as well as the heterologous protein EGFP, demonstrates the role of GTG in the regulation of mRNA translation in mammalian cells. Significantly, further analyses of mammalian genomes based on GTG as an alternative initiation codon may predict new candidate gene products expressed by mammalian and human genomes.  相似文献   

12.
A key factor in Alzheimer's disease (AD) is the beta-secretase activity that is required for the production of beta-amyloid (Abeta) peptide from its amyloid precursor protein (APP) precursor. In this study, the majority of Abeta secretion from neuronal chromaffin cells was found to occur via the regulated secretory pathway, compared with the constitutive secretory pathway; therefore, beta-secretase activity in the regulated secretory pathway was examined for the production and secretion of Abeta in chromaffin cells obtained from in vivo adrenal medullary tissue. The presence of Abeta(1-40) in APP-containing chromaffin vesicles, which represent regulated secretory vesicles, was demonstrated by radioimmunoassay (RIA) and reverse-phase high-performance liquid chromatography. These vesicles also contain Abeta(1-42), measured by RIA. Significantly, regulated secretion of Abeta(1-40) from chromaffin cells represented the majority of secreted Abeta (> 95% of total secreted Abeta), compared with low levels of constitutively secreted Abeta(1-40). These results indicate the importance of Abeta production and secretion in the regulated secretory pathway as a major source of extracellular Abeta. Beta-secretase activity in isolated chromaffin vesicles was detected with the substrate Z-Val-Lys-Met-/MCA (methylcoumarinamide) that contains the beta-secretase cleavage site. Optimum beta-secretase activity in these vesicles required reducing conditions and acidic pH (pH 5-6), consistent with the in vivo intravesicular environment. Evidence for cysteine protease activity was shown by E64c inhibition of Z-Val-Lys-Met-MCA-cleaving activity, and E64c inhibition of Abeta(1-40) production in isolated chromaffin vesicles. Chromatography resolved the beta-secretase activity into two distinct proteolytic pathways consisting of: (i) direct cleavage of the beta-secretase site at Met-/Asp by two cysteine proteolytic activities represented by peaks Il-A and Il-B, and (ii) an aminopeptidase-dependent pathway represented by peak I cysteine protease activity that cleaves between Lys-/Met, followed by Met-aminopeptidase that would generate the beta-secretase cleavage site. Treatment of chromaffin cells in primary culture with the cysteine protease inhibitor E64d reduced the production of the beta-secretase product, a 12-14 kDa C-terminal APP fragment. In addition, BACE 1 and BACE 2 were detected in chromaffin vesicles; BACE 1 represented a small fraction of total beta-secretase activity in these vesicles. These results illustrate that multiple cysteine proteases, in combination with BACE 1, contribute to beta-secretase activity in the regulated secretory pathway. These results complement earlier findings for BACE 1 as beta3-secretase for Abeta production in the constitutive secretory pathway that provides basal secretion of Abeta into conditioned media. These findings suggest that drug inhibition of several proteases may be required for reducing Abeta levels as a potential therapeutic approach for AD.  相似文献   

13.
The larvae of Schistosoma mansoni invade their mammalian host by utilizing a serine protease, cercarial elastase (SmCE), to degrade macromolecular proteins in host skin. The catalytic activity of serine and cysteine proteases can be regulated after activation by serpins. SmSrpQ, one of two S. mansoni serpins found in larval secretions, is only expressed during larval development and in the early stages of mammalian infection. In vitro, (35)S-SmSrpQ was able to form an SDS-stable complex with a component of the larval lysate, but no complex was detected when (35)S-SmSrpQ was incubated with several mammalian host proteases. Formation of a complex was sensitive to the protease active site inhibitors PMSF, Z-AAPF-CMK, and Z-AAPL-CMK. Western blot analysis of parasite lysates from different life stages detected a complex of comparable size to SmCE bound to SmSrpQ using anti-SmSrpQ or anti-SmCE antibodies. SmSrpQ and SmCE are located in adjacent but discrete compartments in the secretion glands of the parasite. Fluorescence immunohistochemical analysis of simulated infection showed co-localization of SmCE and SmSrpQ in host tissue suggesting a post release regulation of parasite protease activity during skin transversal. The results of this study suggest that cercarial elastase degradation of skin tissue is carefully regulated by SmSrpQ.  相似文献   

14.
The serine protease inhibitor C1-Inhibitor (C1-Inh) inhibits several complement- and contact-system proteases, which play an important role in inflammation. C1-Inh has a short reactive site loop (RSL) compared to other serpins. RSL length determines the inhibitory activity of serpins. We investigated the effect of RSL elongation on inhibitory activity of C1-Inh by insertion of one or two alanine residues in the RSL. One of five mutants had an increased association rate with kallikrein, but was nevertheless a poor inhibitor because of a simultaneous high stoichiometry of inhibition (>10). The association rate of the other variants was lower than that of wild-type C1-Inh. These data suggest that the relatively weak inhibitory activity of C1-Inh is not the result of its short RSL. The short RSL of C1-Inh has, surprisingly, the optimal length for inhibition.  相似文献   

15.
By alternative use of four RSL (reactive site loop) coding exon cassettes, the serpin (serine protease inhibitor) gene Spn4 from Drosophila melanogaster was proposed to enable the synthesis of multiple protease inhibitor isoforms, one of which has been shown to be a potent inhibitor of human furin. Here, we have investigated the inhibitory spectrum of all Spn4 RSL variants. The analyses indicate that the Spn4 gene encodes inhibitors that may inhibit serine proteases of the subtilase family (S8), the chymotrypsin family (S1), and the papain-like cysteine protease family (C1), most of them at high rates. Thus a cohort of different protease inhibitors is generated simply by grafting enzyme-adapted RSL sequences on to a single serpin scaffold, even though the target proteases contain different types and/or a varying order of catalytic residues and are descendents of different phylogenetic lineages. Since all of the Spn4 RSL isoforms are produced as intracellular residents and additionally as variants destined for export or associated with the secretory pathway, the Spn4 gene represents a versatile defence tool kit that may provide multiple antiproteolytic functions.  相似文献   

16.
Falcipain-2(FP2), a cysteine protease from Plasmodium falciparum, cleaves host erythrocyte hemoglobin and specific membrane skeleton components during the parasite life cycle. Therefore its inhibition has been considered as an attractive approach to combat the disease. SerpinB3 (SPB3) belongs to the ovalbumin-serpin family and is a potent cross-class inhibitor of cysteine cathepsins L, K, S and papain. This study explored the possibility of inhibition of FP2 by SPB3. It turned out that general proteolytic activities as well as specific hemoglobinolytic activity of FP2 have been inhibited by SPB3. Furthermore, studies have been designed to investigate and characterize the mechanism of inhibition in comparison with proteases Cathepsin L (CTSL) and papain. The Ki value of inhibition for FP2, measured against its specific substrate (VLK-pNA), is 338.11 nM and stoichiometry (I/E ratio) of inhibition is 1. These values are comparable to CTSL and papain. Analytical gel filtration profile and CD spectroscopy data confirm FP2-SPB3 complex formation. Our studies revealed that interaction of SPB3 with FP2 is non-covalent type like that of CTSL and papain but unlike other serine protease-inhibiting serpins. An in-silico docking and simulation study have been performed with FP2 as well as CTSL and results suggest different binding mode for FP2 and CTSL, though both the complexes are stable with significant contribution from electrostatic energy of interaction. We further showed a disease state mutant SPB3-Gly351Ala performed better anti-protease activity against FP2. This study, for the first time, has shown a serpin family inhibitor from human could efficiently inhibit activity of FP2.  相似文献   

17.
Contrapsin and alpha-1-antitrypsin have been recently characterized as major protease inhibitors in mouse plasma (Takahara, H. & Sinohara, H. (1982) J. Biol. Chem. 257, 2438-2446). We have studied the effects of the two inhibitors upon various serine proteases prepared from mouse tissues. Trypsin, plasmin and trypsin-like proteases of the submaxillary gland were inhibited by contrapsin but not by alpha-1-antitrypsin. On the other hand, chymotrypsin, elastase, and thrombin were inactivated by alpha-1-antitrypsin but not by contrapsin. Thus, their inhibitory spectra did not overlap each other in spite of their broad specificities. The inhibition of trypsin, chymotrypsin, and elastase was rapid and stoichiometric, whereas the inhibition of the other proteases was relatively slow. Contrapsin accounted for almost the total capacities of mouse plasma to inhibit both trypsin and submaxillary gland trypsin-like proteases, whereas alpha-1-antitrypsin was responsible for nearly all the capacities of plasma to inhibit both chymotrypsin and elastase.  相似文献   

18.
Activity-based probes are small molecules that covalently bind to the active site of a protease in an activity-dependent manner. We synthesized and characterized two fluorescent activity-based probes that target serine proteases with trypsin-like or elastase-like activity. We assessed the selectivity and potency of these probes against recombinant enzymes and demonstrated that while they are efficacious at labeling active proteases in complex protein mixtures in vitro, they are less valuable for in vivo studies. We used these probes to evaluate serine protease activity in two mouse models of acute inflammation, including pancreatitis and colitis. As anticipated, the activity of trypsin-like proteases was increased during pancreatitis. Levels of elastase-like proteases were low in pancreatic lysates and colonic luminal fluids, whether healthy or inflamed. Exogenously added recombinant neutrophil elastase was inhibited upon incubation with these samples, an effect that was augmented in inflamed samples compared to controls. These data suggest that endogenous inhibitors and elastase-degrading proteases are upregulated during inflammation.  相似文献   

19.
CrmA is a "cross-class" serpin family inhibitor of the proapoptotic serine protease, granzyme B, as well as cysteine proteases of the caspase family. To determine whether crmA inhibits these structurally diverse proteases by a common conformational trapping mechanism, we mapped the position of the protease in crmA complexes with granzyme B or caspase-1 by fluorescence perturbation and fluorescence resonance energy transfer (FRET) analyses of site-specific fluorophore-labeled crmAs. A reactive loop P6 NBD label underwent similar large fluorescence enhancements (>200%) either upon reactive loop cleavage by AspN protease or complex formation with granzyme B or caspase-1, consistent with the insertion of the cleaved reactive loop into sheet A in both types of crmA-protease complexes. NBD labels on the noninserting part of the reactive loop docking site for protease (P1' residue) or midway between the two ends of sheet A (helix F residue 101) showed no significant perturbations due to protease complexation. By contrast, labels at positions 68 and 261, lying at the end of sheet A most distal from the reactive loop, showed marked perturbations distinct from those induced by AspN cleavage and thus ascribable to granzyme B or caspase-1 proximity in the complexes. Substantial FRET between protease tryptophans and 5-dimethylaminonaphthalene-1-sulfonyl-labeled crmAs occurred in protease complexes with crmAs labeled at the 68 and 261 positions, but not the P1' position. These results suggest that granzyme B and caspase-1 are inhibited by crmA by a common mechanism involving full reactive loop insertion into sheet A and translocation of the protease to the distal end of the sheet as previously found for inhibition of other serine proteases by serpins.  相似文献   

20.
Han J  Zhang H  Min G  Kemler D  Hashimoto C 《FEBS letters》2000,468(2-3):194-198
Serpins define a large protein family in which most members function as serine protease inhibitors. Here we report the results of a search for serpins in Drosophila melanogaster that are potentially required for oogenesis or embryogenesis. We cloned and sequenced ovarian cDNAs that encode six distinct proteins having extensive sequence similarity to mammalian serpins, including residues important in the serpin inhibition mechanism. One of these new serpins in recombinant form inactivates, and complexes with, trypsin-like proteases in vitro. To our knowledge, these results represent the first evidence for a serpin in Drosophila that functions as a serine protease inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号