首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Despite the fact that rice paddy fields (RPFs) are contributing 10 to 25% of global methane emissions, the organisms responsible for methane production in RPFs have remained uncultivated and thus uncharacterized. Here we report the isolation of a methanogen (strain SANAE) belonging to an abundant and ubiquitous group of methanogens called rice cluster I (RC-I) previously identified as an ecologically important microbial component via culture-independent analyses. To enrich the RC-I methanogens from rice paddy samples, we attempted to mimic the in situ conditions of RC-I on the basis of the idea that methanogens in such ecosystems should thrive by receiving low concentrations of substrate (H2) continuously provided by heterotrophic H2-producing bacteria. For this purpose, we developed a coculture method using an indirect substrate (propionate) in defined medium and a propionate-oxidizing, H2-producing syntroph, Syntrophobacter fumaroxidans, as the H2 supplier. By doing so, we significantly enriched the RC-I methanogens and eventually obtained a methanogen within the RC-I group in pure culture. This is the first report on the isolation of a methanogen within RC-I.  相似文献   

2.
We report complete genome sequence of a mesophilic hydrogenotrophic methanogen Methanocella paludicola, the first cultured representative of the order Methanocellales once recognized as an uncultured key archaeal group for methane emission in rice fields. The genome sequence of M. paludicola consists of a single circular chromosome of 2,957,635 bp containing 3004 protein-coding sequences (CDS). Genes for most of the functions known in the methanogenic archaea were identified, e.g. a full complement of hydrogenases and methanogenesis enzymes. The mixotrophic growth of M. paludicola was clarified by the genomic characterization and re-examined by the subsequent growth experiments. Comparative genome analysis with the previously reported genome sequence of RC-I(MRE50), which was metagenomically reconstructed, demonstrated that about 70% of M. paludicola CDSs were genetically related with RC-I(MRE50) CDSs. These CDSs included the genes involved in hydrogenotrophic methane production, incomplete TCA cycle, assimilatory sulfate reduction and so on. However, the genetic components for the carbon and nitrogen fixation and antioxidant system were different between the two Methanocellales genomes. The difference is likely associated with the physiological variability between M. paludicola and RC-I(MRE50), further suggesting the genomic and physiological diversity of the Methanocellales methanogens. Comparative genome analysis among the previously determined methanogen genomes points to the genome-wide relatedness of the Methanocellales methanogens to the orders Methanosarcinales and Methanomicrobiales methanogens in terms of the genetic repertoire. Meanwhile, the unique evolutionary history of the Methanocellales methanogens is also traced in an aspect by the comparative genome analysis among the methanogens.  相似文献   

3.
Methane emission from paddy fields may be reduced by the addition of electron acceptors to stimulate microbial populations competitive to methanogens. We have studied the effects of ferrihydrite and gypsum (CaSO(4). 2H(2)O) amendment on methanogenesis and population dynamics of methanogens after flooding of Italian rice field soil slurries. Changes in methanogen community structure were followed by archaeal small subunit (SSU) ribosomal DNA (rDNA)- and rRNA-based terminal restriction fragment length polymorphism analysis and by quantitative SSU rRNA hybridization probing. Under ferrihydrite amendment, acetate was consumed efficiently (<60 microM) and a rapid but incomplete inhibition of methanogenesis occurred after 3 days. In contrast to unamended controls, the dynamics of Methanosarcina populations were largely suppressed as indicated by rDNA and rRNA analysis. However, the low acetate availability was still sufficient for activation of Methanosaeta spp., as indicated by a strong increase of SSU rRNA but not of relative rDNA frequencies. Unexpectedly, rRNA amounts of the novel rice cluster I (RC-I) methanogens increased significantly, while methanogenesis was low, which may be indicative of transient energy conservation coupled to Fe(III) reduction by these methanogens. Under gypsum addition, hydrogen was rapidly consumed to low levels ( approximately 0.4 Pa), indicating the presence of a competitive population of hydrogenotrophic sulfate-reducing bacteria (SRB). This was paralleled by a suppressed activity of the hydrogenotrophic RC-I methanogens as indicated by the lowest SSU rRNA quantities detected in all experiments. Full inhibition of methanogenesis only became apparent when acetate was depleted to nonpermissive thresholds (<5 microM) after 10 days. Apparently, a competitive, acetotrophic population of SRB was not present initially, and hence, acetotrophic methanosarcinal populations were less suppressed than under ferrihydrite amendment. In conclusion, although methane production was inhibited effectively under both mitigation regimens, different methanogenic populations were either suppressed or stimulated, which demonstrates that functionally similar disturbances of an ecosystem may result in distinct responses of the populations involved.  相似文献   

4.
Northern acidic peatlands are important sources of atmospheric methane, yet the methanogens in them are poorly characterized. We examined methanogenic activities and methanogen populations at different depths in two peatlands, McLean bog (MB) and Chicago bog (CB). Both have acidic (pH 3.5-4.5) peat soils, but the pH of the deeper layers of CB is near-neutral, reflecting its previous existence as a neutral-pH fen. Acetotrophic and hydrogenotrophic methanogenesis could be stimulated in upper samples from both bogs, and phylotypes of methanogens using H2/CO2 (Methanomicrobiales) or acetate (Methanosarcinales) were identified in 16S rRNA gene clone libraries and by terminal restriction fragment length polymorphism (T-RFLP) analyses using a novel primer/restriction enzyme set that we developed. Particularly dominant in the upper layers was a clade in the Methanomicrobiales, called E2 here and the R10 or fen group elsewhere, estimated by quantitative polymerase chain reaction to be present at approximately 10(8) cells per gram of dry peat. Methanogenic activity was considerably lower in deeper samples from both bogs. The methanogen populations detected by T-RFLP in deeper portions of MB were mainly E2 and the uncultured euryarchaeal rice cluster (RC)-II group, whereas populations in the less acidic CB deep layers were considerably different, and included a Methanomicrobiales clade we call E1-E1', as well as RC-I, RC-II, marine benthic group D, and a new cluster that we call the subaqueous cluster. E2 was barely detectable in the deeper samples from CB, further evidence for the associations of most organisms in this group with acidic habitats.  相似文献   

5.
We report first insights into a representative genome of rice cluster I (RC-I), a major group of as-yet uncultured methanogens. The starting point of our study was the methanogenic consortium MRE50 that had been stably maintained for 3 years by consecutive transfers to fresh medium and anaerobic incubation at 50 degrees C. Process-oriented measurements provided evidence for hydrogenotrophic CO(2)-reducing methanogenesis. Assessment of the diversity of consortium MRE50 suggested members of the families Thermoanaerobacteriaceae and Clostridiaceae to constitute the major bacterial component, while the archaeal population was represented entirely by RC-I. The RC-I population amounted to more than 50% of total cells, as concluded from fluorescence in situ hybridization using specific probes for either Bacteria or Archaea. The high enrichment status of RC-I prompted construction of a large insert fosmid library from consortium MRE50. Comparative sequence analysis of internal transcribed spacer (ITS) regions revealed that three different RC-I rrn operon variants were present in the fosmid library. Three, approximately 40-kb genomic fragments, each representative for one of the three different rrn operon variants, were recovered and sequenced. Computational analysis of the sequence data resulted in two major findings: (i) consortium MRE50 most likely harbours only a single RC-I genotype, which is characterized by multiple rrn operon copies; (ii) seven genes were identified to possess a strong phylogenetic signal (eIF2a, dnaG, priA, pcrA, gatD, gatE, and a gene encoding a putative RNA-binding protein). Trees exemplarily computed for the deduced amino acid sequences of eIF2a, dnaG, and priA corroborated a specific phylogenetic association of RC-I with the Methanosarcinales.  相似文献   

6.
The diversity of methanogen-specific methyl-coenzyme M reductase alpha-subunit (mcrA/mrtA) genes in Italian rice field soil was analysed using a combination of molecular techniques and enrichment cultures. From 75 mcrA/mrtA clones retrieved from rice field soil, 52 were related to members of the Methanosarcinaceae, Methanosaetaceae and Methanobacteriaceae. However, 19 and four clones formed two novel clusters of deeply branching mcrA sequences, respectively, which could not be affiliated to known methanogens. A new methanogen-specific fingerprinting assay based on terminal restriction fragment length polymorphism (T-RFLP) analysis of fluorescently labelled polymerase chain reaction (PCR) products allowed us to distinguish all environmental mcrA/mrtA sequences via group-specific Sau96I restriction sites. Even genes for the isoenzyme methyl-coenzyme M reductase two (mrtA) of Methanobacteriaceae present in rice field soil were represented by a unique 470 bp terminal restriction fragment (T-RF). Both cloning and T-RFLP analysis indicated a significant representation of novel environmental mcrA sequences in rice field soil (238 bp T-RF). To identify these mcrA sequences, methanogenic enrichment cultures with rice field soil as inoculum were established with H2/CO2 as substrates at a temperature of 50 degrees C, and these were monitored using molecular tools. In subsequent transfers of these enrichment cultures, cloning and T-RFLP analysis detected predominantly SSU rRNA genes of rice cluster I (RC-I), an uncultivated euryarchaeotal lineage discovered previously in anoxic rice field soil. In parallel, both mcrA cloning and T-RFLP analyses of the enrichment culture identified the more frequent cluster of novel environmental mcrA sequences as belonging to members of RC-I. Thus, we could demonstrate the genotype and phenotype of RC-I Archaea by the presence of a catabolic gene in a methanogenic enrichment culture before the isolation of pure cultures.  相似文献   

7.
Methane is formed on rice roots mainly by CO2 reduction. The present study aimed to identify the active methanogenic populations responsible for this process. Soil-free rice roots were incubated anaerobically under an atmosphere of H2/(13CO2) or N2/(13CO2) with phosphate or carbonate (marble) as buffer medium. Nucleic acids were extracted and fractionated by caesium trifluoroacetate equilibrium density gradient centrifugation after 16-day incubation. Community analyses were performed for gradient fractions using terminal restriction fragment polymorphism analysis (T-RFLP) and sequencing of the 16S rRNA genes. In addition, rRNA was extracted and analysed at different time points to trace the community change during the 16-day incubation. The Methanosarcinaceae and the yet-uncultured archaeal lineage Rice Cluster-I (RC-I) were predominant in the root incubations when carbonate buffer and N2 headspace were used. The analysis of [13C]DNA showed that the relative 16S rRNA gene abundance of RC-I increased whereas that of the Methanosarcinaceae decreased with increasing DNA buoyant density, indicating that members of RC-I were more active than the Methanosarcinaceae. However, an unexpected finding was that RC-I was suppressed in the presence of high H2 concentrations (80%, v/v), which during the early incubation period caused a lower CH4 production compared with that with N2 in the headspace. Eventually, however, CH4 production increased, probably because of the activity of Methanosarcinaceae, which became prevalent. Phosphate buffer appeared to inhibit the activity of the Methanosarcinaceae, resulting in lower CH4 production as compared with carbonate buffer. Under these conditions, Methanobacteriaceae were the prevalent methanogens. Our study suggests that the active methanogenic populations on rice roots change in correspondence to the presence of H2 (80%, v/v) and the type of buffer used in the system.  相似文献   

8.
Temperate rice field soil from Vercelli (Italy) contains moderately thermophilic methanogens of the yet uncultivated rice cluster I (RC-I), which become prevalent upon incubation at temperatures of 45-50 degrees C. We studied whether such thermophilic methanogens were ubiquitously present in anoxic soils. Incubation of different rice field soils (from Italy, China and the Philippines) and flooded riparian soils (from the Netherlands) at 45 degrees C resulted in vigorous CH(4) production after a lag phase of about 10 days. The archaeal community structure in the soils was analysed by terminal restriction fragment length polymorphism (T-RFLP) targeting the SSU rRNA genes retrieved from the soil, and by cloning and sequencing. Clones of RC-I methanogens mostly exhibited T-RF of 393 bp, but also terminal restriction fragment (T-RF) of 158 and 258 bp length, indicating a larger diversity than previously assumed. No RC-I methanogens were initially found in flooded riparian soils. However, these archaea became abundant upon incubation of the soil at 45 degrees C. Thermophilic RC-I methanogens were also found in the rice field soils from Pavia, Pila and Gapan. However, the archaeal communities in these soils also contained other methanogenic archaea at high temperature. Rice field soil from Buggalon, on the other hand, only contained thermophilic Methanomicrobiales rather than RC-I methanogens, and rice field soil from Jurong mostly Methanomicrobiales and only a few RC-I methanogens. The archaeal community of rice field soil from Zhenjiang almost exclusively consisted of Methanosarcinaceae when incubated at high temperature. Our results show that moderately thermophilic methanogens are common in temperate soils. However, RC-I methanogens are not always dominating or ubiquitous.  相似文献   

9.
A hydrogenotrophic motile methanogen was isolated from flooded Japanese paddy field soil. Anaerobic incubation of the paddy soil on H(2)-CO(2) at 20 degrees C led to the enrichment of symmetrically curved motile autofluorescent rods. The methanogenic strain TM20-1 isolated from the culture was halotolerant and utilized H(2)-CO(2), 2-propanol-CO(2), or formate as a sole methanogenic substrate. Based on the 16S rRNA gene sequence similarity (94.8%) with Methanospirillum hungateii, and on the physiological and phenotypic characteristics, TM20-1 was suggested to be a newly identified species belonging to the genus Methanospirillum. This is the first report of isolation of the genus Methanospirillum strain from a rice paddy field.  相似文献   

10.
Methane emission from paddy fields may be reduced by the addition of electron acceptors to stimulate microbial populations competitive to methanogens. We have studied the effects of ferrihydrite and gypsum (CaSO4·2H2O) amendment on methanogenesis and population dynamics of methanogens after flooding of Italian rice field soil slurries. Changes in methanogen community structure were followed by archaeal small subunit (SSU) ribosomal DNA (rDNA)- and rRNA-based terminal restriction fragment length polymorphism analysis and by quantitative SSU rRNA hybridization probing. Under ferrihydrite amendment, acetate was consumed efficiently (<60 μM) and a rapid but incomplete inhibition of methanogenesis occurred after 3 days. In contrast to unamended controls, the dynamics of Methanosarcina populations were largely suppressed as indicated by rDNA and rRNA analysis. However, the low acetate availability was still sufficient for activation of Methanosaeta spp., as indicated by a strong increase of SSU rRNA but not of relative rDNA frequencies. Unexpectedly, rRNA amounts of the novel rice cluster I (RC-I) methanogens increased significantly, while methanogenesis was low, which may be indicative of transient energy conservation coupled to Fe(III) reduction by these methanogens. Under gypsum addition, hydrogen was rapidly consumed to low levels (~0.4 Pa), indicating the presence of a competitive population of hydrogenotrophic sulfate-reducing bacteria (SRB). This was paralleled by a suppressed activity of the hydrogenotrophic RC-I methanogens as indicated by the lowest SSU rRNA quantities detected in all experiments. Full inhibition of methanogenesis only became apparent when acetate was depleted to nonpermissive thresholds (<5 μM) after 10 days. Apparently, a competitive, acetotrophic population of SRB was not present initially, and hence, acetotrophic methanosarcinal populations were less suppressed than under ferrihydrite amendment. In conclusion, although methane production was inhibited effectively under both mitigation regimens, different methanogenic populations were either suppressed or stimulated, which demonstrates that functionally similar disturbances of an ecosystem may result in distinct responses of the populations involved.  相似文献   

11.
We investigated the influence of the composition of the fibrolytic microbial community on the development and activities of hydrogen-utilizing microorganisms in the rumens of gnotobiotically reared lambs. Two groups of lambs were reared. The first group was inoculated with Fibrobacter succinogenes, a non-H(2)-producing species, as the main cellulolytic organism, and the second group was inoculated with Ruminococcus albus, Ruminococcus flavefaciens, and anaerobic fungi that produce hydrogen. The development of hydrogenotrophic bacterial communities, i.e., acetogens, fumarate and sulfate reducers, was monitored in the absence of methanogens and after inoculation of methanogens. Hydrogen production and utilization and methane production were measured in rumen content samples incubated in vitro in the presence of exogenous hydrogen (supplemented with fumarate or not supplemented with fumarate) or in the presence of ground alfalfa hay as a degradable substrate. Our results show that methane production was clearly reduced when the dominant fibrolytic species was a non-H(2)-producing species, such as Fibrobacter succinogenes, without significantly impairing fiber degradation and fermentations in the rumen. The addition of fumarate to the rumen contents stimulated H(2) utilization only by the ruminal microbiota inoculated with F. succinogenes, suggesting that these communities could play an important role in fumarate reduction in vivo.  相似文献   

12.
Zoige wetland of Tibetan plateau is characterized by being located at a low latitude (33°56'N, 102°52'E) region and under the annual temperature around 1°C. Previous studies indicated that Zoige wetland was one of the CH4 emission centres in Qinghai-Tibetan plateau; in this study, the methanogen community in this low-latitude wetland was analysed based on the homology of 16S rRNA and mcrA genes retrieved from the soil. The results indicated that members of Methanosarcinales and Methanomicrobiales constituted the majority of methanogens, and a novel uncultured methanogen cluster, Zoige cluster I (ZC-I) affiliated to Methanosarcinales , could be dominant. Using quantitative polymerase chain reaction (qPCR) assay, ZC-I methanogens were estimated to be 107 cells per gram of soil, accounting for about 30% of the total Archeae . By combining culturable enrichment with qPCR assay, the quantity of ZC-I methanogens in the methanogenic enrichment with acetate, H2/CO2, methanol or trimethylamine was determined to increase to 108 cells ml−1, but not with formate, which indicated that ZC-I methanogens could use the four methanogenic substrates. The growth rates at 30°C and 15°C were not pronounced different, implying ZC-I to be the cold-adaptive methanogens. The broad substrate spectrum identified the ZC-I methanogens to be a member of Methanosarcinaceae , and could represent a novel sub-branch specifically inhabited in cold ecosystems. Fluorescence in situ hybridization (FISH) images also visualized ZC-I methanogens the sarcina-like aggregate of the spherical cells. The prevalence and flexibility in substrate utilization and growth temperature suggested ZC-I methanogens to be an important player in the methanogenesis of Zoige wetland.  相似文献   

13.
温度对甲烷产生和氧化的影响   总被引:43,自引:5,他引:38  
综述了温度对土壤产甲烷和氧化甲烷的影响及其机制.温度主要通过土壤中产甲烷菌的优势菌发生更替来改变土壤的产甲烷能力.较高温条件下产甲烷菌以乙酸和H2/CO2都能利用的甲烷八叠球菌(Methanosarcinaceae)为主,使得土壤处于较高的产甲烷状态.较低温条件下产甲烷菌以只能利用乙酸的甲烷毛菌(Methanosaetaceae)为主,土壤形成甲烷的能力相对较弱.温度提高可以显著地增加甲烷的产生,Q10为1.5-28,平均4.1,但是温度效应明显受控于底物浓度,提高底物浓度降低了产甲烷菌对底物的亲和力,相应地增加了度效应,因此在较低温条件下提高底物浓度可以促进甲烷的产生.温度对大气甲烷氧化的影响弱于产甲烷,甲烷氧化菌较少受温度变化的影响,即便在较低温条件下,土壤也具有一定的氧化大气甲烷能力,原因尚不清楚,可能与甲烷氧化菌对大气甲烷具有较高的亲和力有关,有待进一步研究.  相似文献   

14.
Little is known about the methanogenic degradation of acetate, the fate of molecular hydrogen and formate or the ability of methanogens to grow and produce methane in cold, anoxic marine sediments. The microbes that produce methane were examined in permanently cold, anoxic marine sediments at Hydrate Ridge (44 degrees 35' N, 125 degrees 10' W, depth 800 m). Sediment samples (15 to 35 cm deep) were collected from areas of active methane ebullition or areas where methane hydrates occurred. The samples were diluted into enrichment medium with formate, acetate or trimethylamine as catabolic substrate. After 2 years of incubation at 4 degrees C to 15 degrees C, enrichment cultures produced methane. PCR amplification and sequencing of the rRNA genes from the highest dilutions with growth suggested that each enrichment culture contained a single strain of methanogen. The level of sequence similarity (91 to 98%) to previously characterized prokaryotes suggested that these methanogens belonged to novel genera or species within the orders Methanomicrobiales and Methanosarcinales. Analysis of the 16S rRNA gene libraries from DNA extracted directly from the sediment samples revealed phylotypes that were either distantly related to cultivated methanogens or possible anaerobic methane oxidizers related to the ANME-1 and ANME-2 groups of the Archaea. However, no methanogenic sequences were detected, suggesting that methanogens represented only a small proportion of the archaeal community.  相似文献   

15.
Soil drainage is one of the most promising approaches to mitigate methane (CH(4) ) emission from paddy fields. The microbial mechanism for the drainage effect on CH(4) emission, however, remains poorly understood. In the present study, we determined the effect of short (four drainages of 5-6 days each) and long drainage cycles (two drainages of 10-11 days each) on CH(4) emission and analyzed the response of the structure and abundance of methanogens and methanotrophs in a Chinese rice field soil at the DNA level. Rice biomass production was similar between drainage and the practice of continuous flooding. The rate of CH(4) emission, however, was reduced by 59% and 85% for the long and short drainage cycles, respectively. Quantitative (real-time) PCR analysis revealed that the total abundance of archaeal populations decreased by 40% after multiple drainages, indicating the inhibitory effects on methanogen growth. The structure of the methanogen community as determined by terminal restriction fragment length polymorphism analysis, however, remained unaffected by drainages, although it varied among rhizosphere, bulk and surface soils. Quantitative PCR analysis of the methanotrophic functional pmoA genes revealed that the total abundance of methanotrophs in rhizosphere soil increased two to three times after soil drainages, indicating a stimulation of methanotroph growth. The CH(4) oxidation potential in the rhizosphere soil also increased significantly. Furthermore, drainages caused a shift of the methanotrophic community, with a significantly increase of type II methanotrophic bacteria in the rhizosphere and surface soil. Thus, both inhibition of methanogens and stimulation of methanotrophs were partly responsible for the reduction of CH(4) emissions. The methanotroph community, however, appeared to react more sensitively to soil drainage compared with the methanogen community.  相似文献   

16.
The diversity of microorganisms active within sedimentary rocks provides important controls on the geochemistry of many subsurface environments. In particular, biodegradation of organic matter in sedimentary rocks contributes to the biogeochemical cycling of carbon and other elements and strongly impacts the recovery and quality of fossil fuel resources. In this study, archaeal diversity was investigated along a salinity gradient spanning 8 to 3,490 mM Cl(-) in a subsurface shale rich in CH(4) derived from biodegradation of sedimentary hydrocarbons. Shale pore waters collected from wells in the main CH(4)-producing zone lacked electron acceptors such as O(2), NO(3)(-), Fe(3+), or SO(4)(2-). Acetate was detected only in high-salinity waters, suggesting that acetoclastic methanogenesis is inhibited at Cl(-) concentrations above approximately 1,000 mM. Most-probable-number series revealed differences in methanogen substrate utilization (acetate, trimethylamine, or H(2)/CO(2)) associated with chlorinity. The greatest methane production in enrichment cultures was observed for incubations with salinity at or close to the native pore water salinity of the inoculum. Restriction fragment length polymorphism analyses of archaeal 16S rRNA genes from seven wells indicated that there were links between archaeal communities and pore water salinity. Archaeal clone libraries constructed from sequences from 16S rRNA genes isolated from two wells revealed phylotypes similar to a halophilic methylotrophic Methanohalophilus species and a hydrogenotrophic Methanoplanus species at high salinity and a single phylotype closely related to Methanocorpusculum bavaricum at low salinity. These results show that several distinct communities of methanogens persist in this subsurface, CH(4)-producing environment and that each community is adapted to particular conditions of salinity and preferential substrate use and each community induces distinct geochemical signatures in shale formation waters.  相似文献   

17.
Methanogen Communities in a Drained Bog: Effect of Ash Fertilization   总被引:1,自引:0,他引:1  
Forestry practises such has drainage have been shown to decrease emissions of the greenhouse gas methane (CH4) from peatlands. The aim of the study was to examine the methanogen populations in a drained bog in northern Finland, and to assess the possible effect of ash fertilization on potential methane production and methanogen communities. Peat samples were collected from control and ash fertilized (15,000 kg/ha) plots 5 years after ash application, and potential CH4 production was measured. The methanogen community structure was studied by DNA isolation, PCR amplification of the methyl coenzyme-M reductase (mcr) gene, denaturing gradient gel electrophoresis (DGGE), and restriction fragment length polymorphism (RFLP) analysis. The drained peatland showed low potential methane production and methanogen diversity in both control and ash-fertilized plots. Samples from both upper and deeper layers of peat were dominated by three groups of sequences related to Rice cluster-I hydrogenotroph methanogens. Even though pH was marginally greater in the ash-treated site, the occurrence of those sequences was not affected by ash fertilization. Interestingly, a less common group of sequences, related to the Fen cluster, were found only in the fertilized plots. The study confirmed the depth related change of methanogen populations in peatland.  相似文献   

18.
Summary The ability of methanogen species to colonise reticulated polyurethane foam biomass support particles (BSP) in a continuous culture system using formate as carbon source was investigated. Scanning electron micrograph evidence and biomass measurements indicate that two methanogen species effectively colonised within the the matrix of the support particle.The freely suspended colonised BSP are resistant to washout, and a comparison of methane output of the immobilised culture and a liquid culture of the methanogens indicates the potential for process intensification of methane production.  相似文献   

19.
Methanogenesis in rice field soils starts soon after flooding while potentially competing processes like reduction of sulphate and iron take place. Early methanogenesis is mainly driven by hydrogen, while later in the season acetate tends to become more important. Anaerobic ciliates are abundant during this period, and their endosymbionts use hydrogen produced by the ciliates to reduce carbon dioxide to methane. These endosymbiotic methanogens are protected from the competition for substrates with other bacteria that may control methanogenesis outside the protozoan cells. Thus, we focussed on early methanogenesis and on the potential contribution from ciliates and their endosymbionts. Only ciliates of the genus Metopus were found to harbour methanogens, as identified by the F(420)-fluorescence of the endosymbionts. We followed the population dynamics of the ciliates with time, and calculated the ratio of symbiotic methane production to overall methanogenesis. Symbiotic methane production was calculated from the species-specific numbers of methanogenic endosymbionts times the cell-specific methane production of the symbionts. According to this calculation, the symbionts' contribution to overall methane production was only 6.4% at the beginning and decreased with time. In a second experiment, colchicine and cycloheximide were used to inhibit all eukaryotes, comparing the remaining methane production rate to a control without inhibitors. In the inhibition experiment, the contribution from symbionts decreased from 40% to 6% during the first days after flooding, and dropped to near zero within 2 weeks. However, nearly all methane produced from H(2)/CO(2) could be attributed to the ciliates' symbionts between days 5 and 10 after flooding. Both experiments showed that the contribution of methanogenic symbionts to overall methane production is a transient phenomenon, restricted to the first 2 weeks.  相似文献   

20.
We have reported for the first time that agricultural and cellulosic waste, i.e., rice straw was directly applied to methanogenic bioreactors containing carbon fiber textiles (CFT) as supporting material. Addition of CFT to the methanogenic bioreactors enhanced the conversion of dichromate chemical oxygen demand of the substrate to methane (41%) to a greater extent than bioreactors without CFT (9%). In addition, removal of rice straw as a suspended solid was increased from 31% (in bioreactors without CFT) to 57% (in those with CFT). Methanogenic 16S rRNA gene analysis showed that the abundance of acetoclastic methanogen, genus Methanosarcina, was about 11 times higher in bioreactors with CFT (suspended fraction plus retained fraction to CFT) than in bioreactors without CFT (suspended fraction), resulting in lower concentration of acetate in bioreactors with CFT (0.4 mM) than in those without CFT (29.7 mM). On the other hand, the abundance of hydrogenotrophic methanogen, genus Methanobacterium, in bioreactors with CFT was similar to those without CFT. Bacterial communities in bioreactors with CFT were different from those in bioreactors without CFT. Our results indicated that specific microbial community and cooperative relationships between microorganisms in reactors containing CFT facilitated efficient decomposition of rice straw and its conversion to methane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号