首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
Acinetobacter baumannii (A. baumannii) is a Gram-negative bacterium, which acts as an opportunistic pathogen and causes hospital-acquired pneumonia and bacteremia by infecting the alveoli of epithelial cells and macrophages. Evidence reveals that A. baumannii outer membrane protein 34 (Omp34) elicits cellular immune responses and inflammation. The innate immunity NOD-like receptor 3 (NLRP3) inflammasome exerts critical function against pneumonia caused by A. baumannii infection, however, the role of Omp34 in the activation of the NLRP3 inflammasome and its corresponding regulatory mechanism are not clearly elucidated. The present study aimed to investigate whether Omp34 elicited NLRP3 inflammasome activation through the mitochondria-derived reactive oxygen species (ROS). Our results showed that Omp34 triggered cell pyroptosis by up-regulating the expression of NLRP3 inflammasome-associated proteins and IL-1β release in a time- and dose-dependent manner. Omp34 induced the expression of caspase-1-p10 and IL-1β, which was significantly attenuated by NLRP3 gene silencing in RAW264.7 mouse macrophage cells. Additionally, Omp34 stimulated RAW264.7 mitochondria to generate ROS, while the ROS scavenger Mito-TEMPO inhibited the Omp34-triggered expression of NLRP3 inflammasome-associated proteins and IL-1β synthesis. The above findings indicate that mitochondria-derived ROS play an important role in the process of NLRP3 inflammasome activation. In summary, our study demonstrates that the A. baumannii pathogen pattern recognition receptor Omp34 activates NLRP3 inflammasome via mitochondria-derived ROS in RAW264.7 cells. Accordingly, down-regulating the mitochondria-derived ROS prevents the severe infection consequences caused by A. baumannii-induced NLRP3 inflammasome hyper-activation.  相似文献   

2.

Background

The NLRP3 inflammasome is a sensor of specific pathogen, host and environmental danger molecules. Upon activation NLRP3 recruits caspase-1, which cleaves and thereby activates precursor interleukin-1β (IL-1β) and IL-18 to initiate immune responses. Several recent studies have posited that the mitochondria are a central regulator of NLRP3 function.

Scope of review

Mitochondrial reactive oxygen species (mtROS) production, mitochondrial apoptosis, mitochondrial DNA (mtDNA) release, mitophagy, calcium induced mitochondrial damage and mitochondrial co-ordination of NLRP3 localization have all been implicated in regulating NLRP3 activity. In this article we review the literature both for and against these models of NLRP3 inflammasome activation, and highlight other recent contentious issues concerning NLRP3 functioning.

Major conclusions

Although many mechanisms have been proposed for activating NLRP3, no unified model has yet to gain acceptance. Further research is required to clarify how the mitochondria might influence NLRP3 activity.

General significance

While the NLRP3 inflammasome is important for host protection against microbial infection, rare genetic mutations in NLRP3 also cause severe auto-inflammatory diseases. More recent research has implicated NLRP3 activity in pathologies such as atherosclerosis, cancer, type 2 diabetes and Alzheimer's disease. Understanding the mechanisms of NLRP3 inflammasome formation and regulation therefore has the potential to uncover new inflammasome and disease specific therapeutic targets. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   

3.
Leptospirosis is a worldwide zoonosis caused by spirochetes from the genus Leptospira. Although there is a large diversity of clinical signs and symptoms, a severe inflammatory response is common to all leptospirosis patients. The mechanism of IL-1β secretion during Leptospira infection has been previously studied in mouse macrophages. However, the outcome of Leptospira infection is very different in human and murine macrophages, and the mechanisms responsible for IL-1β secretion in human macrophages had not been investigated. This study therefore examines the effects of Leptospira interrogans infection on inflammasome activation and proinflammatory cytokine expression in human macrophages. Increased mRNA and protein expression of NLRP3 was observed by real time RT-PCR and flow cytometry at 1 h after co-cultivation. Enzyme-linked immunosorbent assay (ELISA) determination showed that IL-1β and IL-18 are released in the culture supernatants at 1 h after cultivation. The inhibition assay showed that glybenclamide (a K+ efflux inhibitor that blocks NLRP3 inflammasome activation) and N-benzyloxycarbony-Val-Ala-Asp (O-methyl)-fluoromethylketone (Z-VAD-FMK; a caspase-1 inhibitor) and NLRP3 depletion with siRNAs reduced the levels of IL-1β and IL-18 release. Moreover, the levels of IL-1β and IL-18 production decreased in CA-074 (a cathepsin B inhibitor) and NAC (an anti-oxidant) pretreated human macrophages, compared to untreated controls. This study suggests that L. interrogans infection leads to reactive oxygen species (ROS)- and cathepsin B-dependent NLRP3 inflammasome activation, which subsequently mediates caspase-1 activation and IL-1β and IL-18 release.  相似文献   

4.
Paracoccidioides brasiliensis is the etiologic agent of paracoccidioidomycosis (PCM), the most prevalent systemic mycosis that is geographically confined to Latin America. The pro-inflammatory cytokine IL-1β that is mainly derived from the activation of the cytoplasmic multiprotein complex inflammasome is an essential host factor against opportunistic fungal infections; however, its role in infection with a primary fungal pathogen, such as P. brasiliensis, is not well understood. In this study, we found that murine bone marrow-derived dendritic cells responded to P. brasiliensis yeast cells infection by releasing IL-1β in a spleen tyrosine kinase (Syk), caspase-1 and NOD-like receptor (NLR) family member NLRP3 dependent manner. In addition, P. brasiliensis-induced NLRP3 inflammasome activation was dependent on potassium (K+) efflux, reactive oxygen species production, phagolysosomal acidification and cathepsin B release. Finally, using mice lacking the IL-1 receptor, we demonstrated that IL-1β signaling has an important role in killing P. brasiliensis by murine macrophages. Altogether, our results demonstrate that the NLRP3 inflammasome senses and responds to P. brasiliensis yeast cells infection and plays an important role in host defense against this fungus.  相似文献   

5.
6.
This study tested the hypothesis that sickle red blood cell (SS-RBC) induce Toll-like receptors (TLR) and Nod-like receptor family, pyrin domain containing 3 (NLRP3)- inflammasome expression in peripheral blood mononuclear cells (PBMC). TLR and NLRP3 inflammasome could contribute to the maintenance of the inflammatory status in sickle cell anemia (SCA) patients, since SS-RBC act as danger signals activating these pathways. In this study, first, we evaluated TLR (2, 4, 5 and 9), NLRP3, Caspase-1, interleukin (IL)-1β and IL-18 expression in PBMC freshly isolated from SCA patients (SS-PBMC) in comparison with PBMC from healthy individuals (AA-PBMC). In the second moment, we investigated whether SS-RBC could interfere with the expression of these molecules in PBMC from healthy donor, in the absence or presence of hydroxyurea (HU) in vitro. TLRs and NLRP3 inflammasome expression were investigated by qPCR. IL-1β, Leukotriene-B4 (LTB4) and nitrite production were measured in PBMC (from healthy donor) culture supernatants. TLR2, TLR4, TLR5, NLRP3 and IL-1β were highly expressed in SS-PBMC when compared to AA-PBMC. Additionally, SS-RBC induced TLR9, NLRP3, Caspase-1, IL-1β and IL-18 expression and induced IL-1β, LTB4 and nitrite production in PBMC cultures. HU did not prevent TLR and NLRP3 inflammasome expression, but increased TLR2 and IL-18 expression and reduced nitrite production. In conclusion, our data suggest that TLR and inflammasome complexes may be key inducers of inflammation in SCA patients, probably through SS-RBC; also, HU does not prevent NLRP3 inflammasome- and TLR-dependent inflammation, indicating the need to develop new therapeutic strategies to SCA patients that act with different mechanisms of those observed for HU.  相似文献   

7.

Aims

Nod like receptor pyrin domain containing 3 (NLRP3) is the best characterized member of nod like receptor family. Recent studies suggest that NLRP3 plays a crucial role in the pathogenesis of type-2 diabetes (T2DM), and variants in NLRP3 affect its mRNA stability and expression. Therefore, we hypothesize that the variants in NLRP3 gene may contribute to T2DM susceptibility. The aim of this study is to evaluate the association of NLRP3 SNPs with T2DM in Chinese Han patients.

Methods

Two common variants in NLRP3 gene, rs10754558 and rs4612666, were detected using the polymerase chain reaction–restriction fragment length polymorphism procedure in 952 unrelated T2DM patients and 871 healthy controls. All participants were unrelated Chinese Hans.

Results

The GG genotype and G allele frequencies of rs10754558 were significantly higher in T2DM patients than those in controls (for GG genotype, 19.6% vs. 14.5%, p = 0.019; for G allele, 43.9% vs. 39.8%, p = 0.013). The GG genotype of rs10754558 was significantly associated with higher LDL-C levels and more prone to insulin resistance, as evaluated by HOMA-IR or QUICK indexes.

Conclusions

The variant (rs10754558) in NLRP3 is related to insulin resistance and increased risk of T2DM in Chinese Han population.  相似文献   

8.
9.

Background

Lectin-like oxidized low-density lipoprotein scavenger receptor-1 (LOX-1) is known to be involved in many pathophysiological events, such as inflammation.

Methods

To clarify the role of LOX-1 in mtDNA damage and NLRP3 inflammasome activation, we studied wild-type (WT) and LOX-1 knockout (KO) mice given thioglycollate, an inflammatory stimulus.

Results

We observed intense inflammatory response (CD45 and CD68 expression) and mtDNA damage in spleen and kidneys of WT mice given thioglycollate. The abrogation of LOX-1 (use of LOX-1 knockout mice) reduced the inflammatory response as well as mtDNA damage (P < 0.05 vs. WT mice). We also observed that mice with LOX-1 deletion had markedly reduced expression of caspase-1 (P10 and P20 subunits) as well as cleaved IL-1β and IL-18. These mice also had much less mtDNA damage and only limited NLRP3 inflammasome expression.

Conclusions

These in vivo observations indicate that LOX-1 plays a key role in mtDNA damage which then leads to NLRP3 inflammasome activation during inflammation.  相似文献   

10.
11.
Oxidative stress-mediated activation of NLRP3 inflammasome in microglia is critical in the development of neurodegerative diseases such as Alzheimer's disease (AD), Parkinson disease (PD). However, the mechanism underlying oxidative stress activates NLRP3 inflammasome remains exclusive. Here we demonstrated cathepsin B (CTSB) as a regulator of the activation of NLRP3 inflammasome by H2O2·H2O2 induced IL-1β secretion in NLRP3 inflammasome-dependent manner·H2O2 treatment increased CTSB activity, which in turn activated NLRP3 inflammasome, and subsequently processed pro-caspase-1 cleavage into caspase-1, resulting in IL-1 β secretion. Genetic inhibition or pharmacological inhibition of CTSB blocked the cleavage of pro-caspase-1 into caspase-1 and subsequent IL-1 β secretion induced by H2O2. Importantly, CTSB activity, IL-1β levels and malondialdehyde (MDA) were remarkably elevated in plasma of AD patients compared to healthy controls, while glutathione was significantly lower than healthy controls. Correlation analyses showed that CTSB activity was positively correlated with IL-1β and MDA levels, but negatively correlated with GSH levels in plasma of AD patients. Taken together, our results indicate that oxidative stress activates NLRP3 through upregulating CTSB activity. Our results identify an important biological function of CTSB in neuroinflammation, suggesting that CTSB is a potential target in AD therapy.  相似文献   

12.
Multi-protein complexes called inflammasomes have recently been identified and shown to contribute to cell death in tissue injury. Intravenous immunoglobulin (IVIg) is an FDA-approved therapeutic modality used for various inflammatory diseases. The objective of this study is to investigate dynamic responses of the NLRP1 and NLRP3 inflammasomes in stroke and to determine whether the NLRP1 and NLRP3 inflammasomes can be targeted with IVIg for therapeutic intervention. Primary cortical neurons were subjected to glucose deprivation (GD), oxygen–glucose deprivation (OGD) or simulated ischemia-reperfusion (I/R). Ischemic stroke was induced in C57BL/6J mice by middle cerebral artery occlusion, followed by reperfusion. Neurological assessment was performed, brain tissue damage was quantified, and NLRP1 and NLRP3 inflammasome protein levels were evaluated. NLRP1 and NLRP3 inflammasome components were also analyzed in postmortem brain tissue samples from stroke patients. Ischemia-like conditions increased the levels of NLRP1 and NLRP3 inflammasome proteins, and IL-1β and IL-18, in primary cortical neurons. Similarly, levels of NLRP1 and NLRP3 inflammasome proteins, IL-1β and IL-18 were elevated in ipsilateral brain tissues of cerebral I/R mice and stroke patients. Caspase-1 inhibitor treatment protected cultured cortical neurons and brain cells in vivo in experimental stroke models. IVIg treatment protected neurons in experimental stroke models by a mechanism involving suppression of NLRP1 and NLRP3 inflammasome activity. Our findings provide evidence that the NLRP1 and NLRP3 inflammasomes have a major role in neuronal cell death and behavioral deficits in stroke. We also identified NLRP1 and NLRP3 inflammasome inhibition as a novel mechanism by which IVIg can protect brain cells against ischemic damage, suggesting a potential clinical benefit of therapeutic interventions that target inflammasome assembly and activity.  相似文献   

13.
14.
Mycobacterium tuberculosis (Mtb) has evolved to evade host innate immunity by interfering with macrophage functions. Interleukin-1β (IL-1β) is secreted by macrophages after the activation of the inflammasome complex and is crucial for host defense against Mtb infections. We have previously shown that Mtb is able to inhibit activation of the AIM2 inflammasome and subsequent pyroptosis. Here we show that Mtb is also able to inhibit host cell NLRP3 inflammasome activation and pyroptosis. We identified the serine/threonine kinase PknF as one protein of Mtb involved in the NLRP3 inflammasome inhibition, since the pknF deletion mutant of Mtb induces increased production of IL-1β in bone marrow-derived macrophages (BMDMs). The increased production of IL-1β was dependent on NLRP3, the adaptor protein ASC and the protease caspase-1, as revealed by studies performed in gene-deficient BMDMs. Additionally, infection of BMDMs with the pknF deletion mutant resulted in increased pyroptosis, while the IL-6 production remained unchanged compared to Mtb-infected cells, suggesting that the mutant did not affect the priming step of inflammasome activation. In contrast, the activation step was affected since potassium efflux, chloride efflux and the generation of reactive oxygen species played a significant role in inflammasome activation and subsequent pyroptosis mediated by the Mtb pknF mutant strain. In conclusion, we reveal here that the serine/threonine kinase PknF of Mtb plays an important role in innate immune evasion through inhibition of the NLRP3 inflammasome.  相似文献   

15.
Sterile inflammation contributes to many common and serious human diseases. The pro-inflammatory cytokine interleukin-1β (IL-1β) drives sterile inflammatory responses and is thus a very attractive therapeutic target. Activation of IL-1β in sterile diseases commonly requires an intracellular multi-protein complex called the NLRP3 (NACHT, LRR, and PYD domains-containing protein 3) inflammasome. A number of disease-associated danger molecules are known to activate the NLRP3 inflammasome. We show here that depletion of zinc from macrophages, a paradigm for zinc deficiency, also activates the NLRP3 inflammasome and induces IL-1β secretion. Our data suggest that zinc depletion damages the integrity of lysosomes and that this event is important for NLRP3 activation. These data provide new mechanistic insight to how zinc deficiency contributes to inflammation and further unravel the mechanisms of NLRP3 inflammasome activation.  相似文献   

16.
Cryptococcus neoformans (C. neoformans) is an opportunistic fungal pathogen that mainly infects immunocompromised individuals such as AIDS patients. Although cell surface receptors for recognition of C. neoformans have been studies intensively, cytoplasmic recognition of this pathogen remains unclear. As an important detector of pathogen infection, inflammasome can sense and get activated by infection of various pathogens, including pathogenic fungi such as Candida albicans and Aspergillus fumigatus. Our present study showed that acapsular C. neoformans (cap59Δ) activated the NLRP3-, but not AIM2-nor NLRC4- inflammasome. During this process, viability of the fungus was required. Moreover, our in vivo results showed that during the pulmonary infection of cap59Δ, immune cell infiltration into the lung and effective clearance of the fungus were both dependent on the presence of NLRP3 inflammasome. In summary, our data suggest that the capsule of C. neoformans prevents recognition of the fungus by host NLRP3 inflammasome and indicate that manipulation of inflammasome activity maybe a novel approach to control C. neoformans infection.  相似文献   

17.
The inflammasome is a multiprotein complex that mediates caspase‐1 activation with subsequent maturation of the proinflammatory cytokines IL‐1β and IL‐18. The NLRP3 inflammasome is known to be activated by Staphylococcus aureus, one of the leading causes of bacteremia worldwide. Inflammasome activation and regulation in response to bacterial infection have been found to be of importance for a balanced host immune response. However, inflammasome signaling in vivo in humans initiated by S. aureus is currently sparsely studied. This study therefore aimed to investigate NLRP3 inflammasome activity in 20 patients with S. aureus bacteremia (SAB), by repeated measurement during the first week of bacteremia, compared with controls. Caspase‐1 activity was measured in monocytes and neutrophils by flow cytometry detecting FLICA (fluorescent‐labeled inhibitor of caspase‐1), while IL‐1β and IL‐18 was measured by Luminex and ELISA, respectively. As a measure of inflammasome priming, messenger RNA (mRNA) expression of NLRP3, CASP1 (procaspase‐1), and IL1B (pro‐IL‐1β) was analyzed by quantitative PCR. We found induced caspase‐1 activity in innate immune cells with subsequent release of IL‐18 in patients during the acute phase of bacteremia, indicating activation of the inflammasome. There was substantial interindividual variation in caspase‐1 activity between patients with SAB. We also found an altered inflammasome priming with low mRNA levels of NLRP3 accompanied by elevated mRNA levels of IL1B. This increased knowledge of the individual host immune response in SAB could provide support in the effort to optimize management and treatment of each individual patient.  相似文献   

18.

Background

Mycoplasma hyorhinis (M.hyorhinis, M.hy) is associated with development of gastric and prostate cancers. The NLRP3 inflammasome, a protein complex controlling maturation of important pro-inflammatory cytokines interleukin (IL)-1β and IL-18, is also involved in tumorigenesis and metastasis of various cancers.

Methodology/Principal Findings

To clarify whether M.hy promoted tumor development via inflammasome activation, we analyzed monocytes for IL-1β and IL-18 production upon M.hy challenge. When exposed to M.hy, human monocytes exhibited rapid and robust IL-1β and IL-18 secretion. We further identified that lipid-associated membrane protein (LAMP) from M.hy was responsible for IL-1β induction. Applying competitive inhibitors, gene specific shRNA and gene targeted mice, we verified that M.hy induced IL-1β secretion was NLRP3-dependent in vitro and in vivo. Cathepsin B activity, K+ efflux, Ca2+ influx and ROS production were all required for the NLRP3 inflammasome activation by M.hy. Importantly, it is IL-1β but not IL-18 produced from macrophages challenged with M.hy promoted gastric cancer cell migration and invasion.

Conclusions

Our data suggest that activation of the NLRP3 inflammasome by M.hy may be associated with its promotion of gastric cancer metastasis, and anti-M.hy therapy or limiting NLRP3 signaling could be effective approach for control of gastric cancer progress.  相似文献   

19.
Inflammasomes are multiprotein caspase‐activating complexes that enhance the maturation and release of proinflammatory cytokines (IL‐1β and IL‐18) in response to the invading pathogen and/or host‐derived cellular stress. These are assembled by the sensory proteins (viz NLRC4, NLRP1, NLRP3, and AIM‐2), adaptor protein (ASC), and effector molecule procaspase‐1. In NLRP3‐mediated inflammasome activation, ASC acts as a mediator between NLRP3 and procaspase‐1 for the transmission of signals. A series of homotypic protein‐protein interactions (NLRP3PYD:ASCPYD and ASCCARD:CASP1CARD) propagates the downstream signaling for the production of proinflammatory cytokines. Pyrin‐only protein 1 (POP1) is known to act as the regulator of inflammasome. It modulates the ASC‐mediated inflammasome assembly by interacting with pyrin domain (PYD) of ASC. However, despite similar electrostatic surface potential, the interaction of POP1 with NLRP3PYD is obscured till date. Herein, to explore the possible PYD‐PYD interactions between NLRP3PYD and POP1, a combined approach of protein‐protein docking and molecular dynamics simulation was adapted. The current study revealed that POP1's type‐Ia interface and type‐Ib interface of NLRP3PYD might be crucial for 1:1 PYD‐PYD interaction. In addition to type‐I mode of interaction, we also observed type‐II and type‐III interaction modes in two different dynamically stable heterotrimeric complexes (POP1‐NLRP3‐NLRP3 and POP1‐NLRP3‐POP1). The inter‐residual/atomic distance calculation exposed several critical residues that possibly govern the said interaction, which need further investigation. Overall, the findings of this study will shed new light on hitherto concealed molecular mechanisms underlying NLRP3‐mediated inflammasome, which will have strong future therapeutic implications.  相似文献   

20.
Endothelial dysfunction caused by endothelial cells senescence and chronic inflammation is tightly linked to the development of cardiovascular diseases. NLRP3 (NOD-like receptor family pyrin domain-containing3) inflammasome plays a central role in inflammatory response that is associated with diverse inflammatory diseases. This study explores the effects and possible mechanisms of NLRP3 inflammasome in endothelial cells senescence. Results show an increment of pro-inflammatory cytokine interleukin (IL) −1β secretion and caspase-1 activation during the senescence of endothelial cells induced by bleomycin. Moreover, secreted IL-1β promoted endothelial cells senescence through up-regulation of p53/p21 protein expression. NLRP3 inflammasome was found to mediate IL-1β secretion through the production of ROS (reactive oxygen species) during the senescence of endothelial cells. Furthermore, the association of TXNIP (thioredoxin-interacting protein) with NLRP3 induced by ROS promoted NLRP3 inflammasome activation in senescent endothelial cells. In addition, the expressions of NLRP3 inflammasome related genes, ASC (apoptosis associated speck-like protein containing a CARD), TXNIP, cleaved caspase-1 and IL-1β, were also increased in vitro and in vivo studies. These findings indicate that endothelial senescence could be mediated through ROS and NLRP3 inflammasome signaling pathways, suggesting a potential target for the prevention of endothelial senescence-related cardiovascular diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号