首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 495 毫秒
1.

Background

Interleukin-1β (IL-1β) is important for host resistance against Mycobacterium tuberculosis (Mtb) infections. The response of the dendritic cell inflammasome during Mtb infections has not been investigated in detail.

Methodology/Principal Findings

Here we show that Mtb infection of bone marrow-derived dendritic cells (BMDCs) induces IL-1β secretion and that this induction is dependent upon the presence of functional ASC and NLRP3 but not NLRC4 or NOD2. The analysis of cell death induction in BMDCs derived from these knock-out mice revealed the important induction of host cell apoptosis but not necrosis, pyroptosis or pyronecrosis. Furthermore, NLRP3 inflammasome activation and apoptosis induction were both reduced in BMDCs infected with the esxA deletion mutant of Mtb demonstrating the importance of a functional ESX-1 secretion system. Surprisingly, caspase-1/11-deficient BMDCs still secreted residual levels of IL-1βand IL-18 upon Mtb infection which was abolished in cells infected with the esxA Mtb mutant.

Conclusion

Altogether we demonstrate the partially caspase-1/11-independent, but NLRP3- and ASC- dependent IL-1β secretion in Mtb-infected BMDCs. These findings point towards a potential role of DCs in the host innate immune response to mycobacterial infections via their capacity to induce IL-1β and IL-18 secretion.  相似文献   

2.
Inflammasome activation is important for antimicrobial defense because it induces cell death and regulates the secretion of IL-1 family cytokines, which play a critical role in inflammatory responses. The inflammasome activates caspase-1 to process and secrete IL-1β. However, the mechanisms governing IL-1α release are less clear. Recently, a non-canonical inflammasome was described that activates caspase-11 and mediates pyroptosis and release of IL-1α and IL-1β. Caspase-11 activation in response to Gram-negative bacteria requires Toll-like receptor 4 (TLR4) and TIR-domain-containing adaptor-inducing interferon-β (TRIF)-dependent interferon production. Whether additional bacterial signals trigger caspase-11 activation is unknown. Many bacterial pathogens use specialized secretion systems to translocate effector proteins into the cytosol of host cells. These secretion systems can also deliver flagellin into the cytosol, which triggers caspase-1 activation and pyroptosis. However, even in the absence of flagellin, these secretion systems induce inflammasome activation and the release of IL-1α and IL-1β, but the inflammasome pathways that mediate this response are unclear. We observe rapid IL-1α and IL-1β release and cell death in response to the type IV or type III secretion systems of Legionella pneumophila and Yersinia pseudotuberculosis. Unlike IL-1β, IL-1α secretion does not require caspase-1. Instead, caspase-11 activation is required for both IL-1α secretion and cell death in response to the activity of these secretion systems. Interestingly, whereas caspase-11 promotes IL-1β release in response to the type IV secretion system through the NLRP3/ASC inflammasome, caspase-11-dependent release of IL-1α is independent of both the NAIP5/NLRC4 and NLRP3/ASC inflammasomes as well as TRIF and type I interferon signaling. Furthermore, we find both overlapping and non-redundant roles for IL-1α and IL-1β in mediating neutrophil recruitment and bacterial clearance in response to pulmonary infection by L. pneumophila. Our findings demonstrate that virulent, but not avirulent, bacteria trigger a rapid caspase-11-dependent innate immune response important for host defense.  相似文献   

3.
Mycobacterium bovis is the causative agent of tuberculosis in a wide range of mammals, including humans. Macrophages are the first line of host defense. They secrete proinflammatory cytokines, such as interleukin-1 beta (IL-1β), in response to mycobacterial infection, but the underlying mechanisms by which human macrophages are activated and release IL-1β following M. bovis infection are poorly understood. Here we show that the ‘nucleotide binding and oligomerization of domain-like receptor (NLR) family pyrin domain containing 7 protein’ (NLRP7) inflammasome is involved in IL-1β secretion and caspase-1 activation induced by M. bovis infection in THP-1 macrophages. NLRP7 inflammasome activation promotes the induction of pyroptosis as well as the expression of tumor necrosis factor alpha (TNF-α), Chemokine (C-C motif) ligand 3 (CCL3) and IL-1β mRNAs. Thus, the NLRP7 inflammasome contributes to IL-1β secretion and induction of pyroptosis in response to M. bovis infection in THP-1 macrophages.  相似文献   

4.

Background

Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome is associated with metabolic disorder and cell death, which are important triggers in diabetic cardiomyopathy (DCM). We aimed to explore whether NLRP3 inflammasome activation contributes to DCM and the mechanism involved.

Methods

Type 2 diabetic rat model was induced by high fat diet and low dose streptozotocin. The characteristics of type 2 DCM were evaluated by metabolic tests, echocardiography and histopathology. Gene silencing therapy was used to investigate the role of NLRP3 in the pathogenesis of DCM. High glucose treated H9c2 cardiomyocytes were used to determine the mechanism by which NLRP3 modulated the DCM. The cell death in vitro was detected by TUNEL and EthD-III staining. TXNIP-siRNA and pharmacological inhibitors of ROS and NF-kB were used to explore the mechanism of NLRP3 inflammasome activation.

Results

Diabetic rats showed severe metabolic disorder, cardiac inflammation, cell death, disorganized ultrastructure, fibrosis and excessive activation of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), pro-caspase-1, activated caspase-1 and mature interleukin-1β (IL-1β). Evidence for pyroptosis was found in vivo, and the caspase-1 dependent pyroptosis was found in vitro. Silencing of NLRP3 in vivo did not attenuate systemic metabolic disturbances. However, NLRP3 gene silencing therapy ameliorated cardiac inflammation, pyroptosis, fibrosis and cardiac function. Silencing of NLRP3 in H9c2 cardiomyocytes suppressed pyroptosis under high glucose. ROS inhibition markedly decreased nuclear factor-kB (NF-kB) phosphorylation, thioredoxin interacting/inhibiting protein (TXNIP), NLRP3 inflammasome, and mature IL-1β in high glucose treated H9c2 cells. Inhibition of NF-kB reduced the activation of NLRP3 inflammasome. TXNIP-siRNA decreased the activation of caspase-1 and IL-1β.

Conclusion

NLRP3 inflammasome contributed to the development of DCM. NF-κB and TXNIP mediated the ROS-induced caspase-1 and IL-1β activation, which are the effectors of NLRP3 inflammasome. NLRP3 gene silencing may exert a protective effect on DCM.  相似文献   

5.
Inflammasome is an intracellular signaling complex of the innate immune system. Activation of inflammasomes promotes the secretion of interleukin 1β (IL-1β) and IL-18 and triggers pyroptosis. Caspase-1 and -11 (or -4/5 in human) in the canonical and non-canonical inflammasome pathways, respectively, are crucial for inflammasome-mediated inflammatory responses. Here we report that gasdermin D (GSDMD) is another crucial component of inflammasomes. We discovered the presence of GSDMD protein in nigericin-induced NLRP3 inflammasomes by a quantitative mass spectrometry-based analysis. Gene deletion of GSDMD demonstrated that GSDMD is required for pyroptosis and for the secretion but not proteolytic maturation of IL-1β in both canonical and non-canonical inflammasome responses. It was known that GSDMD is a substrate of caspase-1 and we showed its cleavage at the predicted site during inflammasome activation and that this cleavage was required for pyroptosis and IL-1β secretion. Expression of the N-terminal proteolytic fragment of GSDMD can trigger cell death and N-terminal modification such as tagging with Flag sequence disrupted the function of GSDMD. We also found that pro-caspase-1 is capable of processing GSDMD and ASC is not essential for GSDMD to function. Further analyses of LPS plus nigericin- or Salmonella typhimurium-treated macrophage cell lines and primary cells showed that apoptosis became apparent in Gsdmd−/− cells, indicating a suppression of apoptosis by pyroptosis. The induction of apoptosis required NLRP3 or other inflammasome receptors and ASC, and caspase-1 may partially contribute to the activation of apoptotic caspases in Gsdmd−/− cells. These data provide new insights into the molecular mechanisms of pyroptosis and reveal an unexpected interplay between apoptosis and pyroptosis.  相似文献   

6.
7.
8.
Amylosin, a heat-stable channel-forming non-ribosomally synthesized peptide toxin produced by strains of Bacillus amyloliquefaciens isolated from moisture-damaged buildings, is shown in this paper to have immunotoxic and cytotoxic effects on human cells as well as antagonistic effects on microbes. Human macrophages exposed to 50 ng of amylosin ml−1 secreted high levels of cytokines interleukin-1β (IL-1β) and IL-18 within 2 h, indicating activation of the NLRP3 inflammasome, an integral part of the innate immune system. At the same exposure level, expression of IL-1β and IL-18 mRNA increased. Amylosin caused dose-dependent potassium ion efflux from all tested mammalian cells (human monocytes and keratinocytes and porcine sperm cells) at 1 to 2 μM exposure. Amylosin also inhibited the motility of porcine sperm cells and depolarized the mitochondria of human keratinocytes. Amylosin may thus trigger the activation of the NLRP3 inflammasome and subsequently cytokine release by causing potassium efflux from exposed cells. The results of this study indicate that exposure to amylosin activates the innate immune system, which could offer an explanation for the inflammatory symptoms experienced by occupants of moisture-damaged buildings. In addition, the amylosin-producing B. amyloliquefaciens inhibited the growth of both prokaryotic and eukaryotic indoor microbes, and purified amylosin also had an antimicrobial effect. These antimicrobial effects could make amylosin producers dominant and therefore significant causal agents of health problems in some moisture-damaged sites.  相似文献   

9.
Loss of pancreatic beta cells is a feature of type-2 diabetes. High glucose concentrations induce endoplasmic reticulum (ER) and oxidative stress-mediated apoptosis of islet cells in vitro. ER stress, oxidative stress and high glucose concentrations may also activate the NLRP3 inflammasome leading to interleukin (IL)-1β production and caspase-1 dependent pyroptosis. However, whether IL-1β or intrinsic NLRP3 inflammasome activation contributes to beta cell death is controversial. This possibility was examined in mouse islets. Exposure of islets lacking functional NLRP3 or caspase-1 to H2O2, rotenone or thapsigargin induced similar cell death as in wild-type islets. This suggests that oxidative or ER stress do not cause inflammasome-mediated cell death. Similarly, deficiency of NLRP3 inflammasome components did not provide any protection from glucose, ribose or gluco-lipotoxicity. Finally, genetic activation of NLRP3 specifically in beta cells did not increase IL-1β production or cell death, even in response to glucolipotoxicity. Overall, our results show that glucose-, ER stress- or oxidative stress-induced cell death in islet cells is not dependent on intrinsic activation of the NLRP3 inflammasome.  相似文献   

10.
Community Acquired Methicillin Resistant Staphylococcus aureus (CA-MRSA) causes severe necrotizing infections of the skin, soft tissues, and lungs. Staphylococcal α-hemolysin is an essential virulence factor in mouse models of CA-MRSA necrotizing pneumonia. S. aureus α-hemolysin has long been known to induce inflammatory signaling and cell death in host organisms, however the mechanism underlying these signaling events were not well understood. Using highly purified recombinant α-hemolysin, we now demonstrate that α-hemolysin activates the Nucleotide-binding domain and leucine-rich repeat containing gene family, pyrin domain containing 3 protein (NLRP3)-inflammasome, a host inflammatory signaling complex involved in responses to pathogens and endogenous danger signals. Non-cytolytic mutant α-hemolysin molecules fail to elicit NLRP3-inflammasome signaling, demonstrating that the responses are not due to non-specific activation of this innate immune signaling system by bacterially derived proteins. In monocyte-derived cells from humans and mice, inflammasome assembly in response to α-hemolysin results in activation of the cysteine proteinase, caspase-1. We also show that inflammasome activation by α-hemolysin works in conjunction with signaling by other CA-MRSA-derived Pathogen Associated Molecular Patterns (PAMPs) to induce secretion of pro-inflammatory cytokines IL-1β and IL-18. Additionally, α-hemolysin induces cell death in these cells through an NLRP3-dependent program of cellular necrosis, resulting in the release of endogenous pro-inflammatory molecules, like the chromatin-associated protein, High-mobility group box 1 (HMGB1). These studies link the activity of a major S. aureus virulence factor to a specific host signaling pathway. The cellular events linked to inflammasome activity have clear relevance to the disease processes associated with CA-MRSA including tissue necrosis and inflammation.  相似文献   

11.
Paracoccidioides brasiliensis is the etiologic agent of paracoccidioidomycosis (PCM), the most prevalent systemic mycosis that is geographically confined to Latin America. The pro-inflammatory cytokine IL-1β that is mainly derived from the activation of the cytoplasmic multiprotein complex inflammasome is an essential host factor against opportunistic fungal infections; however, its role in infection with a primary fungal pathogen, such as P. brasiliensis, is not well understood. In this study, we found that murine bone marrow-derived dendritic cells responded to P. brasiliensis yeast cells infection by releasing IL-1β in a spleen tyrosine kinase (Syk), caspase-1 and NOD-like receptor (NLR) family member NLRP3 dependent manner. In addition, P. brasiliensis-induced NLRP3 inflammasome activation was dependent on potassium (K+) efflux, reactive oxygen species production, phagolysosomal acidification and cathepsin B release. Finally, using mice lacking the IL-1 receptor, we demonstrated that IL-1β signaling has an important role in killing P. brasiliensis by murine macrophages. Altogether, our results demonstrate that the NLRP3 inflammasome senses and responds to P. brasiliensis yeast cells infection and plays an important role in host defense against this fungus.  相似文献   

12.
The inflammatory cytokine IL-1β is critical for host responses against many human pathogens. Here, we define Group B Streptococcus (GBS)-mediated activation of the Nod-like receptor-P3 (NLRP3) inflammasome in macrophages. NLRP3 activation requires GBS expression of the cytolytic toxin, β-hemolysin, lysosomal acidification, and leakage. These processes allow the interaction of GBS RNA with cytosolic NLRP3. The present study supports a model in which GBS RNA, along with lysosomal components including cathepsins, leaks out of lysosomes and interacts with NLRP3 to induce IL-1β production.  相似文献   

13.
Cellular FLICE-inhibitory protein (c-FLIP) is an inhibitor of caspase-8 and is required for macrophage survival. Recent studies have revealed a selective role of caspase-8 in noncanonical IL-1β production that is independent of caspase-1 or inflammasome. Here we demonstrated that c-FLIPL is an unexpected contributor to canonical inflammasome activation for the generation of caspase-1 and active IL-1β. Hemizygotic deletion of c-FLIP impaired ATP- and monosodium uric acid (MSU)-induced IL-1β production in macrophages primed through Toll-like receptors (TLRs). Decreased IL-1β expression was attributed to a reduced activation of caspase-1 in c-FLIP hemizygotic cells. In contrast, the production of TNF-α was not affected by downregulation in c-FLIP. c-FLIPL interacted with NLRP3 or procaspase-1. c-FLIP is required for the full NLRP3 inflammasome assembly and NLRP3 mitochondrial localization, and c-FLIP is associated with NLRP3 inflammasome. c-FLIP downregulation also reduced AIM2 inflammasome activation. In contrast, c-FLIP inhibited SMAC mimetic-, FasL-, or Dectin-1-induced IL-1β generation that is caspase-8-mediated. Our results demonstrate a prominent role of c-FLIPL in the optimal activation of the NLRP3 and AIM2 inflammasomes, and suggest that c-FLIP could be a valid target for treatment of inflammatory diseases caused by over-activation of inflammasomes.  相似文献   

14.
Sterile inflammation contributes to many common and serious human diseases. The pro-inflammatory cytokine interleukin-1β (IL-1β) drives sterile inflammatory responses and is thus a very attractive therapeutic target. Activation of IL-1β in sterile diseases commonly requires an intracellular multi-protein complex called the NLRP3 (NACHT, LRR, and PYD domains-containing protein 3) inflammasome. A number of disease-associated danger molecules are known to activate the NLRP3 inflammasome. We show here that depletion of zinc from macrophages, a paradigm for zinc deficiency, also activates the NLRP3 inflammasome and induces IL-1β secretion. Our data suggest that zinc depletion damages the integrity of lysosomes and that this event is important for NLRP3 activation. These data provide new mechanistic insight to how zinc deficiency contributes to inflammation and further unravel the mechanisms of NLRP3 inflammasome activation.  相似文献   

15.

Background

Mycoplasma hyorhinis (M.hyorhinis, M.hy) is associated with development of gastric and prostate cancers. The NLRP3 inflammasome, a protein complex controlling maturation of important pro-inflammatory cytokines interleukin (IL)-1β and IL-18, is also involved in tumorigenesis and metastasis of various cancers.

Methodology/Principal Findings

To clarify whether M.hy promoted tumor development via inflammasome activation, we analyzed monocytes for IL-1β and IL-18 production upon M.hy challenge. When exposed to M.hy, human monocytes exhibited rapid and robust IL-1β and IL-18 secretion. We further identified that lipid-associated membrane protein (LAMP) from M.hy was responsible for IL-1β induction. Applying competitive inhibitors, gene specific shRNA and gene targeted mice, we verified that M.hy induced IL-1β secretion was NLRP3-dependent in vitro and in vivo. Cathepsin B activity, K+ efflux, Ca2+ influx and ROS production were all required for the NLRP3 inflammasome activation by M.hy. Importantly, it is IL-1β but not IL-18 produced from macrophages challenged with M.hy promoted gastric cancer cell migration and invasion.

Conclusions

Our data suggest that activation of the NLRP3 inflammasome by M.hy may be associated with its promotion of gastric cancer metastasis, and anti-M.hy therapy or limiting NLRP3 signaling could be effective approach for control of gastric cancer progress.  相似文献   

16.
17.
Recognition of intracellular pathogenic bacteria by members of the nucleotide-binding domain and leucine-rich repeat containing (NLR) family triggers immune responses against bacterial infection. A major response induced by several Gram-negative bacteria is the activation of caspase-1 via the Nlrc4 inflammasome. Upon activation, caspase-1 regulates the processing of proIL-1β and proIL-18 leading to the release of mature IL-1β and IL-18, and induction of pyroptosis. The activation of the Nlrc4 inflammasome requires the presence of an intact type III or IV secretion system that mediates the translocation of small amounts of flagellin or PrgJ-like rod proteins into the host cytosol to induce Nlrc4 activation. Using the Salmonella system, it was shown that Naip2 and Naip5 link flagellin and the rod protein PrgJ, respectively, to Nlrc4. Furthermore, phosphorylation of Nlrc4 at Ser533 by Pkcδ was found to be critical for the activation of the Nlrc4 inflammasome. Here, we show that Naip2 recognizes the Shigella T3SS inner rod protein MxiI and induces Nlrc4 inflammasome activation. The expression of MxiI in primary macrophages was sufficient to induce pyroptosis and IL-1β release, which were prevented in macrophages deficient in Nlrc4. In the presence of MxiI or Shigella infection, MxiI associated with Naip2, and Naip2 interacted with Nlrc4. siRNA-mediated knockdown of Naip2, but not Naip5, inhibited Shigella-induced caspase-1 activation, IL-1β maturation and Asc pyroptosome formation. Notably, the Pkcδ kinase was dispensable for caspase-1 activation and secretion of IL-1β induced by Shigella or Salmonella infection. These results indicate that activation of caspase-1 by Shigella is triggered by the rod protein MxiI that interacts with Naip2 to induce activation of the Nlrc4 inflammasome independently of the Pkcδ kinase.  相似文献   

18.
19.
Since IL-37 transgenic mice possesses broad anti-inflammatory properties, we assessed whether recombinant IL-37 affects inflammation in a murine model of invasive pulmonary aspergillosis. Recombinant human IL-37 was injected intraperitoneally into mice prior to infection and the effects on lung inflammation and inflammasome activation were evaluated. IL-37 markedly reduced NLRP3-dependent neutrophil recruitment and steady state mRNA levels of IL-1β production and mitigated lung inflammation and damage in a relevant clinical model, namely aspergillosis in mice with cystic fibrosis. The anti-inflammatory activity of IL-37 requires the IL-1 family decoy receptor TIR-8/SIGIRR. Thus, by preventing activation of the NLRP3 inflammasome and reducing IL-1β secretion, IL-37 functions as a broad spectrum inhibitor of the innate response to infection-mediated inflammation, and could be considered to be therapeutic in reducing the pulmonary damage due to non-resolving Aspergillus infection and disease.  相似文献   

20.
The cytosolic pathogen Burkholderia pseudomallei and causative agent of melioidosis has been shown to regulate IL-1β and IL-18 production through NOD-like receptor NLRP3 and pyroptosis via NLRC4. Downstream signalling pathways of those receptors and other cell death mechanisms induced during B. pseudomallei infection have not been addressed so far in detail. Furthermore, the role of B. pseudomallei factors in inflammasome activation is still ill defined. In the present study we show that caspase-1 processing and pyroptosis is exclusively dependent on NLRC4, but not on NLRP3 in the early phase of macrophage infection, whereas at later time points caspase-1 activation and cell death is NLRC4- independent. In the early phase we identified an activation pathway involving caspases-9, -7 and PARP downstream of NLRC4 and caspase-1. Analyses of caspase-1/11-deficient infected macrophages revealed a strong induction of apoptosis, which is dependent on activation of apoptotic initiator and effector caspases. The early activation pathway of caspase-1 in macrophages was markedly reduced or completely abolished after infection with a B. pseudomallei flagellin FliC or a T3SS3 BsaU mutant. Studies using cells transfected with the wild-type and mutated T3SS3 effector protein BopE indicated also a role of this protein in caspase-1 processing. A T3SS3 inner rod protein BsaK mutant failed to activate caspase-1, revealed higher intracellular counts, reduced cell death and IL-1β secretion during early but not during late macrophage infection compared to the wild-type. Intranasal infection of BALB/c mice with the BsaK mutant displayed a strongly decreased mortality, lower bacterial loads in organs, and reduced levels of IL-1β, myeloperoxidase and neutrophils in bronchoalveolar lavage fluid. In conclusion, our results indicate a major role for a functional T3SS3 in early NLRC4-mediated caspase-1 activation and pyroptosis and a contribution of late caspase-1-dependent and -independent cell death mechanisms in the pathogenesis of B. pseudomallei infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号