首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The effects of sodium nitroprusside (SNP, a donor of NO) on cadmium (Cd) toxicity in lettuce seedlings were studied. SNP was added into hydroponic systems or sprayed directly on the leaves of plants grown with and without Cd. Excess supply of Cd (100 μM) caused growth inhibition, dramatically increased Cd accumulation in both leaves and roots, and inhibited the absorption of Ca, Mg, Fe and Cu. Excess Cd also decreased activities of superoxide dismutase peroxidase and catalase in leaves and roots, and increased the accumulation of superoxide anion (O 2 ·? ), hydrogen peroxide (H2O2) and malondialdehyde (MDA). Root or foliar applications of exogenous NO alleviated Cd-induced growth suppression, especially root application of 250 μM SNP and foliar addition of 500 μM SNP. Addition of SNP promoted the chlorophyll synthesis suggesting that the photosynthesis was up-regulated. Exogenous NO increased Cd-decreased activities of antioxidant enzymes and markedly diminished Cd-induced reactive oxygen species (ROS) and MDA accumulation. Moreover, the absorption of Ca, Mg, Fe and Cu was increased, indicating that exogenous NO stimulated H+-ATPase activity to promote sequestration or uptake of ions. In addition, exogenous NO also inhibited Cd transfer from roots to shoots, which may indicate that Cd retention in roots induced by NO plays a significant role in Cd tolerance in lettuce seedlings. These data suggest that under Cd stress, exogenous NO improves photosynthesis by increasing chlorophyll synthesis, protects lettuce seedlings against oxidative damage by scavenging ROS, helps to maintain the uptake of nutrient elements, and inhibits Cd transferred to shoots effectively.  相似文献   

2.
A hydroponics experiment was conducted to test the effects of sodium nitroprusside (SNP, a donor of NO) supplied with different concentrations on copper (Cu) toxicity in ryegrass seedlings (Lolium perenne L.). Excess Cu (200 µM) reduced chlorophyll content, resulting a decrease in photosynthesis. Cu stress induced the production of hydrogen peroxide (H2O2) and superoxide anion (O2? ?), leading to malondialdehyde (MDA) accumulation. Furthermore, activities of antioxidant enzymes in Cu-treated seedlings such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were decreased. In addition, Cu stress inhibited the uptake of K, Mg, Fe, and Zn and increased Ca content in roots. Moreover, in leaves of Cu-stressed seedlings, K, Fe, and Zn contents were decreased and the contents of Ca and Mg were not affected significantly. In Cu-treated seedlings, Cu concentration in roots was higher than in leaves. Addition of 50, 100, 200 µM SNP in Cu-mediated solutions increased chlorophyll content and photosynthesis, improved antioxidant enzyme activities, reduced Cu-induced oxidative damages, kept intracellular ion equilibrium under Cu stress, increased Cu concentration in roots and inhibited Cu accumulation in leaves. In particular, addition of 100 µM SNP had the best effect on promoting growth of ryegrass seedlings under Cu stress. However, the application of 400 µM SNP had no obvious alleviating effect on Cu toxicity in ryegrass seedlings.  相似文献   

3.
The effects of Cd, in combination with salicylic acid (SA) and sodium nitroprusside (SNP), on ryegrass seedlings were studied. Exposure of plants to 0.1 mM CdCl2 for 2 weeks resulted in toxicity symptoms such as chlorosis and necrotic spots on leaves. The addition of 0.2 mM SA or 0.1 mM SNP slightly alleviated the toxic effects of Cd. After application of both SA and SNP, these symptoms significantly decreased. Treatment with Cd resulted in a decrease of dry weight of roots and shoots, chlorophyll content, net photosynthetic rate (P n), transpiration rate (T r), and the uptake and translocation of mineral elements. In Cd-treated plants, levels of lipoxygenase activity and malondialdehyde, hydrogen peroxide (H2O2), and proline contents significantly increased, whereas the activities of antioxidant enzymes, such as superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase, decreased in both roots and shoots. The results indicated that Cd caused physiological stresses in ryegrass plants. The Cd-stressed plants exposed to SA or SNP, especially to SA + SNP, exhibited improved growth compared with Cd-stressed plants. Application of SA or SNP, especially the combination SA + SNP, considerably reduced root-to-shoot translocation of Cd and increased the activities of antioxidant enzymes in both roots and shoots of Cd-stressed plants. The interaction of SA and SNP increased chlorophyll content, P n and T r in leaves, and the uptake and translocation of mineral elements, and decreased lipid peroxidation and H2O2 and proline accumulation in roots and shoots. These results suggest that SA or SNP, and, in particular, their combination counteracted the negative effects of Cd on ryegrass plants.  相似文献   

4.
Cadmium (Cd) is a non-redox toxic heavy metal present in the environment and induces oxidative stress in plants. We investigated whether exogenous nitric oxide (NO) supplementation as sodium nitroprusside (SNP) has any ameliorating action against Cd-induced oxidative damage in plant roots and thus protective role against Cd toxicity. Cd treatment (50 or 250 μM) alone or in combination with 200 μM SNP was given to hydroponically grown wheat roots for a short time period of 24 h and then these were shifted to distilled water to observe changes in levels of oxidative markers (lipid peroxidation, H2O2 content and electrolyte leakage). Supplementation of Cd with SNP significantly reduced the Cd-induced lipid peroxidation, H2O2 content and electrolyte leakage in wheat roots. It indicated a reactive oxygen species (ROS) scavenging activity of NO. However, even upon removal of Cd-treatment solution, the levels of oxidative markers increased during 24 h recovery stage and later at 48 h these decreased. Cd treatment resulted in an upregulation of activities of antioxidant enzymes—superoxide dismutase (SOD, 1.15.1.1), guaiacol peroxidase (GPX, 1.11.1.7), catalase (CAT, 1.11.1.6), and glutathione reductase (GR, 1.6.4.2). SNP supply resulted in a reduction in Cd-induced increased activities of scavenging enzymes. The protective role of exogenous NO in decreasing Cd-induced oxidative damage was also evident from the histochemical localization of lipid peroxidation, plasma membrane integrity and superoxides. The study concludes that an exogenous supply of NO protects wheat roots from Cd-induced toxicity.  相似文献   

5.
The effects of salicylic acid (SA) on manganese (Mn) toxicity in cucumber plants (Cucumis sativus L.) were studied by investigating the symptoms, plant growth, lipid peroxidation, antioxidative enzymes and antioxidants. Excess Mn caused serious chlorosis and inhibited the growth of cucumber plants, and dramatically increased accumulation of Mn in both shoots and roots, furthermore, inhibited the absorption of Ca, Mg and Zn. Addition of SA decreased the transport of Mn from roots to shoots, alleviated the inhibition of Ca, Mg and Zn absorption induced by excess Mn, reduced the toxicity symptoms and promoted the plant growth. The accumulation of reactive oxygen species (ROS) significantly increased in cucumber leaves exposed to excess Mn, and resulted in the lipid peroxidation, which was indicated by accumulated concentration of thiobarbituric acid-reactive substances (TBARS). Addition of SA significantly decreased the level of ROS and lipid peroxidation. Activities of antioxidant enzymes showed different changes, addition of SA inhibited catalase (CAT) and ascorbate peroxidase (APX) activities, while increased activities of superoxide dismutase (SOD), peroxidase (POD), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) in cucumber leaves exposed to excess Mn. As important antioxidants, ascorbate and glutathione contents in cucumber leaves exposed to excess Mn were significantly increased by SA treatment.  相似文献   

6.
We studied how the relationship between cadmium (Cd) toxicity and oxidative stress influenced the growth, photosynthetic efficiency, lipid peroxidation, and activity of ntioxidative enzymes in the roots and leaves of rice(Oryza sativa L Dongjin). Plants were exposed to Cd for 21 d. Both seedling growth and photosynthetic efficiency decreased gradually with increasing cadmium concentrations. Lipid peroxidation increased slowly in both roots and leaves, causing oxidative stress. However, each tissue type responded differently to Cd concentrations with regard to the induction/ inhibition of antioxidative enzymes. The activity of Superoxide dismutase (SOD) increased in both roots and leaves. Ascorbate peroxidase (APX) activity increased in leaves treated with up to 0.25 μM Cd, then decreased gradually at higher concentrations. In contrast, APX activity in roots increased and remained constant between 0.25 and 25 μM Cd. Enhanced peroxidase (POD) activity was recorded for treatments with up to 25/M Cd, gradually decreasing at higher concentrations in the leaves but remaining unchanged in the roots. Catalase (CAT) activity increased in the roots, but decreased in the leaves, whereas the activity of glutathione reductase (GR) was enhanced in both roots and leaves, where it remained elevated at higher Cd concentrations. These results suggest that rice seedlings tend to cope with free radicals generated by Cd through coordinated, enhanced activities of the antioxidative enzymes involved in detoxification.  相似文献   

7.
Cadmium (Cd) is a potential environmental phytotoxicant. The generation of reactive oxygen species (ROS) due to Cd stress is responsible for the induction of oxidative stress in plants. On the other hand, SNP, a NO donor is known to have effect on Cd-induced oxidative stress in plants. We evaluated the effect of NO on the regulation of Cd stress in the rice (Oryza sativa L.) variety MSE-9. Cd treatment was given in the form of 50, 100 and 200 ??M, whereas for interaction study, 100 ??M of Cd and 100 ??M of SNP were used. The result showed that Cd-induced oxidative stress in MSE-9 by generating ROS. However, when SNP was given with Cd stress, it was seen that SNP treatment regulated the stress metabolism in rice seedlings under Cd toxicity by generating NO. It can be said that the SNP in combination with Cd treatment might possess the way to protect rice seedlings under Cd stress.  相似文献   

8.
The present study investigated the possible mediatory role of selenium (Se) in protecting plants from cadmium (Cd) toxicity. The exposure of sunflower seedlings to 20 μM Cd inhibited biomass production, decreased chlorophyll and carotenoid concentrations and strongly increased accumulation of Cd in both roots and shoots. Similarly, Cd enhanced hydrogen peroxides content and lipid peroxidation as indicated by malondialdehyde accumulation. Pre-soaking seeds with Se (5, 10 and 20 μM) alleviated the negative effect of Cd on growth and led to a decrease in oxidative injuries caused by Cd. Furthermore, Se enhanced the activities of catalase, ascorbate peroxidase and glutathione reductase, but lowered that of superoxide dismutase and guaiacol peroxidase. As important antioxidants, ascorbate and glutathione contents in sunflower leaves exposed to Cd were significantly decreased by Se treatment. The data suggest that the beneficial effect of Se during an earlier growth period could be related to avoidance of cumulative damage upon exposure to Cd, thus reducing the negative consequences of oxidative stress caused by heavy metal toxicity.  相似文献   

9.
Effects of exogenous nickel (Ni: 10 and 200 μM) on growth, mitotic activity, Ni accumulation, H2O2 content and lipid peroxidation as well as the activities of various antioxidative enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione peroxidase (GSH-Px) were investigated in wheat roots. A considerable Ni accumulation in the roots occurred at both the concentrations. Although Ni at 10 μM did not have any significant effect on root growth, it strongly inhibited the root growth at 200 μM. Mitotic activity in the root tips was not significantly affected by exposure of the seedlings to 10 μM Ni; however, it was almost completely inhibited at 200 μM treatment. Ni stress did not result in any significant changes in CAT and APX activities as well as lipid peroxidation. However, H2O2 concentration increased up to 82% over the control in the roots of seedlings exposed to 200 μM Ni. There was a significant decline in both SOD (50%) and GSH-Px (20–30%) activities in the roots when the seedlings were treated with 200 μM Ni. The results indicated that a strong inhibition of wheat root growth caused by Ni stress was not due to enhanced lipid peroxidation, but might be related to the accumulation of H2O2 in root tissue.  相似文献   

10.
In the present study the potentials of aqueous extracts of the two plants, neem (Azadirachta indica) and Tulsi (Ocimum sanctum) were examined in alleviating arsenic toxicity in rice (Oryza sativa L.) plants grown in hydroponics. Seedlings of rice grown for 8 days in nutrient solution containing 50 μM sodium arsenite showed decline in growth, reduced biomass, altered membrane permeability and increased production of superoxide anion (O2·−), H2O2 and hydroxyl radicals (·OH). Increased lipid peroxidation marked by elevated TBARS (thiobarbituric acid reactive substances) level, increased protein carbonylation, alterated levels of ascorbate, glutathione and increased activities of enzymes SOD (superoxide dismutase), CAT (catalase), APX (ascorbate peroxidase) and GPX (glutathione peroxidase) were noted in the seedlings on As treatment. Exogenously added leaf aqueous extracts of Azadirachta indica (0.75 mg mL−1, w/v) and Ocimum sanctum (0.87 mg mL−1, w/v) in the growth medium considerably alleviated As toxicity effects in the seedlings, marked by reduced As uptake, restoration of membrane integrity, reduced production of ROS, lowering oxidative damage and restoring the levels of ascorbate, glutathione and activity levels of antioxidative enzymes. Arsenic uptake in the seedlings declined by 72.5% in roots and 72.8% in shoots, when A. indica extract was present in the As treatment medium whereas with O. sanctum extract, the uptake declined by 67.2% in roots and 70.01% in shoots. Results suggest that both A. indica and O. sanctum aqueous extracts have potentials to alleviate arsenic toxicity in rice plants and that A. indica can serve as better As toxicity alleviator compared to O. sanctum.  相似文献   

11.
Brassica juncea L. eight-day-old seedlings treated with various concentrations (50–200 µM) of copper for 48 h accumulated Cu more in the roots than in leaves. Accumulation of copper resulted in more active lipid peroxidation and depletion of glutathione (GSH) pools in both roots and shoots, which was attributed to copper-induced additional oxidative stress. Activities of ascorbate peroxidase and superoxide dismutase were higher in both roots and shoots while catalase activity increased in leaves but remained unchanged in roots in response to copper accumulation. Changes in lipid peroxidation, GSH content, and antioxidant enzyme activities suggest that oxidative damage may be involved in copper toxicity.From Fiziologiya Rastenii, Vol. 52, No. 2, 2005, pp. 233–237.Original English Text Copyright © 2005 by Devi, Prasad.This article was submitted by the authors in English.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

12.
Tobacco (Nicotiana tabacum L.) is a tolerant species that accumulates cadmium. We studied the effect of Cd (0, 10, 25, 50, 100 μM) on growth parameters, chlorophyll and proline contents, enzymatic antioxidative response and lipid peroxidation of tobacco plants grown in hydroponic culture for 11 days to clarify the strategy of plant response against oxidative stress caused by this heavy metal. Cadmium accumulated more in roots than in shoots. Plant growth was not significantly affected by the cadmium concentrations used. Young leaves were more affected, showing visible chlorosis and a significant decrease in chlorophyll content at high Cd concentrations. Dry weight of both leaves and roots increased indicating a lower capacity for roots to absorb water. An increase in malondialdehyde levels was observed, indicating that lipid peroxidation occurred as a result of ROS formation. The activity of guaiacol peroxidase in leaves increased, indicating that it was very important in the scavenging of H2O2, while superoxide dismutase activity only increased in old leaves. Ascorbate peroxidase showed constant activity levels in tobacco leaves, suggesting that the ascorbate–glutathione pathway was less important as a defense mechanism.  相似文献   

13.
In this study, the effect of cadmium (Cd) uptake and concentration on some growth and biochemical responses were investigated in Malva parviflora under Cd treatments including 0, 10, 50 and 100 µM. The shoots and roots were able to accumulate Cd. However, increased Cd dose led to a considerable Cd content in the roots. Cd stress decreased growth, increased lipid peroxidation and also enhanced proline and ascorbic acid contents in both shoots and roots. Chlorophyll and carotenoid contents decreased in the plants with the increasing Cd concentration. While the activities of catalase (CAT) and superoxide dismutase (SOD) increased in the shoots under different Cd doses, these activities decreased in the roots as compared to the control. Both shoots and roots demonstrated a significant increase in guaiacol peroxidase activity in response to Cd stress. Contrary to the aboveground parts, the roots subjected to Cd doses showed a rise in protein content. Despite higher Cd content in the roots, it seems that CAT and SOD do not play a key role in detoxification of Cd-induced oxidative stress. These findings confirm that reduced biomass and growth under Cd stress can be due to an increase in oxidative stress and a decrease in photosynthetic pigment content. The present study clearly indicates that the shoots and roots exploit different tolerance behaviors to alleviate Cd-induced oxidative stress in M. parviflora.  相似文献   

14.
Nitric oxide (NO) and glutathione (GSH) regulate a variety of physiological processes and stress responses; however, their involvement in mitigating Cu toxicity in plants has not been extensively studied. This study investigated the interactive effect of exogenous sodium nitroprusside (SNP) and GSH on Cu homeostasis and Cu-induced oxidative damage in rice seedlings. Hydroponically grown 12-day-old seedlings were subjected to 100 μM CuSO4 alone and in combination with 200 μM SNP (an NO donor) and 200 μM GSH. Cu exposure for 48 h resulted in toxicity symptoms such as stunted growth, chlorosis, and rolling in leaves. Cu toxicity was also manifested by a sharp increase in lipoxygenase (LOX) activity, lipid peroxidation (MDA), hydrogen peroxide (H2O2), proline (Pro) content, and rapid reductions in biomass, chlorophyll (Chl), and relative water content (RWC). Cu-caused oxidative stress was evident by overaccumulation of reactive oxygen species (ROS; superoxide (O2 ?–) and H2O2). Ascorbate (AsA) content decreased while GSH and phytochelatin (PC) content increased significantly in Cu-stressed seedlings. Exogenous SNP, GSH, or SNP?+?GSH decreased toxicity symptoms and diminished a Cu-induced increase in LOX activity, O2 ?–, H2O2, MDA, and Pro content. They also counteracted a Cu-induced increase in superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), and glyoxalase I and glyoxalase II activities, which paralleled changes in ROS and MDA levels. These seedlings also showed a significant increase in catalase (CAT), glutathione peroxidase (GPX), dehydroascorbate reductase (DHAR), glutathione S-transferase (GST) activities, and AsA and PC content compared with the seedlings stressed with Cu alone. Cu analysis revealed that SNP and GSH restricted the accumulation of Cu in the roots and leaves of Cu-stressed seedlings. Our results suggest that Cu exposure provoked an oxidative burden while reduced Cu uptake and modulating the antioxidant defense and glyoxalase systems by adding SNP and GSH play an important role in alleviating Cu toxicity. Furthermore, the protective action of GSH and SNP?+?GSH was more efficient than SNP alone.  相似文献   

15.
Glutathione-Mediated Alleviation of Chromium Toxicity in Rice Plants   总被引:1,自引:0,他引:1  
A hydroponic experiment was conducted to determine the possible effect of exogenous glutathione (GSH) in alleviating chromium (Cr) stress through examining plant growth, chlorophyll contents, antioxidant enzyme activity, and lipid peroxidation in rice seedlings exposed to Cr toxicity. The results showed that plant growth and chlorophyll content were dramatically reduced when rice plants were exposed to 100 μM Cr. Addition of GSH in the culture solution obviously alleviated the reduction of plant growth and chlorophyll content. The activities of some antioxidant enzymes, including superoxide dismutase, catalase (CAT) and glutathione reductase in leaves, and CAT and glutathione peroxidase in roots showed obvious increase under Cr stress. Addition of GSH reduced malondialdehyde accumulation and increased the activities of these antioxidant enzymes in both leaves and roots, suggesting that GSH may enhance antioxidant capacity in Cr-stressed plants. Furthermore, exogenous GSH caused significant decrease of Cr uptake and root-to-shoot transport in the Cr-stressed rice plants. It can be assumed that GSH is involved in Cr compartmentalization in root cells.  相似文献   

16.
研究了外源一氧化氮(nitric oxide,NO)对盐胁迫下多年生黑麦草幼苗生长及相关生理指标变化的影响。结果表明,与对照相比,50~200μmol·L-1NO供体硝普钠(sodium nitroprusside,SNP)可缓解盐胁迫对黑麦草幼苗生长的抑制作用,其中100μmo·lL-1SNP缓解作用最强。外施SNP显著缓解了盐胁迫导致的叶片相对电导率、K+与Na+比率、丙二醛含量和活性氧水平的增加,提高了盐胁迫下幼苗叶子中脯氨酸含量和超氧化物歧化酶、过氧化氢酶、抗坏血酸过氧化物酶和过氧化物酶等抗氧化酶的活性。这些结果说明,NO可能通过降低细胞吸收Na+的量、增加细胞吸收K+的量和脯氨酸含量以及激活抗氧化保护酶等减轻了盐对黑麦草的伤害,提高了黑麦草的抗盐性。  相似文献   

17.
We investigated the role of selenium (Se) against aluminium (Al) stress in ryegrass by evaluating the growth responses and the antioxidant properties of plants cultured hydroponically with Al (0 or 0.2 mM) and selenite (0–10 µM Se). Al addition significantly reduced the yield and length of shoots and roots, and most Al was accumulated in the roots. Al also enhanced lipid peroxidation and activated the peroxidase (POD), ascorbate peroxidase (APX) and superoxide dismutase (SOD) enzymes in the roots. Se application up to 2 µM improved root growth and steadily decreased thiobarbituric acid reactive substances (TBARS) accumulation in plants treated with 0 and 0.2 mM Al. However, above 2 µM, Se induced stress in plants grown with or without Al. Significant changes in antioxidant enzymes activities were also found as a result of the added Se. At low Se addition levels POD was activated, whereas APX activity decreased irrespective of added Al. Furthermore, Se supplied up to 2 µM greatly decreased root SOD activity in Al-stressed plants. Our study provides evidence that Se alleviated the Al-induced oxidative stress in ryegrass roots through the enhancement of the spontaneous dismutation of superoxide radicals and the subsequent activation of POD enzyme.  相似文献   

18.
The adverse effects of arsenic (As) toxicity on seedling growth, root and shoot anatomy, chlorophyll and carotenoid contents, root oxidizability (RO), antioxidant enzyme activities, H2O2 content, lipid peroxidation and electrolyte leakage (EL%) in common bean (Phaseolus vulgaris L.) were investigated. The role of exogenous nitric oxide (NO) in amelioration of As-induced inhibitory effect was also evaluated using sodium nitroprusside (100 μM SNP) as NO donor and 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (200 μM PTIO) as NO scavenger in different combinations with 50 μM As. As-induced growth inhibition was associated with marked anomalies in anatomical features, reduction in pigment composition, increased RO and severe perturbations in antioxidant enzyme activities. While activity of superoxide dismutase and catalase increased, levels of ascorbate peroxidase, dehydroascorbate reductase and glutathione reductase decreased significantly and guaiacol peroxidase remained normal. The over-accumulation of H2O2 content along with high level of lipid peroxidation and electrolyte leakage indicates As-induced oxidative damage in P. vulgaris seedlings with more pronounced effect on the roots than the shoots. Exogenous addition of NO significantly reversed the As-induced oxidative stress, maintaining H2O2 in a certain level through balanced alterations of antioxidant enzyme activities. The role of NO in the process of amelioration has ultimately been manifested by significant reduction of membrane damage and improvement of growth performance in plants grown on As + SNP media. Onset of oxidative stress was more severe after addition of PTIO, which confirms the protective role of NO against As-induced oxidative damage in P. vulgaris seedlings.  相似文献   

19.
Iron toxicity reduces growth of rice plants in acidic lowlands. Silicon nutrition may alleviate many stresses including heavy metal toxicity in plants. In the present study, the ameliorating effects of silicon nutrition on rice (Oryza sativa L.) plants under toxic Fe levels were investigated. Plants were cultivated in greenhouse in hydroponics under different Fe treatments including 10, 50, 100, and 250 mg L?1 as Fe-EDTA and silicon nutrition including 0 and 1.5 mM sodium silicate. Iron toxicity imposed significant reduction in plant fresh weight, tiller, and leaf number. The activity of catalase, cell wall, and soluble peroxidases, and polyphenol oxidase in shoots decreased due to moderate Fe toxicity (50 and 100 mg L?1), but increased at greater Fe concentration. Ascorbate peroxidase activity increased in both roots and shoots of Fe-stressed plants. Iron toxicity led to increased tissue hydrogen peroxide and lipid peroxidation. Silicon nutrition improved plant growth under all Fe treatments and alleviated Fe toxicity symptoms, probably due to lower Fe concentration of Si-treated plants. Silicon application could improve the activity of antioxidant enzymes such as catalase, ascorbate peroxidase, and soluble peroxidase under moderate Fe toxicity, which resulted in greater hydrogen peroxide detoxification and declined lipid peroxidation. Thus, silicon nutrition could ameliorate harmful effects of Fe toxicity possibly through reduction of plant Fe concentration and improvement of antioxidant enzyme activity.  相似文献   

20.
黑麦草生长过程中有机酸对镉毒性的影响   总被引:30,自引:0,他引:30  
研究了低分子量有机酸草酸、柠檬酸、乙酸及高分子量有机酸胡敏酸对黑麦草(Lolium Loinn)生长过程中Cd毒性的影响.结果表明,随着低分子量有机酸浓度增加,Cd毒性有所增强,致使黑麦草中的叶绿素含量降低及黑麦草的生物量降低,递降顺序是草酸<乙酸<柠檬酸.而施入胡敏酸后,Cd毒性逐渐减弱,黑麦草中的叶绿素含量及黑麦草生物量逐渐增加.对低分子量有机酸而言,无论迁移到黑麦草茎叶中,还是迁移到黑麦草根系中的Cd,随着施入的有机酸浓度增加,增加顺序为柠檬酸>乙酸>草酸.对胡敏酸而言,迁移到黑麦草茎叶和根系中的Cd,随着施入的胡敏酸浓度增加,Cd含量减少,说明其具有降低Cd毒性的作用.另外,根系中Cd含量明显高于茎叶中Cd含量,由此得知,黑麦草根系对Cd有较强的富集作用,并阻止Cd向茎叶中迁移.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号