首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

This paper has investigated the hypothesis that spinal root avulsion (SRA) injury produces alterations in blood flow that contribute to avulsion injury induced pain-like behaviour in rodents. Photoplethysmography (PPG) is an established way of assessing blood flow in the central nervous system (CNS) and laser Doppler flowmetry (LDF) is the most widely used technique for measuring tissue perfusion. Using an established model of SRA injury that produces mechanical hypersensitivity, the PPG and LDF signals were recorded in animals 2 weeks post-injury and compared to naive recordings. PPG and LDF measurements were assessed on the ipsilateral and contralateral sides of the spinal cord rostral and caudal to the avulsion injury and at the level of the injury. Two weeks after injury, a time when vascular blood vessel endothelial markers are known to be decreased, no significant changes were seen in the spinal cord blood flow (SCBF) above, at, or below the injury site or when comparing the ipsilateral vs. contralateral side. Assessment of oxygenation levels again revealed no significant differences between naive and spinal root injured animals along the rostrocaudal axis (i.e., above, at, and below the site of injury or its equivalent on the contralateral side). From these experiments it is concluded that SRA does not significantly alter blood flow or tissue oxygen levels and so ischemia may play a less prominent role in avulsion injury induced pain.  相似文献   

2.
Spinal cord injury (SCI) can induce prolonged spinal cord compression that may result in a reduction of local tissue perfusion, progressive ischemia, and potentially irreversible tissue necrosis. Due to the combination of risk factors and the varied presentation of symptoms, the appropriate method and time course for clinical intervention following SCI are not always evident. In this study, a three-dimensional finite element fluid-structure interaction model of the cervical spinal cord was developed to examine how traditionally sub-clinical compressive mechanical loads impact spinal arterial blood flow. The spinal cord and surrounding dura mater were modeled as linear elastic, isotropic, and incompressible solids, while blood was modeled as a single-phased, incompressible Newtonian fluid. Simulation results indicate that anterior, posterior, and anteroposterior compressions of the cervical spinal cord have significantly different ischemic potentials, with prediction that the posterior component of loading elevates patient risk due to the concomitant reduction of blood flow in the arterial branches. Conversely, anterior loading compromises flow through the anterior spinal artery but minimally impacts branch flow rates. The findings of this study provide novel insight into how sub-clinical spinal cord compression could give rise to certain disease states, and suggest a need to monitor spinal artery perfusion following even mild compressive loading.  相似文献   

3.
Studies were made on the influence of vitamin E on the effects of compression injury of the spinal cord associated with ischemia in rats. The motor disturbance induced by spinal cord injury was greatly reduced by vitamin E supplementation. After injury, the spinal cord evoked potentials showed greater recovery of both amplitude and latency in the vitamin E-supplemented group than in the control group. Spinal cord blood flow was promptly restored and remained normal after injury in the vitamin E-supplemented group, but was significantly decreased from 3 h after injury in the control group. Thiobarbituric acid (TBA)—reactive substances in the spinal cord was immediately increased by compression injury in both groups, and after injury it persisted at a high value for 24 h in the control group, but decreased within 1 h in the vitamin E-supplemented group. Pathological examination of the spinal cord showed less damage, such as bleeding and edema, in the vitamin E-supplemented group than in the control group. Vitamin E may have protective effects on the spinal cord by inhibiting damage induced by lipid peroxidation and/or by sustaining the blood flow by maintaining the normal metabolism of arachidonic acid.  相似文献   

4.
目的:应用胎儿脐血流检测仪测定脐动脉S/D值探讨导致脐血流S/D比值升高的主要原因。方法:对2009年9月-2010年12月在我院进行产前检查的1919例孕28-42周的孕妇检测胎儿脐动脉血流(S/D)。结果:异常组108例的脐带因素、胎儿窘迫、羊水过少及妊高征的发生率均明显高于正常组,两者比较差异有显著性(P〈0.0S)。结论:脐动脉S/D比值增高可及早地警示和发现胎儿宫内缺氧情况,指导临床提早采取干预和处理措施,提高围产保健质量。  相似文献   

5.
A rabbit model of spinal cord ischemia has been introduced as a good model to investigate the pathophysiology of ischemia-reperfusion (I-R)-induced paraplegia. In the present study, we observed the effects of Cu,Zn-superoxide dismutase (SOD1) against ischemic damage in the ventral horn of L(5-6) levels in the rabbit spinal cord. For this study, the expression vector PEP-1 was constructed, and this vector was fused with SOD1 to create a PEP-1-SOD1 fusion protein that easily penetrated the blood-brain barrier. Spinal cord ischemia was induced by transient occlusion of the abdominal aorta for 15 min. PEP-1-SOD1 (0.5 mg/kg) was intraperitoneally administered to rabbits 30 min before ischemic surgery. The administration of PEP-1-SOD1 significantly improved neurological scores compared to those in the PEP-1 (vehicle)-treated ischemia group. Also, in this group, the number of cresyl violet-positive cells at 72 h after I-R was much higher than that in the vehicle-treated ischemia group. Malondialdehyde levels were significantly decreased in the ischemic spinal cord of the PEP-1-SOD1-treated ischemia group compared to those in the vehicle-treated ischemia group. In contrast, the administration of PEP-1-SOD1 significantly ameliorated the ischemia-induced reduction of SOD and catalase levels in the ischemic spinal cord. These results suggest that PEP-1-SOD1 protects neurons from spinal ischemic damage by decreasing lipid peroxidation and maintaining SOD and catalase levels in the ischemic rabbit spinal cord.  相似文献   

6.
Reduced spinal cord blood flow (SCBF) (i.e., ischemia) plays a key role in traumatic spinal cord injury (SCI) pathophysiology and is accordingly an important target for neuroprotective therapies. Although several techniques have been described to assess SCBF, they all have significant limitations. To overcome the latter, we propose the use of real-time contrast enhanced ultrasound imaging (CEU). Here we describe the application of this technique in a rat contusion model of SCI. A jugular catheter is first implanted for the repeated injection of contrast agent, a sodium chloride solution of sulphur hexafluoride encapsulated microbubbles. The spine is then stabilized with a custom-made 3D-frame and the spinal cord dura mater is exposed by a laminectomy at ThIX-ThXII. The ultrasound probe is then positioned at the posterior aspect of the dura mater (coated with ultrasound gel). To assess baseline SCBF, a single intravenous injection (400 µl) of contrast agent is applied to record its passage through the intact spinal cord microvasculature. A weight-drop device is subsequently used to generate a reproducible experimental contusion model of SCI. Contrast agent is re-injected 15 min following the injury to assess post-SCI SCBF changes. CEU allows for real time and in-vivo assessment of SCBF changes following SCI. In the uninjured animal, ultrasound imaging showed uneven blood flow along the intact spinal cord. Furthermore, 15 min post-SCI, there was critical ischemia at the level of the epicenter while SCBF remained preserved in the more remote intact areas. In the regions adjacent to the epicenter (both rostral and caudal), SCBF was significantly reduced. This corresponds to the previously described “ischemic penumbra zone”. This tool is of major interest for assessing the effects of therapies aimed at limiting ischemia and the resulting tissue necrosis subsequent to SCI.  相似文献   

7.
Local capillary blood flow was studied in and around the spinal cord compression focus in humans with spinal injuries in the acute and early periods of the trauma. The effect of the capillary blood flow in the perimedullary network in the region of spinal cord compression on the degree of motor and sensory disturbances was analyzed. The relationship of the increase in capillary blood flow after spinal cord decompression with increases in leg muscle strength and pain threshold was determined.  相似文献   

8.
Spinal axons of the adult newt will regenerate when the spinal cord is severed or when the tail is amputated. Ischemia and associated hypoxia have been correlated with poor central nervous system regeneration in mammals. To test the effects of ischemia on newt spinal cord regeneration, the spinal cord and major blood vessels of the newt tail were severed 2 cm caudal to the cloaca as a primary injury. This primary injury severely reduced circulation in the caudal direction for 7 days; by day 8, circulation was largely restored. After various periods of time after primary injury, tails were amputated 1 cm caudal to the primary injury (in the area of ischemia) and tested for regeneration. If the tail was amputated within 5 days of the primary injury, regeneration did not occur. If amputation was 7 days or longer after the primary injury, a regenerative response occurred. Histology showed that in the non-regenerating tails the spinal cord and associated ependyma, known to be important to tail regeneration, had degenerated in the rostral direction. Such degeneration was prevented when tails were first amputated and allowed to form blastemas before the primary injury. The data indicate that the first 5-7 days of blastema formation are particularly sensitive to compromised blood flow (ischemia/hypoxia). It follows that mechanisms must be present in the adult newt to reduce ischemia to a minimum and thus allow ependymal outgrowth and tail regeneration.  相似文献   

9.
The potential role of superoxide dismutase (SOD), a specific superoxide anion radical scavenger, in treating spinal cord ischemia was investigated in rabbits subjected to aortic occlusion for 20 min. SOD treatment, targeted to the early reperfusion period, reduced both motor dysfunction and incidence of spinal infarcts at 7 days after ischemia. Present results suggest that oxygen-derived free radicals play a role in the pathogenesis of infarcts developing in the spinal cord after ischemia and reperfusion injuries.  相似文献   

10.
1. The aim of this work was to study the influence of reduced aortic blood flow on NADPH-diaphorase (NADPH-d) staining in the gray matter of L4–S3 spinal cord segments.2. Surgery was performed on the abdominal aorta of the rabbit. Spinal cord ischemia was introduced by infrarenal aortic constriction to 30% from the normal blood flow. Animals were allowed to survive 1 week, 1 month and 3 months after surgery. Neurological outcome was studied in relation to the duration of aortic occlusion. The NADPH-d histochemistry was used for the visualisation of spinal cord sections.3. The most affected area of the spinal cord was pericentral region, and slight changes were seen in the NADPH-d activities of both dorsal and ventral horns. One week after surgery, NADPH-d positive pericentral neurons were almost unchanged in their shape and intensity of staining, the only difference was seen in slightly increased staining of the background around the central canal. One month following surgery neurons exhibited shrinkage or were swollen, NADPH-d staining was less intensive in the pericentral zone and positively stained vessels were present.4. Three months of ischemia influenced the NADPH-d activity: (a) In the pericentral region were seen intensively NADPH-d stained neurons almost normal in shape of their bodies but with shortened processes or without them; (b) NADPH-d staining of neuropil was greatly enhanced mostly around the central canal and in the dorsal commissure; (c) Numerous vessels were present in the pericentral zone and in the location of the ventral horn.5. It can be concluded that the reduction of blood flow in the abdominal aorta makes most changes in the pericentral region of the rabbit spinal cord. Increased NADPH-d staining of neuropil and the presence of positively stained vessels reflect increased NADPH-d/NOS production in the spinal cord gray matter after long-term incomplete aortic occlusion.  相似文献   

11.

Background

This article introduces a novel method to continuously monitor regional muscle blood flow by using Near Infrared Spectroscopy (NIRS). We demonstrate the feasibility of the new method in two ways: (1) by applying this new method of determining blood flow to experimental NIRS data during exercise and ischemia; and, (2) by simulating muscle oxygenation and blood flow values using these newly developed equations during recovery from exercise and ischemia.

Methods

Deoxy (Hb) and oxyhemoglobin (HbO2), located in the blood ofthe skeletal muscle, carry two internal relationships between blood flow and oxygen consumption. One is a mass transfer principle and the other describes a relationship between oxygen consumption and Hb kinetics in a two-compartment model. To monitor blood flow continuously, we transfer these two relationships into two equations and calculate the blood flow with the differential information of HbO2 and Hb. In addition, these equations are used to simulate the relationship between blood flow and reoxygenation kinetics after cuff ischemia and a light exercise. Nine healthy subjects volunteered for the cuff ischemia, light arm exercise and arm exercise with cuff ischemia for the experimental study.

Results

Analysis of experimental data of both cuff ischemia and light exercise using the new equations show greater blood flow (four to six times more than resting values) during recovery, agreeing with previous findings. Further, the simulation and experimental studies of cuff ischemia and light exercise agree with each other.

Conclusion

We demonstrate the accuracy of this new method by showing that the blood flow obtained from the method agrees with previous data as well as with simulated data. We conclude that this novel continuous blood flow monitoring method can provide blood flow information non-invasively with NIRS.
  相似文献   

12.
Rabbit spinal cord, subjected to severe partial ischemia induced by abdominal aorta ligation tightly below the renal arteries, was analyzed for phospholipid composition and levels of lipid peroxidation products after 10, 20, and 40 min of the insult. Under conditions when spinal cord blood flow was decreased below 5% of control, concentrations of inositol and ethanolamine phospholipids were decreased by 30% and 10%, respectively. Phosphatidic acid concentration was also altered during ischemia. No accumulation of thiobarbituric acid reactive substances (TBA-RS), conjugated dienes and fluorescent lipid soluble material was found throughout the ischemic period. Pattern of TBA-RS, conjugated diene, and fluorophore formation during postischemic in vitro incubation without and with a peroxidation couple (Fe2+, ascorbic acid) showed increased susceptibility to postischemic lipid peroxidation in tissues after 20 and 40 min of ischemia.  相似文献   

13.
Yu QJ  Wang YL  Zhou QS  Huang HB  Tian SF  Duan DM 《Life sciences》2006,79(15):1479-1483
A completely randomized controlled study based on a rabbit model was designed to study the effect of repetitive ischemic preconditioning (IPC) on a spinal cord ischemic reperfusion injury. Twenty four white adult Japanese rabbits were randomly assigned to one of the 3 groups (n = 8 per group): Group I: sham-operation group, Group II: ischemic reperfusion group, and, Group III: IPC group. Spinal cord ischemia was induced by infra-renal aortic cross-clamp for 45 min in Group II. Before 45 min ischemia, the rabbits in Group III underwent four cycles of IPC (5 min of ischemia followed by 5 min of reperfusion). Post-operative neurological function, electromyography (EMG) of rear limbs, and spinal cord histopathological changes were measured. The concentrations of calcium, magnesium, copper, and zinc in spinal cord were measured in the 7th day. The neurological function and histopathological changes in Group II were significantly different from those in Group I or Group III (P < 0.05 or 0.01). There was a more significant change of EMG in Group II than that in Group III (P < 0.05). The concentrations of calcium and copper in Group II were significantly higher (P < 0.05 or 0.01), but magnesium and zinc were significantly lower (P < 0.05) than those in Group I. Calcium and copper in Group II were significantly higher (P < 0.05), but zinc was significantly lower (P < 0.01) than those in Group III. In conclusion, repetitive IPC can protect rabbit spinal cord from ischemic reperfusion injury in a timely manner, which is associated with corrections of imbalance of calcium, magnesium, copper, and zinc in the ischemic region.  相似文献   

14.
In the present study, we investigated chronological changes of μ-calpain, m-calpain and cleaved spectrin αII immunoreactivity in the ventral horn after transient spinal cord ischemia to investigate relationship between calpains and vulnerability to ischemia using abdominal aorta occlusion model in rabbits. Spinal cord sections at the level of L7 were immunostained with calpains and cleaved spectrin αII monoclonal antibodies. μ-Calpain and m-calpain immunoreactivity was significantly increased in the ischemic ventral horn at 30 min and 1 h after ischemia/reperfusion, respectively. Thereafter, they were decreased with time after ischemia/reperfusion: at 48 h after ischemia, their immunoreactivities nearly disappeared in the ischemic ventral horn. Cleaved spectrin αII immunoreactivity was significantly increased in the ventral horn of spinal cord at 12 h after ischemia/reperfusion, and thereafter, its immunoreactivity was decreased with time after ischemia/reperfusion. In addition, spectrin αII protein level (280 kDa) was decreased from 12 h after ischemia/reperfusion; in contrast, cleaved spectrin αII protein level (150 kDa) was significantly increased at 12 h after ischemia/reperfusion. In conclusion, our observations in this study indicate that calpain is associated with neuronal degeneration in the ventral horn at early time after transient spinal cord ischemia via the proteolysis of spectrin αII.Jae-Chul Lee and In Koo Hwang equally contribute to this article.  相似文献   

15.
探讨缺血后处理对兔脊髓缺血再灌注微循环损伤的影响.成年新西兰大白兔24只随机分为假手术组(C组),缺血再灌注损伤组(IR组),缺血后处理组(P组).IR组和P组采用Zivin改进法制备脊髓缺血再灌注模型,P组在缺血30 min后行复灌1 min/缺血1 min相同处理3次.采用激光多普勒检测缺血前,缺血时及再灌注各时点血流量值,在再灌注24 h时取兔脊髓组织作HE染色观察病理形态学,比色法检测脊髓组织一氧化氮(Nitric oxide,NO)的含量,放免法检测内皮素-1(Endothelin-1,ET-1)及免疫组化法检测血红素氧合酶(Hemeoxygenase-1,HO-1)的表达.研究发现与缺血前基础值相比,再灌注10 min时IR组与P组血流量均有增高,在再灌注30、60、120 min,IR组血流量值有不同程度的降低;与IR组相比,P组血流量值在再灌注各时点均有不同程度的增高.与IR组相比,P组NO含量与HO-1表达均有增加,ET-1含量明显减少,NO/ET-1显著高于IR组(P<0.05或0.01),且P组脊髓病理学损伤轻于IR组.结果表明缺血后处理可减轻兔脊髓缺血再灌注微循环损伤,改善脊髓血流量,...  相似文献   

16.
Taking into account the data concerning disturbances in blood supply of the spinal cord as a response to irritation of the sympathetic trunks, the experimental morphological investigation has been performed on rabbits. By means of the injection technique and staining of neurocytes, changes in the spinal cord, in the spinal nodes and in the pia mater have been studied at chronic irritation of the lumbar nodes of the sympathetic trunk. Certain degenerative changes have been revealed in nervous cells and also phenomena of the spinal cord ischemia, decreasing contacts between the nervous cells and the capillaries surrounding them. As the authors believe, these data can be used by clinicians for revealing pathological mechanisms of the spinal cord ischemia as a result of chronic irritation of the sympathetic trunk.  相似文献   

17.
Activities of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) in the ventral spinal cord, ventral spinal roots and in the central and peripheral stumps of the sciatic nerve transected under conditions of partial ischemia (produced by aortic ligation just below the renal arteries) were compared to those obtained under intact blood supply in time intervals 5, 10, or 15 days after surgery. The significant increase of ChAT activity in the central part of the sciatic nerve following 15 days of partial ischemia correlated with less significant elevation of ChAT in the ventral spinal cord. The changes of AChE activity were not significant during partial ischemia. ChAT in the peripheral stump of the sciatic nerve following 5 days of partial ischemia was preserved by 40% and AChE by 20% more than under normal blood supply. On the contrary, in the next 5 days interval losses of enzymes activity in the degenerating nerve were greater. ChAT was almost totally inactivated whereas 50% of AChE activity was preserved until the end of period examined.  相似文献   

18.
C H Tator  D W Rowed 《CMAJ》1979,121(11):1453-1464
The management of acute spinal cord injuries has changed considerably during the past 10 years owing to new information about the pathophysiology of cord trauma and new diagnostic and treatment methods. It is now known that the cord suffers not only from the immediate physical effects of trauma, but also from secondary pathologic processes, such as ischemia and edema, which are treatable in the first few hours after injury. New neuroradiologic and neurophysiological techniques, such as the recording of the somatosensory evoked potential, increase the accuracy of diagnosis and prognosis in the acute phase. Current immediate treatment includes the administration of steroids and mannitol, with careful attention to respiratory and cardiovascular homeostasis, to overcome post-traumatic ischemia and edema, and immobilization of the spine with devices such as the halo. New surgical procedures are used in selected cases to improve neurologic recovery, to provide rigid immobilization of the spine or to allow earlier mobilization of the patient. The care of spinal cord injuries in the acute phase is facilitated by multidisciplinary units.  相似文献   

19.
Ischemic changes in neurocytes from brain and spinal cord of rats were studied by densitometric measurement of bound basic stain--methylene blue. Statistically significant differences in integrated optical density (I.O.D.) of cytoplasm near to cell nucleus in brain and spinal cord neurocytes were detected after ischemia. After 10 minutes of ischemia, the average values of I.O.D. decreased to 65% and to 69.9% of I.O.D. values of controls. After 2 hours of ischemia, the average values of I.O.D. in brain cell cytoplasm reached only 43.6% and in the spinal cord cells they fell to 54.5% of control values.  相似文献   

20.
Hypoxia and ischemia occur in the spinal cord when blood vessels of the spinal cord are compressed under pathological conditions such as spinal stenosis, tumors, and traumatic spinal injury. Here by using spinal cord slice preparations and patch-clamp recordings we investigated the influence of an ischemia-simulating medium on dorsal horn neurons in deep lamina, a region that plays a significant role in sensory hypersensitivity and pathological pain. We found that the ischemia-simulating medium induced large inward currents in dorsal horn neurons recorded. The onset of the ischemia-induced inward currents was age-dependent, being onset earlier in older animals. Increases of sensory input by the stimulation of afferent fibers with electrical impulses or by capsaicin significantly speeded up the onset of the ischemia-induced inward currents. The ischemia-induced inward currents were abolished by the glutamate receptor antagonists CNQX (20 μM) and APV (50 μM). The ischemia-induced inward currents were also substantially inhibited by the glutamate transporter inhibitor TBOA (100 μM). Our results suggest that ischemia caused reversal operation of glutamate transporters, leading to the release of glutamate via glutamate transporters and the subsequent activation of glutamate receptors in the spinal dorsal horn neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号