首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Mutations in matrix Gla protein (MGP) have been correlated with vascular calcification. In the mouse model, MGP null vascular disease presents as calcifying cartilaginous lesions and mineral deposition along elastin lamellae (elastocalcinosis). Here we examined the mechanisms underlying both of these manifestations. Genetic ablation of enzyme transglutaminase 2 (TG2) in Mgp−/− mice dramatically reduced the size of cartilaginous lesions in the aortic media, attenuated calcium accrual more than 2-fold, and doubled longevity as compared with control Mgp−/− animals. Nonetheless, the Mgp−/−;Tgm2−/− mice still died prematurely as compared with wild-type and retained the elastocalcinosis phenotype. This pathology in Mgp−/− animals was developmentally preceded by extensive fragmentation of elastic lamellae and associated with elevated serine elastase activity in aortic tissue and vascular smooth muscle cells. Systematic gene expression analysis followed by an immunoprecipitation study identified adipsin as the major elastase that is induced in the Mgp−/− vascular smooth muscle even in the TG2 null background. These results reveal a central role for TG2 in chondrogenic transformation of vascular smooth muscle and implicate adipsin in elastin fragmentation and ensuing elastocalcinosis. The importance of elastin calcification in MGP null vascular disease is highlighted by significant residual vascular calcification and mortality in Mgp−/−;Tgm2−/− mice with reduced cartilaginous lesions. Our studies identify two potential therapeutic targets in vascular calcification associated with MGP dysfunction and emphasize the need for a comprehensive approach to this multifaceted disorder.  相似文献   

2.
The role of elastin in the mechanical properties of skin   总被引:4,自引:0,他引:4  
The elastin fibers of rat skin samples were degraded by the use of a purified preparation of elastase to which soybean inhibitor was added, preventing the collagenolytic activity of the elastase on collagen. Control experiments ascertained degradation of elastin and no effect on collagen. The mechanical properties of the skin samples were studied before and after the enzymatic treatment and differences ascribed to the degraded elastin fibers. Elastin plays a role in the mechanical behaviour of rat skin at small stress values and small deformations. Especially, the elastin fibers are responsible for the recoiling mechanism after a stress or deformation has been applied.  相似文献   

3.
Aortic aneurysm is an important clinical condition characterized by common structural changes such as the degradation of elastin, loss of smooth muscle cells, and increased deposition of fibrillary collagen. With the goal of investigating the relationship between the mechanical behavior and the structural/biochemical composition of an artery, this study used a simple chemical degradation model of aneurysm and investigated the progressive changes in mechanical properties. Porcine thoracic aortas were digested in a mild solution of purified elastase (5 U/mL) for 6, 12, 24, 48, and 96 h. Initial size measurements show that disruption of the elastin structure leads to increased artery dilation in the absence of periodic loading. The mechanical properties of the digested arteries, measured with a biaxial tensile testing device, progress through four distinct stages termed (1) initial-softening, (2) elastomer-like, (3) extensible-but-stiff, and (4) collagen-scaffold-like. While stages 1, 3, and 4 are expected as a result of elastin degradation, the S-shaped stress versus strain behavior of the aorta resulting from enzyme digestion has not been reported previously. Our results suggest that gradual changes in the structure of elastin in the artery can lead to a progression through different mechanical properties and thus reveal the potential existence of an important transition stage that could contribute to artery dilation during aneurysm formation.  相似文献   

4.
Elastic fibers are extracellular structures that provide stretch and recoil properties of tissues, such as lungs, arteries, and skin. Elastin is the predominant component of elastic fibers. Tropoelastin (TE), the precursor of elastin, is synthesized mainly during late fetal and early postnatal stages. The turnover of elastin in normal adult tissues is minimal. However, in several pathological conditions often associated with inflammation and oxidative stress, elastogenesis is re-initiated, but newly synthesized elastic fibers appear abnormal. We sought to determine the effects of reactive oxygen and nitrogen species (ROS/RNS) on the assembly of TE into elastic fibers. Immunoblot analyses showed that TE is oxidatively and nitrosatively modified by peroxynitrite (ONOO) and hypochlorous acid (HOCl) and by activated monocytes and macrophages via release of ONOO and HOCl. In an in vitro elastic fiber assembly model, oxidatively modified TE was unable to form elastic fibers. Oxidation of TE enhanced coacervation, an early step in elastic fiber assembly, but reduced cross-linking and interactions with other proteins required for elastic fiber assembly, including fibulin-4, fibulin-5, and fibrillin-2. These findings establish that ROS/RNS can modify TE and that these modifications affect the assembly of elastic fibers. Thus, we speculate that oxidative stress may contribute to the abnormal structure and function of elastic fibers in pathological conditions.  相似文献   

5.
Resistance artery narrowing and stiffening are key elements in the pathogenesis of essential hypertension, but their origin is not completely understood. In mesenteric resistance arteries (MRA) from spontaneously hypertensive rats (SHR), we have shown that inward remodeling is associated with abnormal elastic fiber organization, leading to smaller fenestrae in the internal elastic lamina. Our current aim is to determine whether this alteration is an early event that precedes vessel narrowing, or if elastic fiber reorganization in SHR arteries occurs because of the remodeling process itself. Using MRA from 10-day-old, 30-day-old, and 6-mo-old SHR and normotensive Wistar Kyoto rats, we investigated the time course of the development of structural and mechanical alterations (pressure myography), elastic fiber organization (confocal microscopy), and amount of elastin (radioimmunoassay for desmosine) and collagen (picrosirius red). SHR MRA had an impairment of fenestrae enlargement during the first month of life. In 30-day-old SHR, smaller fenestrae and more packed elastic fibers in the internal elastic lamina were paralleled by increased wall stiffness. Collagen and elastin levels were unaltered at this age. MRA from 6-mo-old SHR also had smaller fenestrae and a denser network of adventitial elastic fibers, accompanied by increased collagen content and vessel narrowing. At this age, elastase digestion was less effective in SHR MRA, suggesting a lower susceptibility of elastic fibers to enzymatic degradation. These data suggest that abnormal elastic fiber deposition in SHR increases resistance artery stiffness at an early age, which might participate in vessel narrowing later in life.  相似文献   

6.
Supravalvular aortic stenosis (SVAS) is associated with decreased elastin and altered arterial mechanics. Mice with a single deletion in the elastin gene (ELN(+/-)) are models for SVAS. Previous studies have shown that elastin haploinsufficiency in these mice causes hypertension, decreased arterial compliance, and changes in arterial wall structure. Despite these differences, ELN(+/-) mice have a normal life span, suggesting that the arteries remodel and adapt to the decreased amount of elastin. To test this hypothesis, we performed in vitro mechanical tests on abdominal aorta, ascending aorta, and left common carotid artery from ELN(+/-) and wild-type (C57BL/6J) mice. We compared the circumferential and longitudinal stress-stretch relationships and residual strains. The circumferential stress-stretch relationship is similar between genotypes and changes <3% with longitudinal stretch at lengths within 10% of the in vivo value. At mean arterial pressure, the circumferential stress in the ascending aorta is higher in ELN(+/-) than in wild type. Although arterial pressures are higher, the increased number of elastic lamellae in ELN(+/-) arteries results in similar tension/lamellae compared with wild type. The longitudinal stress-stretch relationship is similar between genotypes for most arteries. Compared with wild type, the in vivo longitudinal stretch is lower in ELN(+/-) abdominal and carotid arteries and the circumferential residual strain is higher in ELN(+/-) ascending aorta. The increased circumferential residual strain brings the transmural strain distribution in ELN(+/-) ascending aorta close to wild-type values. The mechanical behavior of ELN(+/-) arteries is likely due to the reduced elastin content combined with adaptive remodeling during vascular development.  相似文献   

7.
Summary Rat mesenteric arteries, perfusion fixed in relaxed or contracted conditions, were digested with acid and elastase, bleach (sodium hypochlorite), or alkali to selectively remove collagen, elastin, or cells. Scanning electron microscopy was used to study the three-dimensional organization of the remaining cells or extracellular components. Smooth muscle cells of the tunica media were elongated and circumferentially oriented. Superior mesenteric artery cells had an irregular surface with numerous projections and some ends were forked. Small mesenteric artery cells were spindle shaped with longitudinal surface ridges, and showed extensive corrugations upon contraction. Elastin was present both as laminae and as an interconnected fibrous meshwork. Collagen was arranged in an irregular network of individual fibrils and small bundles of fibrils that formed nests around the cells in both arteries. This irregular arrangement persisted, with no apparent reordering or loss of order, upon contraction. The lack of an ordered arrangement or specialized organization at the cell ends suggests mechanical coupling of the cells to elastin or collagen throughout the length of the cell, allowing for force transmission in a number of directions. The tunica media is thus a composite material consisting of cells, elastin, and collagen. The isotropic network of fibers is well suited for transmitting the shearing forces placed on it by contraction of smooth muscle cells and by pressure-induced loading.  相似文献   

8.
We have developed a rapid, versatile, and sensitive elastase assay that is based on the measurement of primary amines that are exposed due to enzymatic degradation of proteins, using succinylated elastin as the substrate for elastase. After incubation with elastase the degree of digestion is determined with trinitrobenzene sulfonic acid. The assay is rapid and sensitive, detecting elastase down to 1 ng/ml, and is linear up to enzyme concentrations of 10 μg/ml. The assay is carried out in microtiter plate wells and therefore offers the potential for assaying numerous samples of small volume. The use of succinylated elastin shows specificity for elastase over the control protease, trypsin. This assay is also versatile because it can be applied to samples such as cell culture supernatants, blood plasma, tissue biopsies, and tissue homogenates.  相似文献   

9.
In the large arteries, it is believed that elastin provides the resistance to stretch at low pressure, while collagen provides the resistance to stretch at high pressure. It is also thought that elastin is responsible for the low energy loss observed with cyclic loading. These tenets are supported through experiments that alter component amounts through protease digestion, vessel remodeling, normal growth, or in different artery types. Genetic engineering provides the opportunity to revisit these tenets through the loss of expression of specific wall components. We used newborn mice lacking elastin (Eln−/−) or two key proteins (lysyl oxidase, Lox−/−, or fibulin-4, Fbln4−/−) that are necessary for the assembly of mechanically-functional elastic fibers to investigate the contributions of elastic fibers to large artery mechanics. We determined component content and organization and quantified the nonlinear and viscoelastic mechanical behavior of Eln−/−, Lox−/−, and Fbln4−/− ascending aorta and their respective controls. We confirmed that the lack of elastin, fibulin-4, or lysyl oxidase leads to absent or highly fragmented elastic fibers in the aortic wall and a 56–97% decrease in crosslinked elastin amounts. We found that the resistance to stretch at low pressure is decreased only in Eln−/− aorta, confirming the role of elastin in the nonlinear mechanical behavior of the aortic wall. Dissipated energy with cyclic loading and unloading is increased 53–387% in Eln−/−, Lox−/−, and Fbln4−/− aorta, indicating that not only elastin, but properly assembled and crosslinked elastic fibers, are necessary for low energy loss in the aorta.  相似文献   

10.
Unique anatomic locations and physiologic functions predispose different arteries to varying mechanical responses and pathologies. However, the underlying causes of these mechanical differences are not well understood. The objective of this study was to first identify structural differences in the arterial matrix that would account for the mechanical differences between healthy femoral and carotid arteries and second to utilize these structural observations to perform a microstructurally motivated constitutive analysis. Femoral and carotid arteries were subjected to cylindrical biaxial loading and their microstructure was quantified using two-photon microscopy. The femoral arteries were found to be less compliant than the carotid arteries at physiologic loads, consistent with previous studies, despite similar extracellular compositions of collagen and elastin ( \(P> 0.05\) ). The femoral arteries exhibited significantly less circumferential dispersion of collagen fibers ( \(P< 0.05\) ), despite a similar mean fiber alignment direction as the carotid arteries. Elastin transmural distribution, in vivo axial stretch, and opening angles were also found to be distinctly different between the arteries. Lastly, we modeled the arteries’ mechanical behaviors using a microstructural-based, distributed collagen fiber constitutive model. With this approach, the material parameters of the model were solved using the experimental microstructural observations. The findings of this study support an important role for microstructural organization in arterial stiffness.  相似文献   

11.
The mechanical loading-deformation relation of elastin and collagen fibril bundles is fundamental to understanding the microstructural properties of tissue. Here, we use multiphoton microscopy to obtain quantitative data of elastin and collagen fiber bundles under in situ loading of coronary adventitia. Simultaneous loading-imaging experiments on unstained fresh coronary adventitia allowed morphometric measurements of collagen and elastin fibril bundles and their individual deformation. Fiber data were analyzed at five different distension loading points (circumferential stretch ratio λθ = 1.0, 1.2, 1.4, 1.6, and 1.8) at a physiological axial stretch ratio of λaxial = 1.3. Four fiber geometrical parameters were used to quantify the fibers: orientation angle, waviness, width, and area fraction. The results show that elastin and collagen fibers in inner adventitia form concentric densely packed fiber sheets, and the fiber orientation angle, width, and area fraction vary transmurally. The extent of fiber deformation depends on the initial orientation angle at no-distension state (λθ = 1.0 and λaxial = 1.3). At higher distension loading, the orientation angle and waviness of fibers decrease linearly, but the width of collagen fiber is relatively constant at λθ = 1.0–1.4 and then decrease linearly for λθ ≥ 1.4. A decrease of the relative dispersion (SD/mean) of collagen fiber waviness suggests a heterogeneous mechanical response to loads. This study provides fundamental microstructural data for coronary artery biomechanics and we consider it seminal for structural models.  相似文献   

12.

Objectives

Atherosclerotic plaques with a low content of connective tissue proteins are believed to have an increased risk of rupture and to give rise to clinical events. The aim of the present study was to investigate if the content of elastin, collagen and of the matrix metalloproteinase (MMP) −1, −3, −9 and −12 in plaques removed at surgery can be associated with the occurrence of ipsilateral symptoms.

Methods

The atherosclerotic plaques of 221 patients undergoing carotid endarterectomy were analyzed and their composition was related to the incidence of preoperative, intraoperative and postoperative neurological events.

Results

Elastin, collagen and MMP-12 contents were lower in males and diabetic patients. Elastin (P .010), MMP-3 (P .008) and MMP-9 (P < .0001) were lower, while MMP-1 (P .004) and MMP-9 (P .002) were higher in plaques of patients with preoperative symptoms, even after correction for the time between the occurrence of symptoms and surgery. Elastin and MMP-12 decreased (r = −0.17, P .009 and r = −.288, P <.0001 respectively) while MMP-1 (r = 0.17, P .012) and MMP-9 (r = .21 P <.0001) increased with age. After a mean follow-up time of 39.6 ± 16.6 months, 7.7% of patients had suffered one or multiple ipsilateral neurological events. Patients with plaque elastin levels lower than the median (52 mg/g) had increased post-operative incidence of ipsilateral stroke (P for trend 0.009 using Log Rank Chi-square test). This finding was confirmed when controlling for age, gender, hypertension, diabetes, smoking, pre-operative symptoms and statin usage in a Cox Proportional Hazard model (hazard ratio 7.38, 95% C.I. 1.50–36.31).

Conclusions

These observations support the concept that elastin may be important for plaque stability, and suggest that a low plaque content of elastin is associated with a higher risk for ipsilateral stroke.  相似文献   

13.
Tortuous arteries are often associated with aging, hypertension, atherosclerosis, and degenerative vascular diseases, but the mechanisms are poorly understood. Our recent theoretical analysis suggested that mechanical instability (buckling) may lead to tortuous blood vessels. The objectives of this study were to determine the critical pressure of artery buckling and the effects of elastin degradation and surrounding matrix support on the mechanical stability of arteries. The mechanical properties and critical buckling pressures, at which arteries become unstable and deform into tortuous shapes, were determined for a group of five normal arteries using pressurized inflation and buckling tests. Another group of nine porcine arteries were treated with elastase (8 U/ml), and the mechanical stiffness and critical pressure were obtained before and after treatment. The effect of surrounding tissue support was simulated using a gelatin gel. The critical pressures of the five normal arteries were 9.52 kPa (SD 1.53) and 17.10 kPa (SD 5.11) at axial stretch ratios of 1.3 and 1.5, respectively, while model predicted critical pressures were 10.11 kPa (SD 3.12) and 17.86 kPa (SD 5.21), respectively. Elastase treatment significantly reduced the critical buckling pressure (P < 0.01). Arteries with surrounding matrix support buckled into multiple waves at a higher critical pressure. We concluded that artery buckling under luminal pressure can be predicted by a buckling equation. Elastin degradation weakens the arterial wall and reduces the critical pressure, which thus leads to tortuous vessels. These results shed light on the mechanisms of the development of tortuous vessels due to elastin deficiency.  相似文献   

14.
15.
The vascular wall exhibits nonlinear anisotropic mechanical properties. The identification of a strain energy function (SEF) is the preferred method to describe its complex nonlinear elastic properties. Earlier constituent-based SEF models, where elastin is modeled as an isotropic material, failed in describing accurately the tissue response to inflation–extension loading. We hypothesized that these shortcomings are partly due to unaccounted anisotropic properties of elastin. We performed inflation–extension tests on common carotid of rabbits before and after enzymatic degradation of elastin and applied constituent-based SEFs, with both an isotropic and an anisotropic elastin part, on the experimental data. We used transmission electron microscopy (TEM) and serial block-face scanning electron microscopy (SBFSEM) to provide direct structural evidence of the assumed anisotropy. In intact arteries, the SEF including anisotropic elastin with one family of fibers in the circumferential direction fitted better the inflation–extension data than the isotropic SEF. This was supported by TEM and SBFSEM imaging, which showed interlamellar elastin fibers in the circumferential direction. In elastin-degraded arteries, both SEFs succeeded equally well in predicting anisotropic wall behavior. In elastase-treated arteries fitted with the anisotropic SEF for elastin, collagen engaged later than in intact arteries. We conclude that constituent-based models with an anisotropic elastin part characterize more accurately the mechanical properties of the arterial wall when compared to models with simply an isotropic elastin. Microstructural imaging based on electron microscopy techniques provided evidence for elastin anisotropy. Finally, the model suggests a later and less abrupt collagen engagement after elastase treatment.  相似文献   

16.
The Release Rate of Environmental DNA from Juvenile and Adult Fish   总被引:1,自引:0,他引:1  
The environmental DNA (eDNA) technique is expected to become a powerful, non-invasive tool for estimating the distribution and biomass of organisms. This technique was recently shown to be applicable to aquatic vertebrates by collecting extraorganismal DNA floating in the water or absorbed onto suspended particles. However, basic information on eDNA release rate is lacking, despite it being essential for practical applications. In this series of experiments with bluegill sunfish (Lepomis macrochirus), we examined the effect of fish developmental stage on eDNA release rate. eDNA concentration reached equilibrium 3 days after the individual fish were introduced into the separate containers, enabling calculation of the eDNA release rate (copies h−1) from individual fish on the assumption that the number of eDNA released from the fish per unit time equals total degradation in the container (copies h−1). The eDNA release rate was 3–4 times higher in the adult (body weight: 30–75 g) than in the juvenile group (0.5–2.0 g). Such positive relationship between fish size and eDNA release rate support the possibility of biomass rather than density estimation using eDNA techniques. However, the eDNA release rate per fish body weight (copies h−1 g−1) was slightly higher in the juvenile than the adult group, which is likely because of the ontogenetic reduction in metabolic activity. Therefore, quantitative eDNA data should be carefully interpreted to avoid overestimating biomass when the population is dominated by juveniles, because the age structure of the focal population is often variable and unseen in the field. eDNA degradation rates (copies l−1 h−1), calculated by curve fitting of time-dependent changes in eDNA concentrations after fish removal, were 5.1–15.9% per hour (half-life: 6.3 h). This suggests that quantitative eDNA data should be corrected using a degradation curve attained in the target field.  相似文献   

17.
This study investigated the spatial and temporal remodeling of blood vessel wall microarchitecture and cellular morphology during abdominal aortic aneurysm (AAA) development using immunofluorescent array tomography (IAT), a high-resolution three-dimensional (3D) microscopy technology, in the murine model. Infrarenal aortas of C57BL6 mice (N=20) were evaluated at 0, 7, and 28 days after elastase or heat-inactivated elastase perfusion. Custom algorithms quantified volume fractions (VF) of elastin, smooth muscle cell (SMC) actin, and adventitial collagen type I, as well as elastin thickness, elastin fragmentation, non-adventitial wall thickness, and nuclei amount. The 3D renderings depicted elastin and collagen type I degradation and SMC morphological changes. Elastin VF decreased 37.5% (p<0.01), thickness decreased 48.9%, and fragmentation increased 449.7% (p<0.001) over 28 days. SMC actin VF decreased 78.3% (p<0.001) from days 0 to 7 and increased 139.7% (p<0.05) from days 7 to 28. Non-adventitial wall thickness increased 61.1%, medial nuclei amount increased 159.1% (p<0.01), and adventitial collagen type I VF decreased 64.1% (p<0.001) over 28 days. IAT and custom image analysis algorithms have enabled robust quantification of vessel wall content, microstructure, and organization to help elucidate the dynamics of vascular remodeling during AAA development.  相似文献   

18.
The specific growth rate is a key control parameter in the industrial production of baker’s yeast. Nevertheless, quantitative data describing its effect on fermentative capacity are not available from the literature. In this study, the effect of the specific growth rate on the physiology and fermentative capacity of an industrial Saccharomyces cerevisiae strain in aerobic, glucose-limited chemostat cultures was investigated. At specific growth rates (dilution rates, D) below 0.28 h−1, glucose metabolism was fully respiratory. Above this dilution rate, respirofermentative metabolism set in, with ethanol production rates of up to 14 mmol of ethanol · g of biomass−1 · h−1 at D = 0.40 h−1. A substantial fermentative capacity (assayed offline as ethanol production rate under anaerobic conditions) was found in cultures in which no ethanol was detectable (D < 0.28 h−1). This fermentative capacity increased with increasing dilution rates, from 10.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.025 h−1 to 20.5 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.28 h−1. At even higher dilution rates, the fermentative capacity showed only a small further increase, up to 22.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.40 h−1. The activities of all glycolytic enzymes, pyruvate decarboxylase, and alcohol dehydrogenase were determined in cell extracts. Only the in vitro activities of pyruvate decarboxylase and phosphofructokinase showed a clear positive correlation with fermentative capacity. These enzymes are interesting targets for overexpression in attempts to improve the fermentative capacity of aerobic cultures grown at low specific growth rates.  相似文献   

19.
In previous work, we found that an anaerobic sludge efficiently degraded hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), but the role of isolates in the degradation process was unknown. Recently, we isolated a facultatively anaerobic bacterium, identified as Klebsiella pneumoniae strain SCZ-1, using MIDI and the 16S rRNA method from this sludge and employed it to degrade RDX. Strain SCZ-1 degraded RDX to formaldehyde (HCHO), methanol (CH3OH) (12% of total C), carbon dioxide (CO2) (72% of total C), and nitrous oxide (N2O) (60% of total N) through intermediary formation of methylenedinitramine (O2NNHCH2NHNO2). Likewise, hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) was degraded to HCHO, CH3OH, and N2O (16.5%) with a removal rate (0.39 μmol·h−1·g [dry weight] of cells−1) similar to that of RDX (0.41 μmol·h−1·g [dry weight] of cells−1) (biomass, 0.91 g [dry weight] of cells·liter−1). These findings suggested the possible involvement of a common initial reaction, possibly denitration, followed by ring cleavage and decomposition in water. The trace amounts of MNX detected during RDX degradation and the trace amounts of hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine detected during MNX degradation suggested that another minor degradation pathway was also present that reduced —NO2 groups to the corresponding —NO groups.  相似文献   

20.
Rates of primary and bacterial secondary production in Lake Arlington, Texas, were determined. The lake is a warm (annual temperature range, 7 to 32°C), shallow, monomictic reservoir with limited macrophyte development in the littoral zone. Samples were collected from six depths within the photic zone from a site located over the deepest portion of the lake. Primary production and bacterial production were calculated from NaH14CO3 and [methyl-3H]thymidine incorporation, respectively. Peak instantaneous production ranged between 14.8 and 220.5 μg of C liter−1 h−1. There were two distinct periods of high rates of production. From May through July, production near the metalimnion exceeded 100 μg of C liter−1 h−1. During holomixis, production throughout the water column was in excess of 100 μg of C liter−1 h−1 and above 150 μg of C liter−1 h−1 near the surface. Annual areal primary production was 588 g of C m−2. Bacterial production was markedly seasonal. Growth rates during late fall through spring were typically around 0.002 h−1, and production rates were typically 5 μg of C liter−1 h−1. Growth rates were higher during warmer parts of the year and reached 0.03 h−1 by August. The maximum instantaneous rate of bacterial production was approximately 45 μg of C liter−1 h−1. Annual areal bacterial production was 125 g of C m−2. Temporal and spatial distributions of bacterial numbers and activities coincided with temporal and spatial distributions of primary production. Areal primary and bacterial secondary production were highly correlated (r = 0.77, n = 15, P < 0.002).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号