首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of associations between herbivorous insects and their parasitoids is likely to be influenced by the relationship between the herbivore and its host plants. If populations of specialized herbivorous insects are structured by their host plants such that populations on different hosts are genetically differentiated, then the traits affecting insect-parasitoid interactions may exhibit an associated structure. The pea aphid (Acyrthosiphon pisum) is a herbivorous insect species comprised of genetically distinct groups that are specialized on different host plants (Via 1991a, 1994). Here, we examine how the genetic differentiation of pea aphid populations on different host plants affects their interaction with a parasitoid wasp, Aphidius ervi. We performed four experiments. (1) By exposing pea aphids from both alfalfa and clover to parasitoids from both crops, we demonstrate that pea aphid populations that are specialized on alfalfa are successfully parasitized less often than are populations specialized on clover. This difference in parasitism rate does not depend upon whether the wasps were collected from alfalfa or clover fields. (2) When we controlled for potential differences in aphid and parasitoid behavior between the two host plants and ensured that aphids were attacked, we found that pea aphids from alfalfa were still parasitized less often than pea aphids from clover. Thus, the difference in parasitism rates is not due to behavior of either aphids or wasps, but appears to be a physiologically based difference in resistance to parasitism. (3) Replicates of pea aphid clones reared on their own host plant and on a common host plant, fava bean, exhibited the same pattern of resistance as above. Thus, there do not appear to be nutritional or secondary chemical effects on the level of physiological resistance in the aphids due to feeding on clover or alfalfa, and therefore the difference in resistance on the two crops appears to be genetically based. (4) We assayed for genetic variation in resistance among individual pea aphid clones collected from clover fields and found no detectable genetic variation for resistance to parasitism within two populations sampled from clover. This is in contrast to Henter and Via's (1995) report of abundant genetic variation in resistance to this parasitoid within a pea aphid population on alfalfa. Low levels of genetic variation may be one factor that constrains the evolution of resistance to parasitism in the populations of pea aphids from clover, leading them to remain more susceptible than populations of the same species from alfalfa.  相似文献   

2.
The effects of two bacterial endosymbionts, designated PASS and PAR, were evaluated on the pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera:Aphididae), in which they occur facultatively, and on the blue alfalfa aphid, A. kondoi Shinji, in which these bacteria have not been found in natural populations. Subclones of pea aphids and blue alfalfa aphids, derived from parent aphid clones that did not contain PASS or PAR, were infected with one or both bacteria, generating PASS- and/or PAR-positive subclones with minimal genetic differences from the parent clones. Under laboratory conditions at 20 °C, PAR consistently reduced the fecundity (by between 19 and 60%) of subclones derived from three different parent pea aphid clones on bur clover, Medicago hispida Gaertn. PAR had intermediate effects on pea aphids reared on sweet pea, Lathyrus odoratus L., and had no significant effect on pea aphids on alfalfa, Medicago sativa L. The effect of PASS was either neutral or negative, depending on parent clone as well as host plant. Also at 20 °C, PASS reduced fecundity (70–77%) and longevity (40–48%), and increased the age of first reproduction (by up to 1.5 days) of blue alfalfa aphid reared on alfalfa and clover. PAR had a less dramatic effect (e.g., 30–39% reduction in fecundity) on these traits of blue alfalfa aphid. In contrast, PAR and PASS increased the fitness of pea aphid subclones of one parent clone reared for three generations at 25 °C on each of the three test plants. Without facultative bacteria, fecundity of the parent clone was reduced to a mean total of < 6 offspring per adult at this elevated temperature, but with PASS or PAR, mean total fecundity of its subclones was > 35. However, this ameliorative effect of facultative bacteria at 25 °C was not found for two other sets of parent clones and their derived subclones. Alate production in pea aphids was significantly increased in large populations of two PASS- and PAR-positive subclones relative to their parent clones. Attempts to transmit PASS or PAR horizontally, i.e., from aphid to aphid via feeding on host plants (bur clover), were unsuccessful.  相似文献   

3.
Field assessments were conducted to examine the interplay between host plant and predation in complex agricultural mosaic on pea aphid clover and alfalfa races. In one experiment, we examined the relative fitness on clover race (CR) and alfalfa race (AR) pea aphids on broad bean, red clover and alfalfa alone. But because clover is typically grown in a more complex agricultural mosaic with alfalfa and broad bean, a second experiment was conducted to assess the fitness consequences under predation in a more complex agricultural field setting that also included potential apparent competition with AR pea aphids. In a third experiment we tested for the effect of differential host race density on the fitness of the other host race mediated by a predator effect. CR pea aphids always had fitness losses when on broad bean (had lower fitness on broad bean relative to red clover) and fitness benefits when on red clover (higher fitness on red clover relative to broad bean), whether or not in apparent competition with alfalfa race aphids on bean and alfalfa. AR suffered fitness loss on both alfalfa and bean in apparent competition with CR on clover. Therefore we can conclude that the predation rate between host races was highly asymmetrical. The complexity of the agricultural mosaic thus can influence prey selection by predators on different host plants. These may have evolutionary consequences through context dependent fitness benefits on particular host plants.  相似文献   

4.
The host-associated differentiation (HAD) hypothesis states that higher trophic levels in parasitic associations should exhibit similar divergence in case of host sympatric speciation. We tested HAD on populations of Aphidius ervi the main parasitoid of the pea aphid Acyrthosiphon pisum, emerging from host populations specialized on either alfalfa or red clover. Host and parasitoid populations were assessed for genetic variation and structure, while considering geography, host plant and host aphid protective symbionts Regiella insecticola and Hamiltonella defensa as potential covariables. Cluster and hierarchical analyses were used to assess the contribution of these variables to population structure, based on genotyping pea aphids and associated A. ervi with microsatellites, and host aphid facultative symbionts with 16S rDNA markers. Pea aphid genotypes were clearly distributed in two groups closely corresponding with their plant origins, confirming strong plant associated differentiation of this aphid in North America. Overall parasitism by A. ervi averaged 21.5 % across samples, and many parasitized aphids producing a wasp hosted defensive bacteria, indicating partial or ineffective protective efficacy of these symbionts in the field. The A. ervi population genetic data failed to support differentiation according to the host plant association of their pea aphid host. Potential for parasitoid specialization was also explored in experiments where wasps from alfalfa and clover aphids were reciprocally transplanted on alternate hosts, the hypothesis being that wasp behaviour and parasitic stages should be most adapted to their host of origin. Results revealed higher probability of oviposition on the alfalfa aphids, but higher adult emergence success on red clover aphids, with no interaction as expected under HAD. We conclude that our study provides no support for the HAD in this system. We discuss factors that might impair A. ervi specialization on its divergent aphid hosts on alfalfa and clover.  相似文献   

5.
The pea aphid, Acyrthosiphon pisum, shows significant reproductive isolation and host plant specialization between populations on alfalfa and clover in New York. We examine whether specialization is seen in pea aphids in California, and whether fitness on alternative host plants is associated with the presence of bacterial symbionts. We measured the fitness of alfalfa- and clover-derived aphids on both types of plants and found no evidence for specialization when all aphid lineages were considered simultaneously. We then screened all aphids for the presence of four facultative bacterial symbionts: PAR, PASS, PABS and PAUS. Aphids with PAUS were host-plant specialized, having twice as many offspring as other aphids on clover, and dying on alfalfa. Other aphids showed no evidence of specialization. Additionally, aphids with PABS had 50% more offspring than aphids with PASS when on alfalfa. Thus, specialist and generalist aphid lineages coexist, and specialization is symbiont associated. Further work will resolve whether PAUS is directly responsible for this variation in fitness or whether PAUS is incidentally associated with host-plant specialized aphid lineages.  相似文献   

6.
1. Insect population size is regulated by both intrinsic traits of organisms and extrinsic factors. The impacts of natural enemies are typically considered to be extrinsic factors, however insects have traits that affect their vulnerability to attack by natural enemies, and thus intrinsic and extrinsic factors can interact in their effects on population size. 2. Pea aphids Acyrthosiphon pisum Harris (Hemiptera: Aphididae) in New York and Maryland that are specialised on alfalfa are approximately two times more physiologically resistant to parasitism by Aphidius ervi Haliday (Hymenoptera: Braconidae) than pea aphids specialised on clover. To assess the potential influence of this genetically based difference in resistance to parasitism on pea aphid population dynamics, pea aphids, A. ervi, and other natural enemies of aphids in clover and alfalfa fields were sampled. 3. Rates of successful parasitism by A. ervi were higher and pea aphid population sizes were lower in clover, where the aphids are less resistant to parasitism. In contrast, mortality due to a fungal pathogen of pea aphids was higher in alfalfa. Generalist aphid predators did not differ significantly in density between the crops. 4. To explore whether intrinsic resistance to parasitism influences field dynamics, the relationship between resistance and successful field parasitism in 12 populations was analysed. The average level of resistance of a population strongly predicts rates of successful parasitism in the field. The ability of the parasitoid to regulate the aphid may vary among pea aphid populations of different levels of resistance.  相似文献   

7.
Bathyplectes curculionis (Thomson) is an introduced natural enemy of the alfalfa weevil in North America. The wasp requires carbohydrate foods as an adult. Adult wasps have increased longevity and fecundity when provided access to pea aphid, Acyrthosiphon pisum (Harris), honeydew in the laboratory, and adults respond positively to the presence of pea aphids in alfalfa fields. However, it is unknown how these wasps find aphid honeydew in the field. In a series of Y-tube olfactometer experiments, we evaluated the response of naïve and experienced adult female B. curculionis to odors from pea aphids, alfalfa, and pea aphids on alfalfa. Naïve adult females did not respond positively to pea aphid odor even when hungry. But adult females were able to learn aphid odor, and the mechanism of learning appears to be associative rather than by sensitization. Naïve females also showed no preference for alfalfa odor but learned alfalfa odor through sensitization. The wasps did not distinguish between alfalfa with aphids and alfalfa without aphids, even after exposure to aphids or alfalfa with aphids. However, they preferred pea aphid odor to alfalfa odor after a feeding experience in the presence of pea aphid odors. But after exposure to mixed odors of aphids and alfalfa while feeding, B. curculionis females preferred the odor of alfalfa to the odor of pea aphids. These results suggest that alfalfa odors mask or override aphid odors when aphids are associated with alfalfa (as happens naturally), thus interfering with the wasp's ability to respond to learned aphid odors. Therefore, although the wasps are capable of learning to find pea aphids and their honeydew in a simplified laboratory setting, it appears unlikely that they do so in the field.  相似文献   

8.
One of the most biologically important electrical penetration graph (EPG) waveforms recorded from aphids on DC EPG systems is the potential drop (pd), which is correlated with intracellular punctures by the stylet tips. In this study, pds of the adult female Bemisia argentifolii Bellows & Perring (Homoptera: Aleyrodidae), recorded on a DC EPG, are characterized and compared to pds of aphids. Whitefly pds consisted of 3 phases similar to those recorded from probing aphids. The major difference between aphid pds and whitefly pds was that whitefly pds lacked any observable subphases within the second phase of the pd. In addition, whitefly pds differed from aphid pds in that they: (1) did not occur frequently during stylet penetration, (2) did not occur early within probes, (3) did not occur during brief probes (<1 min). Pds produced by probing whiteflies always were preceded by a variant of waveform C which we named the pre-pd. The differences between pds of aphids and whiteflies are discussed in terms of their implications for virus transmission and host selection. Using a technique where EPG recordings can be switched back and forth between DC and AC systems, we demonstrated that the AC EPG pseudotransition waveform (Pt) was equivalent to the DC pd, and thus was correlated with intracellular punctures. Previously, intracellular punctures by whiteflies had not been detectable on AC EPG systems. The AC Pt consisted of three distinct phases (Pt1, Pt2, and Pt3) and our observations suggest that AC Pt1 correlates with the pre-pd waveform in DC EPGs and that AC Pt 2 and 3 correlate with the intracellular phase of the DC pd. AC Pts (n=47) and DC pds (n=43) were recorded on three separate plant species and were similar on all plant species.  相似文献   

9.
Although mineral oil spray is one of the most effective ways to control the transmission of non‐persistent aphid‐borne viruses in the field, its mode of action is poorly understood. In this study, the effects of mineral oil treatment of potato plants on host selection behaviour, growth, and reproduction of potato aphids, Macrosiphum euphorbiae (Thomas) (Hemiptera: Aphididae), were investigated. The effects were assessed 30 min, 1 day, and 7 days after treatment, (1) on aphid orientation behaviour by using a Y‐tube olfactometer, and (2) on aphid feeding behaviour by using the electrical penetration graph (EPG) technique. Olfactory experiments showed that the oil had a repulsive effect only 30 min after spraying. EPG experiments showed a slight modification of the aphid feeding behaviour mainly 7 days after treatment. The number of both salivation and sap ingestion events during the phloem phases were increased 7 days after treatment. In addition, irrespective of the time after treatment, xylem ingestion time was increased. Clip cage experiments were set up to assess potential effects of the oil treatment on aphid survival and population parameters. Nymphal mortality was increased on treated plants, whereas fecundity of surviving insects was enhanced. The antagonistic effects of oil treatment on aphids are discussed in a plant protection context.  相似文献   

10.
W. M. Milne 《BioControl》1997,42(1-2):173-183
The spotted alfalfa aphid (SAA),Therioaphis trifolii (Monell)f. maculata, was first recorded in Australia in 1977. It is a major pest of lucerne and other pasture medics but not of clover (Trifolium spp.). The parasitoidTrioxys complanatus Quilis was introduced into Australia in late 1977 as part of a biological control program for SAA and made a substantial contribution to the management of the pest. Since 1989, aphids which are individually indistinguishable from SAA have been causing substantial yield loss to clover pastures in western and south-eastern Australia. This aphid, now known in Australia as the spotted clover aphid (SCA), is genetically distinct from SAA and has a much wider host range. Populations of SCA in clover are rarely parasitised byT. complanatus. A series of experiments was undertaken to determine whether the greater susceptibility of SAA in lucerne than of SCA in clover to parasitisation byT. complanatus is due to the attraction of the parasitoid preferentially to lucerne or to the differential attractiveness of the aphids themselves. SAA and SCA were offered to the parasitoids in arenas of increasing complexity from single trifoliate leaves of lucerne and clover on agar through single potted plants in small cages to groups of potted plants in a large cage. Results showed that the parasitoids exhibited a preference for lucerne though, in the cage situation, they did find and parasitise SCA on clover. They did not differentiate between SAA and SCA on lucerne.  相似文献   

11.
棉蚜寄主专化型及其形成的行为机理   总被引:9,自引:2,他引:7  
通过生活在甜瓜和棉花上的棉蚜Aphisgossypii Glover的行为,研究棉蚜的寄主专化型及其形成的行为机理。生物学观察显示: 两类棉蚜在寄主植物相互交换以后,定居数显著减少,棉花蚜型棉蚜的繁殖系数及若虫存活率显著下降,说明棉蚜存在甜瓜蚜型和棉花蚜型两种寄主专化型。通过刺探电位技术研究棉蚜的取食行为,以探索其寄主专化型形成的行为机理。结果表明: 甜瓜蚜型棉蚜在棉花上的取食行为容易被中断,但其口针定位韧皮部的能力并没有显著削弱;而棉花蚜型棉蚜在甜瓜上的取食行为受到更大的影响,口针无法顺利定位至韧皮部,并在2 h内根本无法在筛管内取食。生物学观察和EPG取食行为分析都显示: 与甜瓜蚜型棉蚜相比,棉花蚜型棉蚜对寄主的要求更严格-寄主专化程度更高,对寄主的利用率更高。  相似文献   

12.
Abstract. Two laboratory studies were conducted to investigate effects of treatments for direct "current electrical penetration graph (DC-EPG) recordings or 'tether effect', on behaviour and reproductive performance of cowpea aphid Aphis craccivora Koch. The experiments constituted a control study in application of DC-EPGs to analyse cowpea aphid feeding behaviour and host plant resistance mechanisms. Resistant (ICV-12) and susceptible (ICV-1) cultivars of cowpea Vigna unguiculata (L.) Walp were used. EPG treatments included two groups of aphids: tethered aphids that were exposed to DC electricity via an attachment of a thin, flexible gold wire on their dorsum using a droplet of adhesive silver paint, and 'free' (untethered) aphids with a dorsal spot of silver paint only. EPGs of the tethered aphids were recorded continuously for c. ! h, whereas from the 'free' aphids recordings were done only for brief periods of 2–5 min, by temporarily contacting a gold wire to the spot of silver paint. Waveform signals generated from resistance fluctuations and electromotive forces, and representing aphid stylet penetration behaviour were recorded. A separate experiment was conducted to investigate effects of EPG treatments on aphid survivorship and population growth. Overall, EPG treatments did not significantly affect aphid stylet penetration behaviour or life-table parameters. However, effects of crop cultivar on those characteristics were significant. Waveform E2, which denotes aphid ingestion in phloem sieve elements, and non-penetration behaviour were important indicators of aphid resistance in ICV-12. Also, apart from the number of aphid generations, other life-table parameters were useful indicators of ICV-12 resistance. Thus, DC-EPGs provided a reliable technique for studying aphid stylet behaviour, and investigation of aphid resistance in cowpeas.  相似文献   

13.
Abstract.  1. In ecological speciation , adaptation to variation in the external environment provides the crucial push that starts the process of genetic divergence and eventually leads to speciation. This emphasis on the role of ecological specialisation in speciation events has brought with it a renewed interest in its proximate mechanisms in recently diverged groups such as host races. Here, the proximate mechanisms of feeding specialisation are investigated in two host races of the pea aphid Acyrthosiphon pisum .
2. Using alfalfa and clover extracts, enclosed in diet chambers or applied on whole plants, it is shown that feeding specialisation depends on recognition of stimulants specific to the host plant, not on deterrents or toxins specific to the non-host plants.
3. Because pea aphids mate on their host plant, feeding specialisation leads to de facto assortative mating. This study suggests that behavioural recognition of host-specific chemicals, rather than avoidance of deterrents or/and plant toxins, contributes to gene flow restriction between the alfalfa and clover host races.  相似文献   

14.
The feeding behaviour, excretion rate, and life history traits of the cotton-melon aphid, Aphis gossypii (Glover) (Homoptera, Aphididae), were measured on a resistant melon, Cucumis melo L., breeding line, AR 5. The site of resistance detection by the aphids was determined using the electrical penetration graph (EPG) technique. EPG recordings showed that resistance is expressed within the host plant, rather than on its surface, because the time to first stylet penetration was not significantly different between AR 5 and the closely related susceptible breeding line, PMR 5. EPG patterns associated with stylet pathway activities of the aphids were not significantly different between the resistant and susceptible lines. Significant behavioural differences were observed only after stylets contacted phloem sieve elements. On AR 5, the duration of salivation after sieve element puncture (waveform E1) was significantly longer, and the number of aphids showing phloem sap ingestion (waveform E2) was significantly reduced. We conclude that the resistance mechanism producing the effects seen in this study acts within the phloem sieve elements. Monitoring of excretion rates on the two genotypes showed that aphid feeding was delayed and greatly reduced on the resistant genotype. Comparisons of aphid life history traits and population development between host plant genotypes showed that the effects of resistance act throughout aphid development and are highly effective at slowing down population increase.  相似文献   

15.
Insect parasitoids and their insect hosts represent a wide range of parasitic trophic relations that can be used to understand the evolution of biotic diversity on earth. Testing theories of coevolution between hosts and parasites is based on factors directly involved in host susceptibility and parasitoid virulence. We used controlled encounters with potential hosts of the Aphidius ervi wasp to elucidate behavioral and other phenotypic traits of host Acyrthosiphon pisum that most contribute to success or failure of parasitism. The host aphid is at an advanced stage of specialization on different crop plants, and exhibits intra-population polymorphism for traits of parasitoid avoidance and resistance based on clonal variation of color morph and anti-parasitoid bacterial symbionts. Randomly selected aphid clones from alfalfa and clover were matched in 5 minute encounters with wasps of two parasitoid lineages deriving from hosts of each plant biotype in a replicated transplant experimental design. In addition to crop plant affiliation (alfalfa, clover), aphid clones were characterized for color morph (green, pink), Hamiltonella defensa and Regiella insecticola symbionts, and frequently used behaviors in encounters with A. ervi wasps. A total of 12 explanatory variables were examined using redundancy analysis (RDA) to predict host survival or failure to A. ervi parasitism. Aphid color was the best univariate predictor, but was poorly predictive in the RDA model. In contrast, aphid host plant and symbionts were not significant univariate predictors, but significant predictors in the multivariate model. Aphid susceptibility to wasp acceptance as reflected in host attacks and oviposition clearly differed from its suitability to parasitism and progeny development. Parasitoid progeny were three times more likely to survive on clover than alfalfa host aphids, which was compensated by behaviorally adjusting eggs invested per host. Strong variation of the predictive power of intrinsic (body color) and extrinsic traits (symbionts, host plant), indicate that host variables considered as key predictors of outcomes strongly interact and cannot be considered in isolation.  相似文献   

16.
The study of aphid host selection and feeding behavior is difficult because aphids have to penetrate the plant to reach their feeding site, phloem tissue. The activity of the stylets, salivation or food intake, can not be observed externally and requires an indirect visualization technique such as the Electric Penetration Graph (EPG). The plant selection behavior of Sitobion avenae on potato varied depending on whether an ethological or EPG method was used to study it. A similar variation did not occur with Myzus persicae or Rhopalosiphum padi. The application of water-based silver conductive paint onto the thorax, as normally used for EPG, or onto the abdomen of Sitobion avenae alates resulted in increased duration and frequency of probing compared to results from ethological observations. Our results indicated that EPG manipulations might have different effects on different species of aphids and that a comparison of EPG and ethological data is required to confirm that the EPG method does not bias aphid feeding behavior.  相似文献   

17.
Aphids are phloem-feeding insects that damage many important crops throughout the world yet, compared to plant-pathogen interactions, little is known about the mechanisms by which plants become resistant to aphids. Medicago truncatula (barrel medic) is widely considered as the pre-eminent model legume for genetic and biological research and in Australia is an important pasture species. Six cultivars of M. truncatula with varying levels of resistance to two pests of pasture and forage legumes, the bluegreen aphid Acyrthosiphon kondoi Shinji and the spotted alfalfa aphid Therioaphis trifolii f. maculata. (Buckton) are investigated. Two resistance phenotypes against T. trifolii f. maculata are described, one of which is particularly effective, killing most aphids within 24 h of infestation. Each resistance phenotype provided a similar but somewhat less effective degree of resistance to the closely-related spotted clover aphid Therioaphis trifolii (Monell). In the case of A. kondoi only one resistance phenotype was observed, which did not vary among different genetic backgrounds. None of the observed resistance against A. kondoi or T. trifolii f. maculata significantly affected the performance of green peach aphid Myzus persicae (Sulzer) or cowpea aphid Aphis craccivora Koch. The existence of multiple aphid resistance mechanisms in similar genetic backgrounds of this model plant provides a unique opportunity to characterize the fundamental basis of plant defence to these serious agricultural pests.  相似文献   

18.
芥子油苷在甘蓝蚜寄主部位选择行为中的作用   总被引:15,自引:4,他引:11  
阎凤鸣 《昆虫学报》2000,43(3):297-304
利用刺吸电位技术(EPG)记录甘蓝蚜Brevicoryne brassicae在芥菜Sinapis alba 不同部位上的取食行为,同时用高压液相色谱(HPLC)分析芥菜相应部位的芥子油苷(glucosinolates)含量,据此分析芥子油苷在甘蓝蚜对寄主部位偏好行为中的作用。选择芥菜三个部位进行取食行为记录和化学分析,即新出完全叶(第7片)的叶片、叶柄,以及花茎。相对于其它两个部位,甘蓝蚜的口针在花茎上用较少的刺探次数和较短的时间到达韧皮部;一旦口针进入韧皮部持续吸食阶段,蚜虫在三个部位的取食行为没有太大的差异。只在花茎的表皮和皮层中测定到较高含量的白芥子苷(glucosinalbin)。因此,本实验的结果证明,白芥子苷是甘蓝蚜寄主部位选择的关键信号化学物质或取食促进剂。  相似文献   

19.
For the mutualistic interaction between the aphid Metopeurum fuscoviride Stroyan (Homoptera: Aphididae) and the ant Lasius niger L. (Hymenoptera: Formicidae) it has been shown that ant-tended aphids develop faster, reproduce at a higher rate, and live longer than aphids not tended by ants. We used electrical penetration graphs (EPG) to investigate if behavioural patterns differ between ant-tended and untended M. fuscoviride during 8 h experiments. Measurements were made on adult aphids from four different ant-tended colonies that continued to be tended by L. niger during the experiments, and from four different colonies where ant workers were excluded several days before the start of the experiment and that were also not tended by ants during the experiments. Ants readily tended wired aphids and ant tending did not interfere with the EPG measurements. There were no significant differences in the duration of sieve element penetration or in any other analysed feeding-related EPG parameters between ant-tended and untended individuals. However, the quality of the EPG recordings did not allow the distinction between the EPG-waveform E1 (salivation only) and E2 (salivation and ingestion). These results suggest that the changes in life-history traits of ant-tended aphids do not result from changes in time of sieve element penetration waveforms. Alternative mechanisms may involve an increase in the rate of sap uptake or a higher effectiveness in nutrient uptake in the presence of ants. Our study demonstrates that the EPG technique is a useful tool to investigate the feeding behaviour of aphids during interactions with ants.  相似文献   

20.
In North America, the pea aphid Acyrthosiphon pisum encompasses ecologically and genetically distinct host races that offer an ideal biological system for studies on sympatric speciation. In addition to its obligate symbiont Buchnera, pea aphids harbour several facultative and phylogenetically distant symbionts. We explored the relationships between host races of A. pisum and their symbiotic microbiota to gain insights into the historical process of ecological specialization and symbiotic acquisition in this aphid. We used allozyme and microsatellite markers to analyse the extent of genetic differentiation between populations of A. pisum on pea, alfalfa and clover in France. In parallel, we examined: (i) the distribution of four facultative symbionts; and (ii) the genetic variation in the Buchnera genome across host-associated populations of A. pisum. Our study clearly demonstrates that populations of A. pisum on pea, clover and alfalfa in France are genetically divergent, which indicates that they constitute distinct host races. We also found a very strong association between host races of A. pisum and their symbiotic microbiota. We stress the need for phylogeographic studies to shed light on the process of host-race formation and acquisition of facultative symbionts in A. pisum. We also question the effects of these symbionts on aphid host fitness, including their role in adaptation to a host plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号