首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chinese hamster ovary cells were arrested in the G2 phase of the cell cycle by X-irradiation. When subsequently treated with 5 mM caffeine the arrested population progressed into mitosis as a synchronous cohort where it was harvested by mitotic cell selection. This procedure provides a means to isolate cell populations treated in G2, for the investigation of G2 arrest. Comparisons were made of the number of cells retrieved from G2 arrest with the number suffering arrest, as determined by flow cytometry and by matrix algebraic simulations of irradiated cell progression. The retrieved population was not significantly less than expected for doses up to 3.5 Gy, indicating that the retrieval process does not favour the isolation of any population subset below this dose. Cell populations retrieved from arrest at varying intervals (0-3 h) after irradiation (0-3.5 Gy) showed an increase in survival with increase in interval, consistent with repair of potentially lethal damage. The repair curves (surviving fraction vs time) were each described by a single exponential. G2 cells that were brought to mitosis without a period of arrest exhibited the same radiation response as cells irradiated in mitosis.  相似文献   

2.
S Ning  S J Knox 《Radiation research》1999,151(6):659-669
Cells of the TP53-deficient human leukemia cell line HL60 continue to progress throughout the cell cycle and arrest in the G2/M phase during protracted exposure to exponentially decreasing low-dose-rate radiation. We have hypothesized that G2/M-phase arrest contributes to the extent of radiation-induced cell death by apoptosis as well as to overall cell killing. To test this hypothesis, we used caffeine and nocodazole to alter the duration of G2/M-phase arrest of HL60 cells exposed to exponentially decreasing low-dose-rate irradiation and measured the activity of G2/M-phase checkpoint proteins, redistribution of cells in the phases of the cell cycle, cell death by apoptosis, and overall survival after irradiation. The results from these experiments demonstrate that concomitant exposure of HL60 cells to caffeine (2 mM) during irradiation inhibited radiation-induced tyrosine 15 phosphorylation of the G2/M-phase transition checkpoint protein CDC2/p34 kinase and reduced G2/M-phase arrest by 40-46% compared to cells irradiated without caffeine. Radiation-induced apoptosis also decreased by 36-50% in cells treated with caffeine and radiation compared to cells treated with radiation alone. Radiation survival was significantly increased by exposure to caffeine. In contrast, prolongation of G2/M-phase arrest by pre-incubation with nocodazole enhanced radiation-induced apoptosis and overall radiation-induced cell killing. To further study the role of cell death by apoptosis in the response to exponentially decreasing low-dose-rate irradiation, HL60 cells were transfected with the BCL2 proto-oncogene. The extent of G2/M-phase arrest was similar for parental, neomycin-transfected control and BCL2-transfected cells during and after exponentially decreasing low-dose-rate irradiation. However, there were significant differences (P < 0.01) in the extent of radiation-induced apoptosis of parental and neomycin- and BCL2-transfected cells after irradiation, with significantly less radiation-induced apoptosis and higher overall survival in BCL2-transfected cells than similarly irradiated control cells. These data demonstrate that radiation-induced G2/M-phase arrest and subsequent induction of apoptosis play an important role in the response of HL60 cells to low-dose-rate irradiation and suggest that it may be possible to increase radiation-induced apoptosis by altering the extent of G2/M-phase arrest. These findings are clinically relevant and suggest a novel therapeutic strategy for increasing the efficacy of brachytherapy and radioimmunotherapy.  相似文献   

3.
Is G2-arrest an active cellular response to irradiation?   总被引:4,自引:0,他引:4  
Protein synthesis is normally required for G2-cell progression and for recovery from radiation-induced G2-arrest. In the presence of 5 mM caffeine this requirement is alleviated, indicating that the mechanism responsible for G2 cell progression actually remains intact in irradiated or protein synthesis inhibitor-treated cells. It is suggested that both radiation and cycloheximide-induced G2-arrest are not, therefore, passive consequences of cellular defects, but are rather, active cellular responses to the state of cellular integrity, implying the existence of G2 cell progression controls.  相似文献   

4.
Abstract. Chinese hamster ovary cells were arrested in the G2 phase of the cell cycle by X-irradiation. When subsequently treated with 5 mM caffeine the arrested population progressed into mitosis as a synchronous cohort where it was harvested by mitotic cell selection. This procedure provides a means to isolate cell populations treated in G2, for the investigation of G2 arrest. Comparisons were made of the number of cells retrieved from G2 arrest with the number suffering arrest, as determined by flow cytometry and by matrix algebraic simulations of irradiated cell progression. the retrieved population was not significantly less than expected for doses up to 3.5 Gy, indicating that the retrieval process does not favour the isolation of any population subset below this dose. Cell populations retrieved from arrest at varying intervals (0-3 h) after irradiation (0-3.5 Gy) showed an increase in survival with increase in interval, consistent with repair of potentially lethal damage. the repair curves (surviving fraction us time) were each described by a single exponential. G2 cells that were brought to mitosis without a period of arrest exhibited the same radiation response as cells irradiated in mitosis.  相似文献   

5.
Apoptosis and cell cycle progression in HL60 cells irradiated in an acidic environment were investigated. Apoptosis was determined by TUNEL staining, PARP cleavage, DNA fragmentation, and flow cytometry. The majority of the apoptosis that occurred in HL60 cells after 4 Gy irradiation took place after G(2)/M-phase arrest. When irradiated with 12 Gy, a fraction of the cells underwent apoptosis in G(1) and S phases while the rest of the cells underwent apoptosis in G(2)/M phase. The apoptosis caused by 4 and 12 Gy irradiation was transiently suppressed in medium at pH 7.1 or lower. An acidic environment was found to perturb progression of irradiated cells through the cell cycle, including progression through G(2)/ M phase. Thus it was concluded that the suppression of apoptosis in the cells after 4-12 Gy irradiation in acidic medium was due at least in part to a delay in cell cycle progression, particularly the prolongation of G(2)/M-phase arrest. Irradiation with 20 Gy indiscriminately caused apoptosis in all cell cycle phases, i.e. G(1), S and G(2)/M phases, rapidly in neutral pH medium and relatively slowly in acidic pH medium. The delay in apoptosis in acidic medium after 20 Gy irradiation appeared to result from mechanisms other than prolonged G(2)/ M-phase arrest.  相似文献   

6.
Long-wave ultraviolet radiation (UVA) may cause extensive DNA damage via reactive oxygen species (ROS). In this study we examined whether UVA- and H2O2-mediated DNA damage have equivalent effects on the induction of G2/M phase checkpoint and cell cycle progression in a transformed keratinocyte cell line HaCaT. By employing single cell gel electrophoresis (comet assay) we determined the equipotent doses of UVA and H2O2 with respect to the induction of alkali-labile sites (an indicator of oxidative DNA decay). However, in contrast to H2O2 which caused a pronounced G2/M cell cycle arrest 24h after treatment, UVA irradiation did not affect cell cycle progression. Increasing UVA doses up to 150 kJ/m2 did not affect cell cycle and proliferation whereas increasing H2O2 concentrations caused a cell cycle block or cell death. Cytometric analysis revealed that G2/M cell cycle arrest took place beyond the cyclin B1 restriction point. We conclude that the DNA damage induced by UVA is easily repaired and does not perturb cell growth, whereas the H2O2-induced damage leads ultimately to cell cycle arrest or cell death.  相似文献   

7.
Methylxantine derivative, caffeine, is known to prevent the p53-dependent apoptosis pathway via inhibition of ATM (ataxia telangiectasia mutated) kinase, which activates p53 by phosphorylation of the Ser-15 residue. In contrast, it has been reported that caffeine induces p53-mediated apoptosis through Bax protein in non-small-cell lung cancer cells. Therefore, the effects of caffeine on cellular growth in malignant cells are controversial. We investigated the effects of caffeine on cell proliferation, cell cycle progression, and induction of apoptosis in NB4 promyelocytic leukemia cells containing wild-type p53. Caffeine suppressed the cellular growth of NB4 cells in a dose- and time-dependent manner. Caffeine induced G(2)/M phase cell cycle arrest in NB4 cells in association with the induction of phosphorylation at the Ser-15 residue of p53 and induction of tyrosine phosphorylation of cdc2. Expression of Bax protein was increased in NB4 cells after treatment with caffeine. Interestingly, the antisense oligonucleotides for p53 significantly reduced p53 expression and caffeine-induced G(2)/M phase cell cycle arrest in NB4 cells. These results suggest that caffeine induces cell cycle arrest and apoptosis in association with activation of p53 by a novel pathway to phosphorylate the Ser-15 residue and induction of phosphorylation of cdc 2 in leukemic cells with normal p53.  相似文献   

8.
9.
DNA double strand break (DSB) repair and checkpoint control represent two major mechanisms that function to reduce chromosomal instability following ionising irradiation (IR). Ataxia telangiectasia (A-T) cells have long been known to have defective checkpoint responses. Recent studies have shown that they also have a DSB repair defect following IR raising the issue of how ATM’s repair and checkpoint functions interplay to maintain chromosomal stability. A-T and Artemis cells manifest an identical and epistatic repair defect throughout the cell cycle demonstrating that ATM’s major repair defect following IR represents Artemis-dependent end-processing. Artemis cells show efficient G2/M checkpoint induction and a prolonged arrest relative to normal cells. Following irradiation of G2 cells, this checkpoint is dependent on ATM and A-T cells fail to show checkpoint arrest. In contrast, cells irradiated during S phase initiate a G2/M checkpoint which is independent of ATM and, significantly, both Artemis and A-T cells show a prolonged arrest at the G2/M checkpoint likely reflecting their repair defect. Strikingly, the G2/M checkpoint is released before the completion of repair when approximately 10-20 DSBs remain both for S phase and G2 phase irradiated cells. This defined sensitivity level of the G2/M checkpoint explains the prolonged arrest in repair-deficient relative to normal cells and provides a conceptual framework for the co-operative phenotype between checkpoint and repair functions in maintaining chromosomal stability.  相似文献   

10.
The tumor suppressor p53 is required for the maintenance of genomic integrity following DNA damage. One mechanism by which p53 functions is to induce a block in the transition between the G(1) and S phase of the cell cycle. Previous studies indicate that the Krüppel-like factor 4 (KLF4) gene is activated following DNA damage and that such activation depends on p53. In addition, enforced expression of KLF4 causes G(1)/S arrest. The present study examines the requirement of KLF4 in mediating the p53-dependent cell cycle arrest process in response to DNA damage. We show that the G(1) population of a colon cancer cell line, HCT116, that is null for the p53 alleles (-/-) was abolished following gamma irradiation compared with cells with wild-type p53 (+/+). Conditional expression of KLF4 in irradiated HCT116 p53-/- cells restored the G(1) cell population to a level similar to that seen in irradiated HCT116 p53+/+ cells. Conversely, treatment of HCT116 p53+/+ cells with small interfering RNA (siRNA) specific for KLF4 significantly reduced the number of cells in the G(1) phase following gamma irradiation compared with the untreated control or those treated with a nonspecific siRNA. In each case the increase or decrease in KLF4 level because of conditional induction or siRNA inhibition, respectively, was accompanied by an increase or decrease in the level of p21(WAF1/CIP1). Results of our study indicate that KLF4 is an essential mediator of p53 in controlling G(1)/S progression of the cell cycle following DNA damage.  相似文献   

11.
Jeong MH  Jin YH  Kang EY  Jo WS  Park HT  Lee JD  Yoo YJ  Jeong SJ 《Cell research》2004,14(4):295-302
Ionizing radiation is one of the most effective tools in cancer therapy. In a previous study, we reported that protein tyrosine kinase (PTK) inhibitors modulate the radiation responses in the human chronic myelogenous leukemia (CML) cell line K562. The receptor tyrosine kinase inhibitor, genistein, delayed radiation-induced cell death, while non-recepter tyrosine kinase inhibitor, herbimycin A (HMA) enhances radiation-induced apoptosis. In this study, we focused on the modulation of radiation-induced cell death by genistein and performed PCR-select suppression subtractive hybridization (SSH) to understand its molecular mechanism. We identified human thymidine kinase 1 (TK1), which is cell cycle regulatory gene and confirmed expression of TK1 mRNA by Northern blot analysis. Expression ofTK1 mRNA and TK 1 enzymatic activity were parallel in their increase and decrease. TK1 is involved in G1-S phase transition of cell cycle progression. In cell cycle analysis, we showed that radiation induced G2 arrest in K562 cells but it was not able to sustain. However, the addition of genistein to irradiated cells sustained a prolonged G2 arrest up to 120 h. In addition, the expression of cell cycle-related proteins, cyclin A and cyclin B 1, provided the evidences of G I/S progression and G2-arrest, and their relationship with TKI in cells treated with radiation and genistein. These results suggest that the activation of TK1 may be critical to modulate the radiation-induced cell death and cell cycle progression in irradiated K562 cells.  相似文献   

12.
Cell cycle checkpoints ensure that eukaryotic cells do not enter mitosis after ionizing irradiation (IR). The G2-arrest after IR is the result of activation of multiple signalling pathways, the contributions of which vary with time after irradiation. We have studied the time evolution of the IR-induced G2-arrest in human B-lymphocyte cancer cell lines, as well as the molecular mechanisms responsible for the arrest. Cells that were in G2 phase at the time of irradiation experienced a transient arrest that blocked entry into mitosis at 0-2hours after IR (0.5 or 4Gy). Activation of ATM and CHEK2 occurred at the same time as this early arrest and was, like the arrest, abrogated by the ATM-inhibitor KU-55933. A late, permanent and ATM-independent arrest (≥6hours after IR) of cells that were in G2/S/G1 at the time of irradiation (4Gy) was inactivated by caffeine. This late G2-arrest could not be explained by down-regulation of genes with functions in G2/mitosis (e.g. PLK1, CCNB1/2), since the down-regulation was transient and not accompanied by reduced protein levels. However, the persistent phosphorylation of CHEK1 after 4Gy suggested a role for CHEK1 in the late arrest, consistent with the abrogation of the arrest in CHEK1–depleted cells. TP53 was not necessary for the late G2-arrest, but mediated an intermediate arrest (2-10hours after IR) independently of ATM and CHEK1. In conclusion, the IR-induced arrest in G2 is mediated by ATM immediately after irradiation, with TP53 for independent and transient back-up, while CHEK1 is necessary for the late arrest.  相似文献   

13.
Cdt1 begins to accumulate in M phase and has a key role in establishing replication licensing at the end of mitosis or in early G1 phase. Treatments that damage the DNA of cells, such as UV irradiation, induce Cdt1 degradation through PCNA-dependent CRL4-Cdt2 ubiquitin ligase. How Cdt1 degradation is linked to cell cycle progression, however, remains unclear. In G1 phase, when licensing is established, UV irradiation leads to Cdt1 degradation, but has little effect on the licensing state. In M phase, however, UV irradiation does not induce Cdt1 degradation. When mitotic UV-irradiated cells were released into G1 phase, Cdt1 was degraded before licensing was established. Thus, these cells exhibited both defective licensing and G1 cell cycle arrest. The frequency of G1 arrest increased in cells expressing extra copies of Cdt2, and thus in cells in which Cdt1 degradation was enhanced, whereas the frequency of G1 arrest was reduced in cell expressing an extra copy of Cdt1. The G1 arrest response of cells irradiated in mitosis was important for cell survival by preventing the induction of apoptosis. Based on these observations, we propose that mammalian cells have a DNA replication-licensing checkpoint response to DNA damage induced during mitosis.  相似文献   

14.
A UV-responsive G2 checkpoint in rodent cells.   总被引:6,自引:2,他引:4       下载免费PDF全文
We have studied the effect of UV irradiation on the cell cycle progression of synchronized Chinese hamster ovary cells. Synchronization of cells in S or G2 phase was accomplished by the development of a novel protocol using mimosine, which blocks cell cycle progression at the G1/S boundary. After removal of mimosine, cells proceed synchronously through the S and G2 phases, allowing manipulation of cells at specific points in either phase. Synchronization of cells in G1 was achieved by release of cells after a period of serum starvation. Cells synchronized by these methods were UV irradiated at defined points in G1, S, and G2, and their subsequent progression through the cell cycle was monitored. UV irradiation of G1-synchronized cells caused a dose-dependent delay in entry into S phase. Irradiation of S-phase-synchronized cells inhibited progression through S phase and then resulted in accumulation of cells for a prolonged interval in G2. Apoptosis of a subpopulation of cells during this extended period was noted. UV irradiation of G2-synchronized cells caused a shorter G2 arrest. The arrest itself and its duration were dependent upon the timing (within G2 phase) of the irradiation and the UV dose, respectively. We have thus defined a previously undescribed (in mammalian cells) UV-responsive checkpoint in G2 phase. The implications of these findings with respect to DNA metabolism are discussed.  相似文献   

15.
The ability of synchronized Ehrlich ascites tumor cells, irradiated in G1, S, and G2 phases, to repair potentially lethal damage when arrested at mitosis by using 0.4 microgram/ml nocodazole, a specific inhibitor of microtubule polymerization, has been studied. Cells irradiated in these phases were found to repair potentially lethal damage at mitosis. The extent of this repair was similar to that observed for cells irradiated at the same stages in the cell cycle but allowed to repair potentially lethal damage by incubating in balanced salt solution for 6 hr after X irradiation.  相似文献   

16.
Recovery from potentially lethal radiation damage in HeLa S3 cells has been studied by irradiating synchronous cultures with 4 Gy at selected ages in the cell cycle, initiating treatment with 4 mM caffeine, which prevents recovery, at progressively later times up to 24-30 h after irradiation, and determining the plateau level of survival after incubation with the caffeine until 36-40 h after mitotic collection. Cell recovery appears to begin immediately after irradiation at any time during interphase: an accelerating increase in survival gives way after several hours to a linear increase which lasts for an additional several hours. The median recovery time is approximately 13 h after irradiation at any time during G1, but is markedly shorter (5-7 h) after irradiation in S or G2. The rate of recovery is slightly depressed if DNA replication is inhibited with aphidicolin after irradiation and slightly enhanced if protein synthesis is inhibited with cycloheximide. Both the rate and the extent of recovery are dependent on the location of the cells in the cycle at the time of irradiation--both functions increasing with cell age from the beginning of S, but having different age dependencies in G1. Blocking cell progression with a DNA-synthesis inhibitor before irradiation halts the age-dependent changes.  相似文献   

17.
18.
Although the G2/M DNA damage checkpoint is currently viewed as a set of coordinated cellular responses affecting both cell cycle progression and non-cell cycle targets, the relative contributions of the two target categories to DNA repair and cell survival after exposure to ionizing radiation have not been clearly addressed. We investigated how rad3 (ATR ortholog) or chk1/cds1 (CHK1/CHK2 orthologs) null mutations change the kinetics of double-strand break (DSB) repair in Schizosaccharomyces pombe cells under conditions of forced G2 arrest. After 200-Gy γ-ray irradiation, DSBs were repaired in rad3Δ cdc25-22 or chk1Δ cds1Δ cdc25-22 cells, almost as efficiently as in cdc25-22 cells at the restrictive temperature. In contrast, little repair was observed in the checkpoint-deficient cells up to 4h after higher-dose (500Gy) irradiation, whereas repair was still efficient in the control cdc25-22 cells. Immediate loss of viability appeared not be responsible for the repair defect after the higher dose, since both checkpoint-proficient and deficient cells with cdc25-22 allele synchronously resumed cycling with a similar time course when released to the permissive temperature 4h after irradiation. Recruitment of repair proteins Rad11 (Rpa1 ortholog), Rad22 (Rad52 ortholog), and Rhp54 (Rad54 ortholog) to the damage sites was not significantly impaired in the checkpoint-deficient cells, whereas their release was profoundly delayed. Our results suggest that sensor and effector kinases in the damage checkpoint machinery affect the efficiency of repair downstream of, or in parallel with the core repair reaction.  相似文献   

19.
HIV-1 Viral protein R (Vpr) induces a cell cycle arrest at the G2/M phase by activating the ATR DNA damage/stress checkpoint. Recently, we and several other groups showed that Vpr performs this activity by recruiting the DDB1-CUL4A (VPRBP) E3 ubiquitin ligase. While recruitment of this E3 ubiquitin ligase complex has been shown to be required for G2 arrest, the subcellular compartment where this complex forms and functionally acts is unknown. Herein, using immunofluorescence and confocal microscopy, we show that Vpr forms nuclear foci in several cell types including HeLa cells and primary CD4+ T-lymphocytes. These nuclear foci contain VPRBP and partially overlap with DNA repair foci components such as γ-H2AX, 53BP1 and RPA32. While treatment with the non-specific ATR inhibitor caffeine or depletion of VPRBP by siRNA did not inhibit formation of Vpr nuclear foci, mutations in the C-terminal domain of Vpr and cytoplasmic sequestration of Vpr by overexpression of Gag-Pol resulted in impaired formation of these nuclear structures and defective G2 arrest. Consistently, we observed that G2 arrest-competent sooty mangabey Vpr could form these foci but not its G2 arrest-defective paralog Vpx, suggesting that formation of Vpr nuclear foci represents a critical early event in the induction of G2 arrest. Indeed, we found that Vpr could associate to chromatin via its C-terminal domain and that it could form a complex with VPRBP on chromatin. Finally, analysis of Vpr nuclear foci by time-lapse microscopy showed that they were highly mobile and stable structures. Overall, our results suggest that Vpr recruits the DDB1-CUL4A (VPRBP) E3 ligase to these nuclear foci and uses these mobile structures to target a chromatin-bound cellular substrate for ubiquitination in order to induce DNA damage/replication stress, ultimately leading to ATR activation and G2 cell cycle arrest.  相似文献   

20.
Caffeine and human DNA metabolism: the magic and the mystery   总被引:7,自引:0,他引:7  
The ability of caffeine to reverse cell cycle checkpoint function and enhance genotoxicity after DNA damage was examined in telomerase-expressing human fibroblasts. Caffeine reversed the ATM-dependent S and G2 checkpoint responses to DNA damage induced by ionizing radiation (IR), as well as the ATR- and Chk1-dependent S checkpoint response to ultraviolet radiation (UVC). Remarkably, under conditions in which IR-induced G2 delay was reversed by caffeine, IR-induced G1 arrest was not. Incubation in caffeine did not increase the percentage of cells entering the S phase 6-8h after irradiation; ATM-dependent phosphorylation of p53 and transactivation of p21(Cip1/Waf1) post-IR were resistant to caffeine. Caffeine alone induced a concentration- and time-dependent inhibition of DNA synthesis. It inhibited the entry of human fibroblasts into S phase by 70-80% regardless of the presence or absence of wildtype ATM or p53. Caffeine also enhanced the inhibition of cell proliferation induced by UVC in XP variant fibroblasts. This effect was reversed by expression of DNA polymerase eta, indicating that translesion synthesis of UVC-induced pyrimidine dimers by DNA pol eta protects human fibroblasts against UVC genotoxic effects even when other DNA repair functions are compromised by caffeine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号