首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
We determined the sequence dependence of human BNIP3 transmembrane domain dimerization using the biological assay TOXCAT. Mutants in which intermonomer hydrogen bonds between Ser172 and His173 are abolished show moderate interaction, indicating that side-chain hydrogen bonds contribute to dimer stability but are not essential to dimerization. Mutants in which a GxxxG motif composed of Gly180 and Gly184 has been abolished show little or no interaction, demonstrating the critical nature of the GxxxG motif to BNIP3 dimerization. These findings show that side-chain hydrogen bonds can enhance the intrinsic dimerization of a GxxxG motif and that sequence context can control how hydrogen bonds influence helix-helix interactions in membranes. The dimer interface mapped by TOXCAT mutagenesis agrees closely with the interfaces observed in the NMR structure and inferred from mutational analysis of dimerization on SDS-PAGE, showing that the native dimer structure is retained in detergents. We show that TOXCAT and SDS-PAGE give complementary and consistent information about BNIP3 transmembrane domain dimerization: TOXCAT is insensitive to mutations that have modest effects on self-association in detergents but readily discriminates among mutations that completely disrupt detergent-resistant dimerization. The close agreement between conclusions reached from TOXCAT and SDS-PAGE data for BNIP3 suggests that accurate estimates of the relative effects of mutations on native-state protein-protein interactions can be obtained even when the detergent environment is strongly disruptive.  相似文献   

2.
Specific interactions of transmembrane helices play a pivotal role in the folding and oligomerization of integral membrane proteins. The helix-helix interfaces frequently depend on specific amino acid patterns. In this study, a heptad repeat pattern was randomized with all naturally occurring amino acids to uncover novel sequence motifs promoting transmembrane domain interactions. Self-interacting transmembrane domains were selected from the resulting combinatorial library by means of the ToxR/POSSYCCAT system. A comparison of the amino acid composition of high-and low-affinity sequences revealed that high-affinity transmembrane domains exhibit position-specific enrichment of histidine. Further, sequences containing His preferentially display Gly, Ser, and/or Thr residues at flanking positions and frequently contain a C-terminal GxxxG motif. Mutational analysis of selected sequences confirmed the importance of these residues in homotypic interaction. Probing heterotypic interaction indicated that His interacts in trans with hydroxylated residues. Reconstruction of minimal interaction motifs within the context of an oligo-Leu sequence confirmed that His is part of a hydrogen bonded cluster that is brought into register by the GxxxG motif. Notably, a similar motif contributes to self-interaction of the BNIP3 transmembrane domain.  相似文献   

3.
Interactions of transmembrane helices play a crucial role in the folding and oligomerisation of integral membrane proteins. In order to uncover novel sequence motifs mediating these interactions, we randomised one face of a transmembrane helix with a set of non-polar or moderately polar amino acids. Those sequences capable of self-interaction upon integration into bacterial inner membranes were selected by means of the ToxR/POSSYCCAT system. A comparison between low/medium-affinity and high-affinity sequences reveals that high-affinity sequences are strongly enriched in phenylalanine residues that are frequently observed at the − 3 position of GxxxG motifs, thus yielding FxxGxxxG motifs. Mutation of Phe or GxxxG in selected sequences significantly reduces self-interaction of the transmembrane domains without affecting their efficiency of membrane integration. Conversely, grafting FxxGxxxG onto unrelated transmembrane domains strongly enhances their interaction. Further, we find that FxxGxxxG is significantly over-represented in transmembrane domains of bitopic membrane proteins. The same motif contributes to self-interaction of the vesicular stomatitis virus G protein transmembrane domain. We conclude that Phe stabilises membrane-spanning GxxxG motifs. This is one example of how the role of certain side-chains in helix-helix interfaces is modulated by sequence context.  相似文献   

4.
Mitochondria-mediated apoptosis is regulated by proteins of the Bcl-2 superfamily, most of which contain a C-terminal hydrophobic domain that plays a role in membrane targeting. Experiments with BNIP3 have implicated the transmembrane (TM) domain in its proapoptotic function, homodimerization, and interactions with Bcl-2 and Bcl-xL. We show that the BNIP3 TM domain self-associates strongly in Escherichia coli cell membranes and causes reversible dimerization of a soluble protein in the detergent SDS when expressed as an in-frame fusion. Limited mutational analysis identifies specific residues that are critical for BNIP3 TM self-association in membranes, and these residues are also important for dimerization in SDS micelles, suggesting that the self-association observed in membranes is preserved in detergent. The effects of sequence changes at positions Ala176 and Gly180 suggest that the BNIP3 TM domain associates using a variant of the GXXXG motif previously shown to be important in the dimerization of glycophorin A. The importance of residue His173 in BNIP3 TM domain dimerization indicates that polar residues, which have been implicated in self-association of model TM peptides, can act in concert with the AXXXG motif to stabilize TM domain interactions. Our results demonstrate that the hydrophobic C-terminal TM domain of the pro-apoptotic BNIP3 protein dimerizes tightly in lipidic environments, and that this association has a strong sequence dependence but is independent of the identity of flanking regions. Thus, the transmembrane domain represents another region of the Bcl-2 superfamily of proteins that is capable of mediating strong and specific protein-protein interactions.  相似文献   

5.
Folding of polytopic transmembrane proteins involves interactions of individual transmembrane helices, and multiple TM helix-helix interactions need to be controlled and aligned to result in the final TM protein structure. While defined interaction motifs, such as the GxxxG motif, might be critically involved in transmembrane helix-helix interactions, the sequence context as well as lipid bilayer properties significantly modulate the strength of a sequence specific transmembrane helix-helix interaction. Structures of 11 transmembrane helix dimers have been described today, and the influence of the sequence context as well as of the detergent and lipid environment on a sequence specific dimerization is discussed in light of the available structural information. This article is part of a Special Issue entitled: Protein Folding in Membranes.  相似文献   

6.
To explore the residue interactions in the glycophorin A dimerization motif, an alanine scan double mutant analysis at the helix-helix interface was carried out. These data reveal a combination of additive and coupled effects. The majority of the double mutants are found to be equally or slightly more stable than would be predicted by the sum of the energetic cost of the single-point mutants. The proximity of the mutated sites is not related to the presence of coupling between those sites. Previous studies reveal that a single face of the glycophorin A monomer contains a specific glycine-containing motif (GxxxG) that is thought to be a driving force for the association of transmembrane helices. Double mutant cycles suggest that the relationship of the GxxxG motif to the remainder of the helix-helix interface is complex. Sequences containing mutations that abolish the GxxxG motif retain an ability to dimerize, while a sequence containing a GxxxG motif appears unable to form dimers. The energetic effects of weakly coupled and additive double mutants can be explained by changes in van der Waals interactions at the dimer interface. These results emphasize the fact that the sequence context of the dimer interface modulates the strength of the glycophorin A GxxxG-mediated transmembrane dimerization reaction.  相似文献   

7.
Helix-helix interactions are important for the folding, stability, and function of membrane proteins. Here, two independent and complementary methods are used to investigate the nature and distribution of amino acids that mediate helix-helix interactions in membrane and soluble alpha-bundle proteins. The first method characterizes the packing density of individual amino acids in helical proteins based on the van der Waals surface area occluded by surrounding atoms. We have recently used this method to show that transmembrane helices pack more tightly, on average, than helices in soluble proteins. These studies are extended here to characterize the packing of interfacial and noninterfacial amino acids and the packing of amino acids in the interfaces of helices that have either right- or left-handed crossing angles, and either parallel or antiparallel orientations. We show that the most abundant tightly packed interfacial residues in membrane proteins are Gly, Ala, and Ser, and that helices with left-handed crossing angles are more tightly packed on average than helices with right-handed crossing angles. The second method used to characterize helix-helix interactions involves the use of helix contact plots. We find that helices in membrane proteins exhibit a broader distribution of interhelical contacts than helices in soluble proteins. Both helical membrane and soluble proteins make use of a general motif for helix interactions that relies mainly on four residues (Leu, Ala, Ile, Val) to mediate helix interactions in a fashion characteristic of left-handed helical coiled coils. However, a second motif for mediating helix interactions is revealed by the high occurrence and high average packing values of small and polar residues (Ala, Gly, Ser, Thr) in the helix interfaces of membrane proteins. Finally, we show that there is a strong linear correlation between the occurrence of residues in helix-helix interfaces and their packing values, and discuss these results with respect to membrane protein structure prediction and membrane protein stability.  相似文献   

8.
Folding and oligomerization of integral membrane proteins frequently depend on specific interactions of transmembrane helices. Interacting amino acids of helix-helix interfaces may form complex motifs and exert different types of molecular forces. Here, a set of strongly self-interacting transmembrane domains (TMDs), as isolated from a combinatorial library, was found to contain basic and acidic residues, in combination with polar nonionizable amino acids and C-terminal GxxxG motifs. Mutational analyses of selected sequences and reconstruction of high-affinity interfaces confirmed the cooperation of these residues in homotypic interactions. Probing heterotypic interaction indicated the presence of interhelical charge-charge interactions. Furthermore, simple motifs of an ionizable residue and GxxxG are significantly overrepresented in natural TMDs, and a specific combination of these motifs exhibits high-affinity heterotypic interaction. We conclude that intramembrane charge-charge interactions depend on sequence context. Moreover, they appear important for homotypic and heterotypic interactions of numerous natural TMDs.  相似文献   

9.
Arbely E  Granot Z  Kass I  Orly J  Arkin IT 《Biochemistry》2006,45(38):11349-11356
In an attempt to understand what distinguishes severe acute respiratory syndrome (SARS) coronavirus (SCoV) from other members of the coronaviridae, we searched for elements that are unique to its proteins and not present in any other family member. We identified an insertion of two glycine residues, forming the GxxxG motif, in the SCoV spike protein transmembrane domain (TMD), which is not found in any other coronavirus. This surprising finding raises an "oligomerization riddle": the GxxxG motif is a known dimerization signal, while the SCoV spike protein is known to be trimeric. Using an in vivo assay, we found that the SCoV spike protein TMD is oligomeric and that this oligomerization is driven by the GxxxG motif. We also found that the GxxxG motif contributes toward the trimerization of the entire spike protein; in that, mutations in the GxxxG motif decrease trimerization of the full-length protein expressed in mammalian cells. Using molecular modeling, we show that the SCoV spike protein TMD adopts a distinct and unique structure as opposed to all other coronaviruses. In this unique structure, the glycine residues of the GxxxG motif are facing each other, enhancing helix-helix interactions by allowing for the close positioning of the helices. This unique orientation of the glycine residues also stabilizes the trimeric bundle during multi-nanosecond molecular dynamics simulation in a hydrated lipid bilayer. To the best of our knowledge, this is the first demonstration that the GxxxG motif can potentiate other oligomeric forms beside a dimer. Finally, according to recent studies, the stabilization of the trimeric bundle is linked to a higher fusion activity of the spike protein, and the possible influence of the GxxxG motif on this feature is discussed.  相似文献   

10.
In order to identify strong transmembrane helix packing motifs, we have selected transmembrane domains exhibiting high-affinity homo-oligomerization from a randomized sequence library based on the right-handed dimerization motif of glycophorin A. Sequences were isolated using the TOXCAT system, which measures transmembrane helix-helix association in the Escherichia coli inner membrane. Strong selection was applied to a large range of sequences ( approximately 10(7) possibilities) and resulted in the identification of sequence patterns that mediate high-affinity helix-helix association. The most frequent motif isolated, GxxxG, occurs in over 80% of the isolates. Additional correlations suggest that flanking residues act in concert with the GxxxG motif, and that size complementarity is maintained at the interface, consistent with the idea that the identified sequence patterns represent packing motifs. The convergent identification of similar sequence patterns from an analysis of the transmembrane domains in the SwissProt sequence database suggests that these packing motifs are frequently utilized in naturally occurring helical membrane proteins.  相似文献   

11.
Both experimental and statistical searches for specific motifs that mediate transmembrane helix-helix interactions showed that two glycine residues separated by three intervening residues (GxxxG) provide a framework for specific interactions. Further work suggested that other motifs of small residues can mediate the interaction of transmembrane domains, so that the AxxxA-motif could also drive strong interactions of alpha-helices in soluble proteins. Thus, all these data indicate that a motif of two small residues in a distance of four might be enough to provide a framework for transmembrane helix-helix interaction. To test whether GxxxG is equivalent to (small)xxx(small), we investigated the effect of a substitution of either of the two Gly residues in the glycophorin A GxxxG-motif by Ala or Ser using the recently developed GALLEX system. The results of this mutational study demonstrate that, while a replacement of either of the two Gly by Ala strongly disrupts GpA homo-dimerization, the mutation to Ser partly stabilizes a dimeric structure. We suggest that the Ser residue can form a hydrogen bond with a backbone carbonyl group of the adjacent helix stabilizing a preformed homo-dimer. While (small)xxx(small) serves as a useful clue, the context of adjacent side-chains is essential for stable helix interaction, so each case must be tested.  相似文献   

12.
Aller P  Voiry L  Garnier N  Genest M 《Biopolymers》2005,77(4):184-197
The critical Val/Glu mutation in the membrane spanning domain of the rat Neu receptor confers the ability for ligand-independent signaling and leads to increased dimerization and transforming ability. There is evidence that the two transmembrane interacting helices play a role in receptor activation by imposing orientation constraints to the intracellular tyrosine kinase domains. By using MD simulations we have attempted to discriminate between correct and improper helix-helix packing by examining the structural and energetic properties of preformed left-handed and right-handed structures in a fully hydrated DMPC bilayer. The best energetic balance between the residues at the helix-helix interface and the residues exposed to the lipids is obtained for helices in symmetrical left-handed interactions packed together via Glu side chain/Ala backbone interhelical hydrogen bonds. Analyses demonstrate the importance of the ATVEG motif in helix-helix packing and point to additional contacting residues necessary for association. Our findings, all consistent with experimental data, suggest that a symmetrical left-handed structure of the helices could be the transmembrane domain configuration that promotes receptor activation and transformation. The present study may provide further insight into signal transduction mechanisms of the ErbB/Neu receptors.  相似文献   

13.
Sequence specificity in the dimerization of transmembrane alpha-helices.   总被引:25,自引:0,他引:25  
While several reports have suggested a role for helix-helix interactions in membrane protein oligomerization, there are few direct biochemical data bearing on this subject. Here, using mutational analysis, we show that dimerization of the transmembrane alpha-helix of glycophorin A in a detergent environment is spontaneous and highly specific. Very subtle changes in the side-chain structure at certain sensitive positions disrupt the helix-helix association. These sensitive positions occur at approximately every 3.9 residues along the helix, consistent with their comprising the interface of a closely fit transmembranous supercoil of alpha-helices. By contrast with other reported cases of interactions between transmembrane helices, the set of interfacial residues in this case contains no highly polar groups. Amino acids with aliphatic side chains define much of the interface, indicating that precise packing interactions between the helices may provide much of the energy for association. These data highlight the potential general importance of specific interactions between the hydrophobic anchors of integral membrane proteins.  相似文献   

14.
The GXXXG motif is a frequently occurring sequence of residues that is known to favor helix-helix interactions in membrane proteins. Here we show that the GXXXG motif is also prevalent in soluble proteins whose structures have been determined. Some 152 proteins from a non-redundant PDB set contain at least one alpha-helix with the GXXXG motif, 41 +/- 9% more than expected if glycine residues were uniformly distributed in those alpha-helices. More than 50% of the GXXXG-containing alpha-helices participate in helix-helix interactions. In fact, 26 of those helix-helix interactions are structurally similar to the helix-helix interaction of the glycophorin A dimer, where two transmembrane helices associate to form a dimer stabilized by the GXXXG motif. As for the glycophorin A structure, we find backbone-to-backbone atomic contacts of the C alpha-H...O type in each of these 26 helix-helix interactions that display the stereochemical hallmarks of hydrogen bond formation. These glycophorin A-like helix-helix interactions are enriched in the general set of helix-helix interactions containing the GXXXG motif, suggesting that the inferred C alpha-H...O hydrogen bonds stabilize the helix-helix interactions. In addition to the GXXXG motif, some 808 proteins from the non-redundant PDB set contain at least one alpha-helix with the AXXXA motif (30 +/- 3% greater than expected). Both the GXXXG and AXXXA motifs occur frequently in predicted alpha-helices from 24 fully sequenced genomes. Occurrence of the AXXXA motif is enhanced to a greater extent in thermophiles than in mesophiles, suggesting that helical interaction based on the AXXXA motif may be a common mechanism of thermostability in protein structures. We conclude that the GXXXG sequence motif stabilizes helix-helix interactions in proteins, and that the AXXXA sequence motif also stabilizes the folded state of proteins.  相似文献   

15.
To find motifs that mediate helix-helix interactions in membrane proteins, we have analyzed frequently occurring combinations of residues in a database of transmembrane domains. Our analysis was performed with a novel formalism, which we call TMSTAT, for exactly calculating the expectancies of all pairs and triplets of residues in individual sequences, taking into account differential sequence composition and the substantial effect of finite length in short segments. We found that the number of significantly over and under-represented pairs and triplets was much greater than the random expectation. Isoleucine, glycine and valine were the most common residues in these extreme cases. The main theme observed is patterns of small residues (Gly, Ala and Ser) at i and i+4 found in association with large aliphatic residues (Ile, Val and Leu) at neighboring positions (i.e. i+/-1 and i+/-2). The most over-represented pair is formed by two glycine residues at i and i+4 (GxxxG, 31.6 % above expectation, p<1x10(-33)) and it is strongly associated with the neighboring beta-branched residues Ile and Val. In fact, the GxxxG pair has been described as part of the strong interaction motif in the glycophorin A transmembrane dimer, in which the pair is associated with two Val residues (GVxxGV). GxxxG is also the major motif identified using TOXCAT, an in vivo selection system for transmembrane oligomerization motifs. In conjunction with these experimental observations, our results highlight the importance of the GxxxG+beta-branched motif in transmembrane helix-helix interactions. In addition, the special role for the beta-branched residues Ile and Val suggested here is consistent with the hypothesis that residues with constrained rotameric freedom in helical conformation might reduce the entropic cost of folding in transmembrane proteins. Additional material is available at http://engelman.csb.yale. edu/tmstat and http://bioinfo.mbb.yale. edu/tmstat.  相似文献   

16.
Compelling evidence has been provided that Na(+) and Cl(-)-dependent neurotransmitter transporter proteins form oligomeric complexes. Specific helix-helix interactions in lipid bilayers are thought to promote the assembly of integral membrane proteins to oligomeric structures. These interactions are determined by selective transmembrane helix packing motifs one of which is the Glycophorin A motif (GxxxG). This motif is present in the sixth transmembrane domain of most transporter proteins. In order to investigate, whether this motif is important for proper expression and function of the serotonin transporter (SERT), we have analysed the effect of mutating the respective glycine residues Gly338 and Gly342 to valine upon transient expression of the respective cDNAs in HEK293 cells. As revealed by western blotting, wildtype SERT is found in monomeric and dimeric forms while both mutants are expressed as monomers solely. Confocal microscopy revealed that the wildtype SERT is expressed at the cell surface, whereas both mutant proteins are localised in intracellular compartments. Failure of integration into the cell membrane is responsible for a total loss of [(3)H]5HT uptake capability by the mutants. These findings show that in the SERT protein the integrity of the GxxxG motif is essential for dimerisation and proper targeting of the transporter complex to the cell surface.  相似文献   

17.
We present an implementation of the TOXCAT membrane protein self-association assay that measures the change in apparent free energy of transmembrane helix dimerization caused by point mutations. Quantifying the reporter gene expression from cells carrying wild-type and mutant constructs shows that single point mutations that disrupt dimerization of the transmembrane domain of glycophorin A reproducibly lower the TOXCAT signal more than 100-fold. Replicate cultures can show up to threefold changes in the level of expression of the membrane bound fusion construct, and correcting for these variations improves the precision of the calculated apparent free energy change. The remarkably good agreement between our TOXCAT apparent free energy scale and free energy differences from sedimentation equilibrium studies for point mutants of the glycophorin A transmembrane domain dimer indicate that sequence changes usually affect membrane helix-helix interactions quite similarly in these two very different environments. However, the effects of point mutations at threonine 87 suggest that intermonomer polar contacts by this side-chain contribute significantly to dimer stability in membranes but not in detergents. Our findings demonstrate that a comparison of quantitative measurements of helix-helix interactions in biological membranes and genuine thermodynamic data from biophysical measurements on purified proteins can elucidate how changes in the lipidic environment modulate membrane protein stability.  相似文献   

18.
Sal-Man N  Gerber D  Shai Y 《Biochemistry》2004,43(8):2309-2313
Transmembrane (TM) helix association is an important process affecting the function of many integral membrane proteins. Consequently, aberrations in this process are associated with diseases. Unfortunately, our knowledge of the factors that control this oligomerization process in the membrane milieu is limited at best. Previous studies have shown a role for polar residues in the assembly of synthetic peptides in vitro and the association of de novo-designed TM helices in vivo. Here we examined, for the first time, the involvement of polar residues in the dimerization of a biological TM domain in its natural environment. We analyzed both the involvement of polar residues in the dimerization process and whether their influence is position-dependent. For this purpose, we used the TM domain of the Escherichia coli aspartate receptor (Tar) and 10 single and double mutants. Polar to nonpolar mutations in the sequence demonstrated the role of the QxxS motif in the dimerization of the Tar TM domain. Moreover, creating a GxxxG motif, instead of the polar motif, almost completely abolished dimerization. Swapping positions between two wild-type polar residues did not affect dimerization, implying a similar contribution from both positions. Interestingly, mutants that contain two identical strong polar residues, EE and QQ, demonstrated a substantially higher level of dimerization than a QE mutant, although all three TM domains contain two strong polar residues. This result suggests that, in addition to the polarity of the residues, the formation of symmetric bonds also plays a role in dimer stability. The results of this study may facilitate a rational modulation of membrane protein function for therapeutic purposes.  相似文献   

19.
The specific point mutation Val-->Glu664 within the transmembrane domain of the neu/erbB-2 receptor is associated with increased receptor dimerization and increased receptor tyrosine kinase activity resulting in malignant transformation of cells. It is well established that Glu and residues in proximity are necessary for receptor dimerization but many studies suggest that other intramembrane constraints, not yet elucidated, are determinant for transformation. In this work, we investigated dimer models both to understand the structural role of the Glu mutation in the transmembrane domain association and to determine helix-helix contacts required for oncogenic transformation. Different types of helix-helix association based on data resulting from Cys mutational studies of the full wild receptor and spectroscopic data of transmembrane neu peptides have been explored by molecular dynamics simulations. The study leads to propose a model for the dimeric association of the transmembrane domains of the oncogenic neu receptor showing left-handed interactions of the two helices stabilized by symmetrical hydrogen bonding interactions involving the Glu side chain on one helix and the facing carbonyl of Ala661 on the second helix. Contacting residues observed in the symmetric interface explain the transforming activity or the non transforming activity of many neu mutants. Moreover the left-handed coiled coil structure is fully consistent with recent results proving the role of rotational linkage of the transmembrane domain with the kinase domain. Comparison between the predicted dimer model and those presumed from experiments strongly suggests helix flexibility in the extracellular juxtamembrane region.  相似文献   

20.
To quantify the relationship between sequence and transmembrane dimer stability, a systematic mutagenesis and thermodynamic study of the protein-protein interaction residues in the glycophorin A transmembrane helix-helix dimer was carried out. The results demonstrate that the glycophorin A transmembrane sequence dimerizes when its GxxxG motif is abolished by mutation to large aliphatic residues, suggesting that the sequence encodes an intrinsic propensity to self-associate independent of a GxxxG motif. In the presence of an intact GxxxG motif, the glycophorin A dimer stability can be modulated over a span of -0.5 kcal mol(-1) to +3.2 kcal mol(-1) by mutating the surrounding sequence context. Thus, these flanking residues play an active role in determining the transmembrane dimer stability. To assess the structural consequences of the thermodynamic effects of mutations, molecular models of mutant transmembrane domains were constructed, and a structure-based parameterization of the free energy change due to mutation was carried out. The changes in association free energy for glycophorin A mutants can be explained primarily by changes in packing interactions at the protein-protein interface. The energy cost of removing favorable van der Waals interactions was found to be 0.039 kcal mol(-1) per A2 of favorable occluded surface area. The value corresponds well with estimates for mutations in bacteriorhodopsin as well as for those mutations in the interiors of soluble proteins that create packing defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号