首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dimerization or oligomerization of the ErbB/Neu receptors are necessary but not sufficient for initiation of receptor signaling. The two intracellular domains must be properly oriented for the juxtaposition of the kinase domains allowing trans-phosphorylation. This suggests that the transmembrane (TM) domain acts as a guide for defining the proper orientation of the intracellular domains. Two structural models, with the two helices either in left-handed or in right-handed coiling have been proposed as the TM domain structure of the active receptor. Because experimental data do not distinguish clearly helix-helix packing, molecular dynamics (MD) simulations are used to investigate the energetic factors that drive Neu TM-TM interactions of the wild and the oncogenic receptor (Val664/Glu mutation) in DMPC or in POPC environments. MD results indicate that helix-lipid interactions in the bilayer core are extremely similar in the two environments and raise the role of the juxtamembrane residues in helix insertion and helix-helix packing. The TM domain shows a greater propensity to adopt a left-handed structure in DMPC, with helices in optimal position for strong inter-helical Hbonds induced by the Glu mutation. In POPC, the right-handed structure is preferentially formed with the participation of water in inter-helical Hbonds. The two structural arrangements of the Neu(TM) helices both with GG4 residue motif in close contact at the interface are permissible in the membrane environment. According to the hypothesis of a monomer-dimer equilibrium of the proteins it is likely that the bilayer imposes structural constraints that favor dimerization-competent structure responsible of the proper topology necessary for receptor activation.  相似文献   

2.
Abstract

Dimerization or oligomerization of the ErbB/Neu receptors are necessary but not sufficient for initiation of receptor signaling. The two intracellular domains must be properly oriented for the juxtaposition of the kinase domains allowing trans-phosphorylation. This suggests that the transmembrane (TM) domain acts as a guide for defining the proper orientation of the intracellular domains.

Two structural models, with the two helices either in left-handed or in right-handed coiling have been proposed as the TM domain structure of the active receptor. Because experimental data do not distinguish clearly helix-helix packing, molecular dynamics (MD) simulations are used to investigate the energetic factors that drive Neu TM-TM interactions of the wild and the oncogenic receptor (Val664/Glu mutation) in DMPC or in POPC environments. MD results indicate that helix-lipid interactions in the bilayer core are extremely similar in the two environments and raise the role of the juxtamembrane residues in helix insertion and helix-helix packing. The TM domain shows a greater propensity to adopt a left-handed structure in DMPC, with helices in optimal position for strong inter-helical Hbonds induced by the Glu mutation. In POPC, the right-handed structure is preferentially formed with the participation of water in inter-helical Hbonds. The two structural arrangements of the NeuTM helices both with GG4 residue motif in close contact at the interface are permissible in the membrane environment. According to the hypothesis of a monomer-dimer equilibrium of the proteins it is likely that the bilayer imposes structural constraints that favor dimerization- competent structure responsible of the proper topology necessary for receptor activation.  相似文献   

3.
Molecular dynamics simulations of an atomic model of the transmembrane domain of the oncogenic ErbB2 receptor dimer embedded in an explicit dimyristoylphosphatidylcholine (DMPC) bilayer were performed for more than 4 ns. The oncogenic Glu mutation in the membrane spanning segment plays a major role in tyrosine kinase activity and receptor dimerization, and is thought to be partly responsible for the structure of the transmembrane domain of the active receptor. MD results show that the interactions between the two transmembrane helices are characteristic of a left-handed packing as previously demonstrated from in vacuo simulations. Moreover, MD results reveal the absence of persistent hydrogen bonds between the Glu side chains in a membrane environment, which raise the question of the ability for Glu alone to stabilize the TM domain of the ErbB2 receptor. Interestingly the formation of the alpha-pi motif in the two ErbB2 transmembrane helices confirms the concept of intrinsic sequence-induced conformational flexibility. From a careful analysis of our MD results, we suggest that the left-handed helix-helix packing could be the key to correctly orient the intracellular domain of the activated receptor dimer. The prediction of such interactions from computer simulations represents a new step towards the understanding of signaling mechanisms.  相似文献   

4.
The specific point mutation Val-->Glu664 within the transmembrane domain of the neu/erbB-2 receptor is associated with increased receptor dimerization and increased receptor tyrosine kinase activity resulting in malignant transformation of cells. It is well established that Glu and residues in proximity are necessary for receptor dimerization but many studies suggest that other intramembrane constraints, not yet elucidated, are determinant for transformation. In this work, we investigated dimer models both to understand the structural role of the Glu mutation in the transmembrane domain association and to determine helix-helix contacts required for oncogenic transformation. Different types of helix-helix association based on data resulting from Cys mutational studies of the full wild receptor and spectroscopic data of transmembrane neu peptides have been explored by molecular dynamics simulations. The study leads to propose a model for the dimeric association of the transmembrane domains of the oncogenic neu receptor showing left-handed interactions of the two helices stabilized by symmetrical hydrogen bonding interactions involving the Glu side chain on one helix and the facing carbonyl of Ala661 on the second helix. Contacting residues observed in the symmetric interface explain the transforming activity or the non transforming activity of many neu mutants. Moreover the left-handed coiled coil structure is fully consistent with recent results proving the role of rotational linkage of the transmembrane domain with the kinase domain. Comparison between the predicted dimer model and those presumed from experiments strongly suggests helix flexibility in the extracellular juxtamembrane region.  相似文献   

5.
Membrane proteins span a large variety of different functions such as cell-surface receptors, redox proteins, ion channels, and transporters. Proteins with functional pores show different characteristics of helix-helix packing as other helical membrane proteins. We found that the helix-helix contacts of 13 nonhomologous high-resolution structures of membrane channels and transporters are mainly accomplished by weakly polar amino acids (G > S > T > F) that preferably create contacts every fourth residue, typical for right-handed helix crossings. There is a strong correlation between the now available biological hydrophobicity scale and the propensities of the weakly polar and hydrophobic residues to be buried at helix-helix interfaces or to be exposed to the lipids in membrane channels and transporters. The polar residues, however, make no major contribution towards the packing of their transmembrane helices, and are therefore subsumed to be primarily exposed to the polar milieu during the folding process. The contact formation of membrane channels and transporters is therefore ruled by the solubility of the residues, which we suppose to be the driving force for the assembly of their transmembrane helices. By contrast, in 14 nonhomologous high-resolution structures of other membrane protein coils, also large and polar amino acids (D > S > M > Q) create characteristic contacts every 3.5th residues, which is a signature for left-handed helix crossings. Accordingly, it seems that dependent on the function, different concepts of folding and stabilization are realized for helical membrane proteins. Using a sequence-based matrix prediction method these differences are exploited to improve the prediction of buried and exposed residues of transmembrane helices significantly. When the sequence motifs typical for membrane channels and transporters were applied for the prediction of helix-helix contacts the quality of prediction rises by 16% to an average value of 76%, compared to the same approach when only single amino acid positions are taken into account.  相似文献   

6.
Smith SO  Smith C  Shekar S  Peersen O  Ziliox M  Aimoto S 《Biochemistry》2002,41(30):9321-9332
The Neu receptor tyrosine kinase is constitutively activated by a single amino acid change in the transmembrane domain of the receptor. The mutation of Val664 to glutamate or glutamine induces receptor dimerization and autophosphorylation of the receptor's intracellular kinase domain. The ability of this single mutation to activate the receptor is sequence-dependent, suggesting that specific helix-helix interactions stabilize the transmembrane dimer. We have determined the local secondary structure and interhelical contacts in the region of position 664 in peptide models of the activated receptor using solid-state rotational resonance and rotational echo double-resonance (REDOR) NMR methods. Intrahelical (13)C rotational resonance distance measurements were made between 1-(13)C-Thr662 and 2-(13)C-Gly665 on peptides corresponding to the wild-type Neu and activated Neu transmembrane sequences containing valine and glutamate at position 664, respectively. We observed similar internuclear distances (4.5 +/- 0.2 A) in both Neu and Neu*, indicating that the region near residue 664 is helical and is not influenced by mutation. Interhelical (15)N...(13)C REDOR measurements between Gln664 side chains on opposing helices were not consistent with hydrogen bonding between the side chain functional groups. However, interhelical rotational resonance measurements between 1-(13)C-Glu664 and 2-(13)C-Gly665 and between 1-(13)C-Gly665 and 2-(13)C-Gly665 demonstrated close contacts (4.3-4.5 A) consistent with the packing of Gly665 in the Neu* dimer interface. These measurements provide structural constraints for modeling the transmembrane dimer and define the rotational orientation of the transmembrane helices in the activated receptor.  相似文献   

7.
Dimerization of the neu/ErbB-2 receptor tyrosine kinase is a necessary but not a sufficient step for signaling. Despite the efforts expended to identify the molecular interactions responsible for receptor-receptor contacts and particularly those involving the transmembrane domain, structural details are still unknown. In this work, molecular dynamics simulations of the helical transmembrane domain (TM) of neu and ErbB-2 receptors are used to predict their dimer structure both in the wild and oncogenic forms. A global conformational search method, applied to define the best orientations of parallel helices, showed an energetically favorable configuration with the specific mutation site within the interface, common for both the nontransforming and the transforming neu/ErbB-2 TM dimers. Starting from this configuration, a total of 10 simulations, about 1.4 ns each, performed in vacuum, without any constraints, show that the two helices preferentially wrap in left-handed interactions with a packing angle at about 20°. The resulting structures are nonsymmetric and the hydrogen bond network analysis shows that helices experience π local distortions that facilitate inter-helix hydrogen bond interactions and may result in a change in the helix packing, leading to a symmetric interface. For the mutated sequences, we show that the Glu side chain interacts directly with its cognate or with carbonyl groups of the facing backbone. We show that the connectivity between interfacial residues conforms to the knobs-into-holes packing mode of transmembrane helices. The dimeric interface described in our models is discussed with respect to mutagenesis studies. Received: 12 March 1999 / Revised version: 23 August 1999 / Accepted: 23 August 1999  相似文献   

8.
Helix-helix interactions are important for the folding, stability, and function of membrane proteins. Here, two independent and complementary methods are used to investigate the nature and distribution of amino acids that mediate helix-helix interactions in membrane and soluble alpha-bundle proteins. The first method characterizes the packing density of individual amino acids in helical proteins based on the van der Waals surface area occluded by surrounding atoms. We have recently used this method to show that transmembrane helices pack more tightly, on average, than helices in soluble proteins. These studies are extended here to characterize the packing of interfacial and noninterfacial amino acids and the packing of amino acids in the interfaces of helices that have either right- or left-handed crossing angles, and either parallel or antiparallel orientations. We show that the most abundant tightly packed interfacial residues in membrane proteins are Gly, Ala, and Ser, and that helices with left-handed crossing angles are more tightly packed on average than helices with right-handed crossing angles. The second method used to characterize helix-helix interactions involves the use of helix contact plots. We find that helices in membrane proteins exhibit a broader distribution of interhelical contacts than helices in soluble proteins. Both helical membrane and soluble proteins make use of a general motif for helix interactions that relies mainly on four residues (Leu, Ala, Ile, Val) to mediate helix interactions in a fashion characteristic of left-handed helical coiled coils. However, a second motif for mediating helix interactions is revealed by the high occurrence and high average packing values of small and polar residues (Ala, Gly, Ser, Thr) in the helix interfaces of membrane proteins. Finally, we show that there is a strong linear correlation between the occurrence of residues in helix-helix interfaces and their packing values, and discuss these results with respect to membrane protein structure prediction and membrane protein stability.  相似文献   

9.
Polar residues are capable of mediating the association of membrane-embedded helices through the formation of side-chain/side-chain inter-helical hydrogen bonds. However, the extent to which native van der Waals packing of the residues surrounding the polar locus can enhance, or interfere with, the interaction of polar residues has not yet been studied. We examined the propensities of four polar residues (aspartic acid, asparagine, glutamic acid, and glutamine) to promote self-association of transmembrane (TM) domains in several biologically derived sequence environments, including (i). four naturally occurring TM domains that contain a Glu or Gln residue (Tnf5/CD40 ligand, C79a/Ig-alpha, C79b/Ig-beta, and Fut3/alpha-fucosyltransferase); and (ii). variants of bacteriophage M13 major coat protein TM segment with Asp and Asn at interfacial and non-interfacial positions. Self-association was quantified by the TOXCAT assay, which measures TM helix self-oligomerization in the Escherichia coli inner membrane. While an appropriately placed polar residue was found in several cases to significantly stabilize TM helix-helix interactions through the formation of an interhelical hydrogen bond, in other cases the strongly polar residues did not enhance the association of the two helices. Overall, these results suggest that an innate structural mechanism may operate to control non-specific association of membrane-embedded polar residues.  相似文献   

10.
Chen Z  Xu Y 《Proteins》2006,62(2):539-552
The energetics and stability of the packing of transmembrane helices were investigated by Monte Carlo simulations with the replica-exchange method. The helices were modeled with a united atom representation, and the CHARMM19 force field was employed. Based on known experimental structures of membrane proteins, an implicit knowledge-based potential was developed to describe the helix-membrane interactions at the residue level, whose validity was tested through prediction of the orientations when single helices were inserted into a membrane. Two systems were studied in this article, namely the glycophorin A dimer, and helices A and B of Bacteriorhodopsin. For the glycophorin A dimer, the most stable structure (0.5 A away from the experimental structure) is mainly stabilized by the favorable helix-helix interactions, and has the most population regardless of the helix-membrane interaction. However, for helices A and B of Bacteriorhodopsin, it was found that the packing determined by helix-helix interactions is nonspecific, and a native-like structure (0.2 A from the experimental one) can be identified from several structural analogs as the most stable one only after applying the membrane potential. Our results suggest that the contribution from the helix-membrane interaction could be critical in the correct packing of transmembrane helices in the membrane.  相似文献   

11.
The nature and distribution of amino acids in the helix interfaces of four polytopic membrane proteins (cytochrome c oxidase, bacteriorhodopsin, the photosynthetic reaction center of Rhodobacter sphaeroides, and the potassium channel of Streptomyces lividans) are studied to address the role of glycine in transmembrane helix packing. In contrast to soluble proteins where glycine is a noted helix breaker, the backbone dihedral angles of glycine in transmembrane helices largely fall in the standard alpha-helical region of a Ramachandran plot. An analysis of helix packing reveals that glycine residues in the transmembrane region of these proteins are predominantly oriented toward helix-helix interfaces and have a high occurrence at helix crossing points. Moreover, packing voids are generally not formed at the position of glycine in folded protein structures. This suggests that transmembrane glycine residues mediate helix-helix interactions in polytopic membrane proteins in a fashion similar to that seen in oligomers of membrane proteins with single membrane-spanning helices. The picture that emerges is one where glycine residues serve as molecular notches for orienting multiple helices in a folded protein complex.  相似文献   

12.
Transmembrane (TM) helix-helix interactions are important for virus budding and fusion. We have developed a simulation strategy that reveals the main features of the helical packing between the TM domains of the two glycoproteins E1 and E2 of the alpha-virus Semliki Forest virus and that can be extrapolated to sketch TM helical packing in other alpha-viruses. Molecular dynamics simulations were performed in wild-type and mutant peptides, both isolated and forming E1/E2 complexes. The simulations revealed that the isolated wild-type E1 peptide formed a more flexible helix than the rest of peptides and that the wild-type E1/E2 complex consists of two helices that intimately pack their N-terminals. The residues located at the interhelical interface displayed the typical motif of the left-handed coiled-coils. These were small and medium residues as Gly, Ala, Ser, and Leu, which also had the possibility to form interhelical Calpha-H...O hydrogen bonds. Results from the mutant complexes suggested that correct packing is a compromise between these residues at both E1 and E2 interhelical interfaces. This compromise allowed prediction of E1-E2 contact residues in the TM spanning domain of other alphaviruses even though the sequence identity of E2 peptides is low in this domain.  相似文献   

13.
Chng CP  Tan SM 《Proteins》2011,79(7):2203-2213
Integrins are transmembrane (TM) proteins that mediate bidirectional mechanical signaling between the extracellular matrix and the cellular cytoskeletal network. Each integrin molecule consists of non-covalently associated α- and β-subunits, with each subunit consisting of a large ectodomain, a single-pass TM helix, and a short cytoplasmic tail. Previously we found evidence for a polar interaction (hydrogen bond) in the outer membrane clasp (OMC) of the leukocyte integrin αLβ2 TMs that is absent in the platelet integrin αIIβ3 OMC. Here, we compare the self-assembly dynamics of αLβ2 and αIIβ3 TM helices in a model membrane using coarse-grained molecular dynamics simulations. We found that although αIIβ3 TM helices associate more easily, packing is suboptimal. In contrast, αLβ2 TM helices achieve close-to-optimal packing. This suggests that αLβ2 TM packing is more specific, possibly due to the interhelix hydrogen bond. Theoretical association free energy profiles show a deeper minimum at a smaller helix-helix separation for αLβ2 compared with αIIβ3. The αIIβ3 profile is also more rugged with energetic barriers whereas that of αLβ2 is almost without barriers. Disruption of the interhelix hydrogen bond in αLβ2 via the β2T686G mutation results in poorer association and a similar profile as αIIβ3. The OMC polar interaction in αLβ2 thus plays a significant role in the packing of the TM helices.  相似文献   

14.
Prodöhl A  Weber M  Dreher C  Schneider D 《Biochimie》2007,89(11):1433-1437
Diverse methods have been developed and applied in the recent years to study interaction of transmembrane alpha-helices and often interaction of single transmembrane helices is followed on SDS-gels. Here we compare two measurements of the stability of a transmembrane helix-helix interaction, and the stability of the PsbF transmembrane helix dimer was determined in a biological membrane as well as in SDS. The observations described in this study demonstrate that the environment, in which a transmembrane helix interaction is studied, can be very critical and detergent properties can significantly influence transmembrane helix interactions, especially, when the transmembrane domain contains strongly polar residues.  相似文献   

15.
Sequence specificity in the dimerization of transmembrane alpha-helices.   总被引:25,自引:0,他引:25  
While several reports have suggested a role for helix-helix interactions in membrane protein oligomerization, there are few direct biochemical data bearing on this subject. Here, using mutational analysis, we show that dimerization of the transmembrane alpha-helix of glycophorin A in a detergent environment is spontaneous and highly specific. Very subtle changes in the side-chain structure at certain sensitive positions disrupt the helix-helix association. These sensitive positions occur at approximately every 3.9 residues along the helix, consistent with their comprising the interface of a closely fit transmembranous supercoil of alpha-helices. By contrast with other reported cases of interactions between transmembrane helices, the set of interfacial residues in this case contains no highly polar groups. Amino acids with aliphatic side chains define much of the interface, indicating that precise packing interactions between the helices may provide much of the energy for association. These data highlight the potential general importance of specific interactions between the hydrophobic anchors of integral membrane proteins.  相似文献   

16.
A single mutation within the transmembrane region of the Neu receptor (Val664-->Glu) is known to enhance tyrosine kinase activity, by promoting receptor dimerization. In order to gain insight into potential structural changes that arise as a result of the mutation, peptides corresponding to the complete transmembrane domain of proto-oncogenic and mutant forms of Neu have been studied by 1H nuclear magnetic resonance in the solvent trifluoroethanol (TFE). The chemical shifts are similar for both forms of the peptide, with the exception of amide residues close to the mutation site. Both peptides adopt a helical conformation, with a distinct bend one turn downstream of the mutation site. This deformation gives rise to several nuclear Overhauser effects, the majority of which were detected in both peptides, that are atypical for a straight canonical alpha-helix. Our data in this solvent do not support a conformational change in the transmembrane domain of monomeric Neu as a result of the mutation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicates that proto-oncogenic Neu peptides have a higher propensity to oligomerize in the solvent TFE than the Glu664 oncogenic form.  相似文献   

17.
BACKGROUND: Site-directed sulfhydryl chemistry and spectroscopy can be used to probe protein structure, mechanism and dynamics in situ. The aspartate receptor of bacterial chemotaxis is representative of a large family of prokaryotic and eukaryotic receptors that regulate histidine kinases in two-component signaling pathways, and has become one of the best characterized transmembrane receptors. We report here the use of cysteine and disulfide scanning to probe the helix-packing architecture of the cytoplasmic domain of the aspartate receptor. RESULTS: A series of designed cysteine pairs have been used to detect proximities between cytoplasmic helices in the full-length, membrane-bound receptor by measurement of disulfide-bond formation rates. Upon mild oxidation, 25 disulfide bonds from rapidly between three specific pairs of helices, whereas other helix pairs yield no detectable disulfide-bond formation. Further constraints on helix packing are provided by 14 disulfide bonds that retain receptor function in an in vitro kinase regulation assay. Of these functional disulfides, seven lock the receptor in the conformation that constitutively stimulates kinase activity ('lock-on'), whereas the remaining seven retain normal kinase regulation. Finally, disulfide-trapping experiments in the absence of bound kinase reveal large-amplitude relative motions of adjacent helices, including helix translations and rotations of up to 19 A and 180 degrees, respectively. CONCLUSIONS: The 25 rapidly formed and 14 functional disulfide bonds identify helix-helix contacts and their register in the full-length, membrane-bound receptor-kinase complex. The results reveal an extended, rather than compact, domain architecture in which the observed helix-helix interactions are best described by a four-helix bundle arrangement. A cluster of six lock-on disulfide bonds pinpoints a region of the four-helix bundle critical for kinase activation, whereas the signal-retaining disulfides indicate that signal-induced rearrangements of this region are small enough to be accommodated by disulfide-bond flexibility (< or = 1.2 A). In the absence of bound kinase, helix packing within the cytoplasmic domain is highly dynamic.  相似文献   

18.
Ligand binding to receptor tyrosine kinases (RTKs) regulates receptor dimerization and activation of the kinase domain. To examine the role of the transmembrane domain in regulation of RTK activation, we have exploited a simplified transmembrane motif, [VVVEVVV](n), previously shown to activate the Neu receptor. Here we demonstrate rotational linkage of the transmembrane domain with the kinase domain, as evidenced by a periodic activation of Neu as the dimerization motif is shifted across the transmembrane domain. These results indicate that activation requires a specific orientation of the kinase domains with respect to each other. Results obtained with platelet-derived growth factor receptor-beta suggest that this rotational linkage of the transmembrane domain to the kinase domain may be a general feature of RTKs. These observations suggest that activating mutations in RTK transmembrane and juxtamembrane domains will be limited to those residues that position the kinase domains in an allowed rotational conformation.  相似文献   

19.
The transmembrane domain of the pro-apoptotic protein BNIP3 self-associates strongly in membranes and in detergents. We have used site-directed mutagenesis to analyze the sequence dependence of BNIP3 transmembrane domain dimerization, from which we infer the physical basis for strong and specific helix-helix interactions in this system. Hydrophobic substitutions identify six residues as critical to dimerization, and the pattern of sensitive residues suggests that the BNIP3 helices interact at a right-handed crossing angle. Based on the dimerization propensities of single point mutants, we propose that: polar residues His173 and Ser172 make inter-monomer hydrogen bonds to one another through their side-chains; Ala176, Gly180, and Gly184 form a tandem GxxxG motif that allows close approach of the helices; and Ile183 makes inter-monomer van der Waals contacts. Since neither the tandem GxxxG motif nor the hydrogen bonding pair is sufficient to drive dimerization, our results demonstrate the importance of sequence context for either hydrogen bonding or GxxxG motif involvement in BNIP3 transmembrane helix-helix interactions. In this study, hydrophobic substitutions away from the six interfacial positions have almost no effect on dimerization, confirming the expectation that hydrophobic replacements affect helix-helix interactions only if they interfere with packing or hydrogen bonding by interfacial residues. However, changes to slightly polar residues are somewhat disruptive even when located away from the interface, and the degree of disruption correlates with the decrease in hydrophobicity. Changing the hydrophobicity of the BNIP3 transmembrane domain alters its helicity and protection of its backbone amides. We suggest that polar substitutions decrease the fraction of dimer by stabilizing an unfolded monomeric state of the transmembrane span, rather than by affecting helix-helix interactions. This result has broad implications for interpreting the sequence dependence of membrane protein stability in detergents.  相似文献   

20.
The final, structure-determining step in the folding of membrane proteins involves the coalescence of preformed transmembrane helices to form the native tertiary structure. Here, we review recent studies on small peptide and protein systems that are providing quantitative data on the interactions that drive this process. Gel electrophoresis, analytical ultracentrifugation, and fluorescence resonance energy transfer (FRET) are useful methods for examining the assembly of homo-oligomeric transmembrane helical proteins. These methods have been used to study the assembly of the M2 proton channel from influenza A virus, glycophorin, phospholamban, and several designed membrane proteins-all of which have a single transmembrane helix that is sufficient for association into a transmembrane helical bundle. These systems are being studied to determine the relative thermodynamic contributions of van der Waals interactions, conformational entropy, and polar interactions in the stabilization of membrane proteins. Although the database of thermodynamic information is not yet large, a few generalities are beginning to emerge concerning the energetic differences between membrane and water-soluble proteins: the packing of apolar side chains in the interior of helical membrane proteins plays a smaller, but nevertheless significant, role in stabilizing their structure. Polar, hydrogen-bonded interactions occur less frequently, but, nevertheless, they often provide a strong driving force for folding helix-helix pairs in membrane proteins. These studies are laying the groundwork for the design of sequence motifs that dictate the association of membrane helices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号