首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lectin microarray is an emerging technique, which will accelerate glycan profiling and discovery of glycan-related biomarkers. One of the most important stages in realizing the potential of the technique is to achieve sufficiently high sensitivity to detect even the low concentrations of some target glycoproteins which occur in sera or tissues. Previously, we developed a lectin microarray based on an evanescent-field fluorescence-assisted detection principle that allows rapid profiling of glycoproteins. Here, we report optimization of procedures for lectin spotting and immobilization to improve the sensitivity and reproducibility of the lectin microarray. The improved microarray allows high-sensitivity detection of even monovalent oligosaccharides that generally have a low affinity with lectins (K(d)>10(-6) M). The LOD observed for RCA120, a representative plant lectin, with asialofetuin, and an asialo-biantennary N-glycan probe were determined to be 100 pg/mL and 100 pM, respectively. With the improved lectin microarray system, closely related structural isomers, i.e., Le(a) and Le(x), were clearly differentiated by the difference in signal patterns on relevant multiple lectins, even though specific lectins to detect these glycan structures were not available. The result proved a previously proposed concept of lectin-based glycan profiling.  相似文献   

2.
The outermost layer of all immune cells, the glycocalyx, is composed of a complex mixture of glycoproteins, glycolipids and lectins, which specifically recognize particular glycan epitopes. As the glycocalyx is the cell's primary interface with the external environment many biologically significant events can be attributed to glycan recognition. For this reason the rapidly expanding glycomics field is being increasingly recognized as an important component in our quest to better understand the functioning of the immune system. In this review, we highlight the current status of immune cell glycomics, with particular attention being paid to T- and B-lymphocytes and dendritic cells. We also describe the strategies and methodologies used to define immune cell glycomes.  相似文献   

3.
Glycans have important roles in living organisms with their structural diversity. Thus, glycomics, especially aspects involving the assignment of functional glycans in a high-throughput manner, has been an emerging field in the postproteomics era. To date, however, there has been no versatile method for glycan profiling. Here we describe a new microarray procedure based on an evanescent-field fluorescence-detection principle, which allows sensitive, real-time observation of multiple lectin-carbohydrate interactions under equilibrium conditions. The method allows quantitative detection of even weak lectin-carbohydrate interactions (dissociation constant, K(d) > 10(-6) M) as fluorescent signals for 39 immobilized lectins. We derived fully specific signal patterns for various Cy3-labeled glycoproteins, glycopeptides and tetramethylrhodamine (TMR)-labeled oligosaccharides. The obtained results were consistent with the previous reports of glycoprotein and lectin specificities. We investigated the latter aspects in detail by frontal affinity chromatography, another profiling method. Thus, the developed lectin microarray should contribute to creation of a new paradigm for glycomics.  相似文献   

4.
Glycosylation modifies the physicochemical properties and protein binding functions of glycoconjugates. These modifications are biosynthesized in the endoplasmic reticulum and Golgi apparatus by a series of enzymatic transformations that are under complex control. As a result, mature glycans on a given site are heterogeneous mixtures of glycoforms. This gives rise to a spectrum of adhesive properties that strongly influences interactions with binding partners and resultant biological effects. In order to understand the roles glycosylation plays in normal and disease processes, efficient structural analysis tools are necessary. In the field of glycomics, liquid chromatography/mass spectrometry (LC/MS) is used to profile the glycans present in a given sample. This technology enables comparison of glycan compositions and abundances among different biological samples, i.e. normal versus disease, normal versus mutant, etc. Manual analysis of the glycan profiling LC/MS data is extremely time-consuming and efficient software tools are needed to eliminate this bottleneck. In this work, we have developed a tool to computationally model LC/MS data to enable efficient profiling of glycans. Using LC/MS data deconvoluted by Decon2LS/DeconTools, we built a list of unique neutral masses corresponding to candidate glycan compositions summarized over their various charge states, adducts and range of elution times. Our work aims to provide confident identification of true compounds in complex data sets that are not amenable to manual interpretation. This capability is an essential part of glycomics work flows. We demonstrate this tool, GlycReSoft, using an LC/MS dataset on tissue derived heparan sulfate oligosaccharides. The software, code and a test data set are publically archived under an open source license.  相似文献   

5.
Carbohydrates coat most types of cell in nature and are intimately involved in various biological events, including cell differentiation, homing to specific tissues, cell adhesion, cell recognition, microbial pathogenesis and immunological recognition. Carbohydrate structures are complex to analyze owing to their branched nature, the diversity of secondary modifications of monomers, their indirect relationship to the genome and the range of molecular contexts in which the modifications are found. Thus, whereas the fields of genomics and proteomics have become accessible to most scientists, technologies to assess glycan structures rapidly (i.e. glycomics) are still in the developmental stages. This review focuses on recent developments in glycomic technologies, including new high-throughput techniques for glycan purification and annotation that are advancing mass-spectrometry-based glycomics, and the latest work on microarray methodologies to decipher the glycome.  相似文献   

6.
Recent progress in mass spectrometry has led to new challenges in glycomics, including the development of rapid glycan enrichment techniques. A facile technique for exploration of a carbohydrate-related biomarker is important because proteomics research targets glycosylation, a posttranslational modification. Here we report an "all-in-one" protocol for high throughput clinical glycomics. This new technique integrates glycoblotting-based glycan enrichment onto the BlotGlycoABC bead, on-bead stabilization of sialic acids, and fluorescent labeling of oligosaccharides in a single workflow on a multiwell filter plate. The advantage of this protocol and MALDI-TOF MS was demonstrated through differentiation of serum N-glycan profiles of subjects with congenital disorders of glycosylation and hepatocellular carcinoma and healthy donors. The method also permitted total cellular glycomics analysis of human prostate cancer cells and normal human prostate epithelial cells. These results demonstrate the potentials of glycan enrichment/processing for biomarker discovery.  相似文献   

7.
糖类抗原125(CA125)被认为是卵巢癌诊断的“金标准”,但在临床应用中普遍存在着特异性不高的问题.肿瘤形成和发展过程中常伴有糖基化修饰异常和糖链结构的改变,不同的肿瘤具有特异的异常糖链结构.近年来,借助凝集素芯片、多重质谱分析等糖蛋白组学和糖组学研究技术,发现不同来源CA125的O-糖链和N-糖链结构存在着明显的微观不均一性,以这些特征性糖链结构为标志物,可以显著提高CA125对卵巢癌的诊断特异性.在过去的10年,研究者们除对CA125糖链结构和糖基化模式做了深入的研究外,还利用糖组的研究方法,直接对来自卵巢癌患者血液、体液(腹水、囊泡液等)中糖蛋白的糖链做了精细的结构解析,结果显示,可有效鉴别卵巢癌患者和健康志愿者的特异性N-糖链结构,有可能成为灵敏度高和特异性好的卵巢癌生物标志物.卵巢癌生物标志物研究发展的总趋势是从传统的对蛋白质的定性和定量研究,逐步转向于对标志物糖基化修饰和特异性糖链结构的鉴定以及定量分析.本文从糖组学的视角,对卵巢癌标志物糖组学的研究现状及发展趋势进行了综述和展望.  相似文献   

8.
Introduction: Protein glycosylation is recognized as an important post-translational modification, with specific substructures having significant effects on protein folding, conformation, distribution, stability and activity. However, due to the structural complexity of glycans, elucidating glycan structure-function relationships is demanding. The fine detail of glycan structures attached to proteins (including sequence, branching, linkage and anomericity) is still best analysed after the glycans are released from the purified or mixture of glycoproteins (glycomics). The technologies currently available for glycomics are becoming streamlined and standardized and many features of protein glycosylation can now be determined using instruments available in most protein analytical laboratories.

Areas covered: This review focuses on the current glycomics technologies being commonly used for the analysis of the microheterogeneity of monosaccharide composition, sequence, branching and linkage of released N- and O-linked glycans that enable the determination of precise glycan structural determinants presented on secreted proteins and on the surface of all cells.

Expert commentary: Several emerging advances in these technologies enabling glycomics analysis are discussed. The technological and bioinformatics requirements to be able to accurately assign these precise glycan features at biological levels in a disease context are assessed.  相似文献   


9.
Glycans play major roles in living organisms. Thus, essential information is required on diverse glycans, their location, and moieties in proteins, as well as for technology in a high-throughput manner, for improving functional glycomics. In the present study, we describe a new approach involving a 2-D array, which has the potential to fulfill both requirements. The first dimension of the array is composed of various lectins immobilized to a MALDI plate. The second dimension consists of initial proteolysis, then sequential exoglycosidase digestion using highly specific enzymes. The products of such digestions are peptide/glycopeptide mixtures conjugating different glycan fragments from which the exoglycosidase has removed specific terminal residues. Consequently, a series of spectra are obtained when lectin-attached products are analyzed by MALDI-TOF MS. By using well-known glycoproteins and NKp46D2-Ig, a recombinant fusion natural killer receptor with unknown glycans produced in CHO cells, we proved the usefulness of the method, demonstrating rapid and simultaneous determination of N- and O-glycan sequences, their glycan moieties, and subtypes on each of the determined glycosylation sites. This strategy provides a tool that can rapidly explore glycan structures and might contribute to a better understanding of process- and disease-related glycoproteins.  相似文献   

10.
The term 'glycomics' describes the scientific attempt to identify and study all the glycan molecules - the glycome - synthesised by an organism. The aim is to create a cell-by-cell catalogue of glycosyltransferase expression and detected glycan structures. The current status of databases and bioinformatics tools, which are still in their infancy, is reviewed. The structures of glycans as secondary gene products cannot be easily predicted from the DNA sequence. Glycan sequences cannot be described by a simple linear one-letter code as each pair of monosaccharides can be linked in several ways and branched structures can be formed. Few of the bioinformatics algorithms developed for genomics/proteomics can be directly adapted for glycomics. The development of algorithms, which allow a rapid, automatic interpretation of mass spectra to identify glycan structures is currently the most active field of research. The lack of generally accepted ways to normalise glycan structures and exchange glycan formats hampers an efficient cross-linking and the automatic exchange of distributed data. The upcoming glycomics should accept that unrestricted dissemination of scientific data accelerates scientific findings and initiates a number of new initiatives to explore the data.  相似文献   

11.
Comprehensive analyses of proteins from cells and tissues are the most effective means of elucidating the expression patterns of individual disease-related proteins. On the other hand, the simultaneous separation and characterization of proteins by 1-DE or 2-DE followed by MS analysis are one of the fundamental approaches to proteomic analysis. However, these analyses do not permit the complete structural identification of glycans in glycoproteins or their structural characterization. Over half of all known proteins are glycosylated and glycan analyses of glycoproteins are requisite for fundamental proteomics studies. The analysis of glycan structural alterations in glycoproteins is becoming increasingly important in terms of biomarkers, quality control of glycoprotein drugs, and the development of new drugs. However, usual approach such as proteoglycomics, glycoproteomics and glycomics which characterizes and/or identifies sugar chains, provides some structural information, but it does not provide any information of functionality of sugar chains. Therefore, in order to elucidate the function of glycans, functional glycomics which identifies the target glycoproteins and characterizes functional roles of sugar chains represents a promising approach. In this review, we show examples of functional glycomics technique using alpha 1,6 fucosyltransferase gene (Fut8) in order to identify the target glycoprotein(s). This approach is based on glycan profiling by CE/MS and LC/MS followed by proteomic approaches, including 2-DE/1-DE and lectin blot techniques and identification of functional changes of sugar chains.  相似文献   

12.
Progress in glycobiology has undergone explosive growth over the past decade with more of the researchers now realizing the importance of glycan chains in various inter- and intracellular processes. However, there is still an area of glycobiology awaiting exploration. This is especially the case for the field of "glycobiology in the cytosol" which remains rather poorly understood. Yet evidence is accumulating to demonstrate that the glycoconjugates and their recognition molecules (i.e. lectins) are often present in this subcellular compartment.  相似文献   

13.
Mass spectrometry is the main analytical technique currently used to address the challenges of glycomics as it offers unrivalled levels of sensitivity and the ability to handle complex mixtures of different glycan variations. Determination of glycan structures from analysis of MS data is a major bottleneck in high-throughput glycomics projects, and robust solutions to this problem are of critical importance. However, all the approaches currently available have inherent restrictions to the type of glycans they can identify, and none of them have proved to be a definitive tool for glycomics. GlycoWorkbench is a software tool developed by the EUROCarbDB initiative to assist the manual interpretation of MS data. The main task of GlycoWorkbench is to evaluate a set of structures proposed by the user by matching the corresponding theoretical list of fragment masses against the list of peaks derived from the spectrum. The tool provides an easy to use graphical interface, a comprehensive and increasing set of structural constituents, an exhaustive collection of fragmentation types, and a broad list of annotation options. The aim of GlycoWorkbench is to offer complete support for the routine interpretation of MS data. The software is available for download from: http://www.eurocarbdb.org/applications/ms-tools.  相似文献   

14.
The study of glycosylation patterns (glycomics) in biological samples is an emerging field that can provide key insights into cell development and pathology. A current challenge in the field of glycomics is to determine how to quantify changes in glycan expression between different cells, tissues, or biological fluids. Here we describe a novel strategy, quantitation by isobaric labeling (QUIBL), to facilitate comparative glycomics. Permethylation of a glycan with (13)CH 3I or (12)CH 2DI generates a pair of isobaric derivatives, which have the same nominal mass. However, each methylation site introduces a mass difference of 0.002922 Da. As glycans have multiple methylation sites, the total mass difference for the isobaric pair allows separation and quantitation at a resolution of approximately 30000 m/Delta m. N-Linked oligosaccharides from a standard glycoprotein and human serum were used to demonstrate that QUIBL facilitates relative quantitation over a linear dynamic range of 2 orders of magnitude and permits the relative quantitation of isomeric glycans. We applied QUIBL to quantitate glycomic changes associated with the differentiation of murine embryonic stem cells to embryoid bodies.  相似文献   

15.
Lectins are a diverse group of carbohydrate-binding proteins. Each lectin has its own specificity profile. It is believed that lectins exist in all living organisms that produce glycans. From a practical viewpoint, lectins have been used extensively in biochemical fields including proteomics due to their usefulness as detection and enrichment tools for specific glycans. Nevertheless, they have often been underestimated as probes, especially compared with antibodies, because of their low affinity and broad specificity. However, together with the concept of glycomics, such properties of lectins are now considered to be suitable for the task of 'profiling' in order to cover a wider range of ligands. Recently there has been rapid movement in the field of proteomics aimed at the investigation of glycan-related biomarkers. This is partly because of limitations of the present approach of simply following changes in protein-level expression, without paying sufficient attention to the fact and effects of glycosylation. The trend is reflected in the frequent use of lectins in the contexts of glycoprotein enrichment and glycan profiling. However, there are many aspects to be considered in using lectins, which differ considerably from antibodies. In this article, the author, as a developer of two unique methodologies, frontal affinity chromatography (FAC) and the lectin microarray, describes critical points concerning the use of lectins, together with the concept, strategy and means to achieve advances in these emerging glycan profiling technologies.  相似文献   

16.
Because the glycosylation of proteins is known to change in tumor cells during the development of breast cancer, a glycomics approach is used here to find relevant biomarkers of breast cancer. These glycosylation changes are known to correlate with increasing tumor burden and poor prognosis. Current antibody-based immunochemical tests for cancer biomarkers of ovarian (CA125), breast (CA27.29 or CA15-3), pancreatic, gastric, colonic, and carcinoma (CA19-9) target highly glycosylated mucin proteins. However, these tests lack the specificity and sensitivity for use in early detection. This glycomics approach to find glycan biomarkers of breast cancer involves chemically cleaving oligosaccharides (glycans) from glycosylated proteins that are shed or secreted by breast cancer tumor cell lines. The resulting free glycan species are analyzed by MALDI-FT-ICR MS. Further structural analysis of the glycans can be performed in FTMS through the use of tandem mass spectrometry with infrared multiphoton dissociation. Glycan profiles were generated for each cell line and compared. These methods were then used to analyze sera obtained from a mouse model of breast cancer and a small number of serum samples obtained from human patients diagnosed with breast cancer or patients with no known history of breast cancer. In addition to the glycosylation changes detected in mice as mouse mammary tumors developed, glycosylation profiles were found to be sufficiently different to distinguish patients with cancer from those without. Although the small number of patient samples analyzed so far is inadequate to make any legitimate claims at this time, these promising but very preliminary results suggest that glycan profiles may contain distinct glycan biomarkers that may correspond to glycan "signatures of cancer."  相似文献   

17.
We investigated localization of blood group antigens and their related substances in human labial salivary and submandibular glands by application of a post-embedding cytochemical staining procedure using lectin- or glycoprotein-gold complexes. Surgical tissue was obtained from 10 patients. Blood group-specific lectins, such as Dolichos biflorus agglutinin or Helix pomatia agglutinin (group A-specific), Griffonia simplicifolia agglutinin-I B4 (group B-specific), and Ulex europaeus agglutinin I (group H-specific) could recognize A, B, and H antigens, respectively, only in mature secretory granules (mature SG), which were found preferentially in cells in the late phase of the maturation cycle. In immature secretory granules (immature SG), which were found in cells in the early or middle phase of the maturation cycle, no binding with these lectins was observed. The Golgi complexes and endoplasmic reticula also were not labeled with these lectins. In blood group O and B secretors, blood group antigens were uniformly distributed throughout all the mature SG examined. However, in blood group A secretors, the distribution was heterogeneous, i.e., in some granules only H antigen was demonstrated, whereas in others both A antigens and a small amount of H antigens were detected. Among the blood group-nonspecific lectins, wheat germ agglutinin (WGA) was found to bind more preferentially to immature SG than to mature SG. This was demonstrated irrespective of the blood group and secretor status of the tissue donor, except that in blood group A secretors WGA bound strongly to some mature SG which possessed A antigen. We discuss the significance of cellular and subcellular mosaic distribution of blood group antigens in connection with morphological differences of secretory granules and the maturation cycle of mucous cells.  相似文献   

18.
The carbohydrate specificities of Dioclea grandiflora lectins DGL-I1 and DGL-II, and Galactia lindenii lectin II (GLL-II) were explored by use of remodeled glycoproteins as well as by the lectin hemagglutinating activity against erythrocytes from various species with different glycomic profiles. The three lectins exhibited differences in glycan binding specificity but also showed overlapping recognition of some glycotopes (i.e. Tα glycotope for the three lectins; IIβ glycotope for DGL-II and GLL-II lectins); in many cases the interaction with distinct glycotopes was influenced by the structural context, i.e., by the neighbouring sugar residues. Our data complement and expand the existing knowledge about the binding specificity of these three Diocleae lectins, and taken together with results of previous studies, allow us to suggest a functional map of the carbohydrate recognition which illustrate the impact of modification of basic glycotopes enhancing, permiting, or inhibiting their recognition by each lectin.  相似文献   

19.

Background  

Novel molecular and statistical methods are in rising demand for disease diagnosis and prognosis with the help of recent advanced biotechnology. High-resolution mass spectrometry (MS) is one of those biotechnologies that are highly promising to improve health outcome. Previous literatures have identified some proteomics biomarkers that can distinguish healthy patients from cancer patients using MS data. In this paper, an MS study is demonstrated which uses glycomics to identify ovarian cancer. Glycomics is the study of glycans and glycoproteins. The glycans on the proteins may deviate between a cancer cell and a normal cell and may be visible in the blood. High-resolution MS has been applied to measure relative abundances of potential glycan biomarkers in human serum. Multiple potential glycan biomarkers are measured in MS spectra. With the objection of maximizing the empirical area under the ROC curve (AUC), an analysis method was considered which combines potential glycan biomarkers for the diagnosis of cancer.  相似文献   

20.
In allergic diseases such as asthma, eosinophils, basophils and mast cells, through release of preformed and newly generated mediators, granule proteins and cytokines, are recognized as key effector cells. While their surface protein phenotypes, mediator release profiles, ontogeny, cell trafficking and genomes have been generally explored and compared, there has yet to be any thorough analysis and comparison of their glycomes. Such studies are critical to understand the contribution of carbohydrates to the induction and regulation of allergic inflammatory responses and are now possible using improved technologies for detecting and characterizing cell-derived glycans. We thus report here the application of high-sensitivity mass spectrometric-based glycomics methodologies to the analysis of N-linked glycans derived from isolated populations of human mast cells, eosinophils and basophils. The samples were subjected to matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) screening analyses and MALDI-TOF/TOF sequencing studies. Results reveal substantive quantities of terminal N-acetylglucosamine containing structures in both the eosinophil and the basophil samples, whereas mast cells display greater relative quantities of sialylated terminal epitopes. For the first time, we characterize the cell surface glycan structures of principal allergic effector cells, which by interaction with glycan-binding proteins (e.g. lectins) have the possibility to dictate cellular functions, and might thus have important implications for the pathogenesis of inflammatory and allergic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号