首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Hisanaga S  Saito T 《Neuro-Signals》2003,12(4-5):221-229
Cyclin-dependent kinase 5 (Cdk5) displays kinase activity predominantly in post-mitotic neurons and its physiological roles are unrelated to cell cycle progression. Cdk5 is activated by its binding to a neuron-specific activator, p35 or p39. The protein amount of p35 or p39 is a primary determinant of the Cdk5 activity in neurons, with the amount of p35 or p39 being determined by its synthesis and degradation. The expression of p35 is induced in differentiated neurons and is enhanced by extracellular stimuli such as neurotrophic factors or extracellular matrix molecules, specifically those acting on the ERK/Erg pathway. p35 is a short-lived protein and its degradation determines the life span. Degradation is mediated by the ubiquitin/proteasome system, similar to that for cyclins in proliferating cells. Autophosphorylation of p35 by Cdk5 is a signal for ubiquitination/degradation, and the degradation of p35 is triggered by glutamate treatment in cultured neurons. p35 is cleaved to p25 by calpain at the time of neuronal cell death, and this limited cleavage is suggested to be the cause of neurodegenerative diseases such as Alzheimer's disease. Active Cdk5 changes the cellular localization by cleavage of p35 to p25; p35/Cdk5 is associated with membrane or cytoskeletons, but p25/Cdk5 is a soluble protein. Cleavage also increases the life span of p25 and changes the activity or substrate specificity of Cdk5. p25/Cdk5 shows higher phosphorylating activity to tau than p35/Cdk5 in a phosphorylation site-specific manner. Phosphorylation of p35 suppresses cleavage by calpain. Thus, phosphorylation of p35 modulates its proteolytic pattern, stimulates proteasomal degradation and suppresses calpain cleavage. Phosphorylation is age dependent, as p35 is phosphorylated in foetal brains, but unphosphorylated in adult brains. Therefore, foetal phosphorylated p35 is turned over rapidly, whereas adult unphosphorylated p35 has a long life and is easily cleaved to p25 when calpain is activated. p39 is also a short-lived protein and cleaved to the N-terminal truncation form of p29 by calpain. How the metabolism of p39 is regulated, however, is a future problem to be investigated.  相似文献   

3.
Dysregulation of cyclin-dependent kinase 5 (Cdk5) by cleavage of its activator p35 to p25 by calpain is involved in the neuronal cell death observed in neurodegenerative disorders, including Alzheimer's disease. However, it is not yet clear how p25/Cdk5 induces cell death, although its cytosolic localization or extended half life are thought to be involved. We show here that endoplasmic reticulum (ER) stress causes the calpain-dependent cleavage of p35 to p25 in primary cultured cortical neurons. Generation of p25 occurred at a cell death execution step in ER-stressed neurons. p25 translocated to the nucleus in ER-stressed neurons, whereas p35/Cdk5 was perinuclear in control neurons. Cdk5 inhibitors or dominant-negative Cdk5 suppressed ER stress-induced neuronal cell death. These findings indicate that p25/Cdk5 is a proapoptotic factor that promotes ER stress-induced neuronal cell death in nuclei.  相似文献   

4.
Tau hyperphosphorylation, amyloid plaques, and neuronal death are major neuropathological features of Alzheimer’s disease (AD) and Prion-related encephalopathies (PRE). Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase, active in post-mitotic neurons, where it regulates survival and death pathways. Overactivation of Cdk5 is conferred by p25, a truncated fragment of the p35 activator formed upon calpain activation. Cdk5 deregulation causes abnormal phosphorylation of microtubule-associated protein tau, leading to neurodegeneration. In this work we investigated the involvement of Cdk5 in the neurodegeneration triggered by amyloid-beta (Aβ) and prion (PrP) peptides, the culprit agents of AD and PRE. As a work model, we used cultured rat cortical neurons treated with Aβ1–40 and PrP106–126 synthetic peptides. The obtained data show that apoptotic neuronal death caused by both the peptides was in part due to Cdk5 deregulation. After peptide treatment, p25 levels were significantly enhanced in a pattern consistent with the augment in calpain activity. Moreover, Aβ1–40 and PrP106–126 increased the levels of tau protein phosphorylated at Ser202/Thr205. Cdk5 (roscovitine) and calpain (MDL28170) inhibitors reverted tau hyperphosphorylation and prevented neuronal death caused by Aβ1–40 and PrP106–126. This study demonstrates, for the first time, that Cdk5 is involved in PrP-neurotoxicity. Altogether, our data suggests that Cdk5 plays an active role in the pathogenesis of AD and PRE.  相似文献   

5.
Cyclin-dependent kinase 5 (CDK5) is a unique CDK, the activity of which can be detected in postmitotic neurons. To date, CDK5 purified from mammalian brains has always been associated with a truncated form of the 35-kDa major brain specific activator (p35, also known as nck5a) of CDK5, known as p25. In this study, we report that p35 can be cleaved to p25 both in vitro and in vivo by calpain. In a rat brain extract, p35 was cleaved to p25 by incubation with Ca(2+). This cleavage was inhibited by a calpain inhibitor peptide derived from calpastatin and was ablated by separating the p35.CDK5 from calpain by centrifugation. The p35 recovered in the pellet after centrifugation could then be cleaved to p25 by purified calpain. Cleavage of p35 was also induced in primary cultured neurons by treatment with a Ca(2+) ionophore and Ca(2+) and inhibited by calpain inhibitor I. The cleavage changed the solubility of the CDK5 active complex from the particulate fraction to the soluble fraction but did not affect the histone H1 kinase activity. Increased cleavage was detected in cultured neurons undergoing cell death, suggesting a role of the cleavage in neuronal cell death.  相似文献   

6.
Hyperphosphorylated tau is a major component of neurofibrillary tangles, one of the hallmarks of Alzheimer's disease. CDK5 is a kinase that phosphorylates the tau protein, and its endogenous activator, p35, regulates its activity. Recently, calpain was found to digest p35 to its truncated product, p25. Several lines of evidence suggest that p25-CDK5 has much more powerful kinase activity and that it may cause abnormal hyperphosphorylation of tau. In this study, we have examined the kinetic characteristics of in vitro phosphorylation of the longest isoform of human tau by CDK5 and its activators using recombinant proteins. Although the kinase activity of CDK5 in phosphorylating tau was significantly higher in the presence of p25, the affinity of CDK5 for tau was not different. Phosphopeptide mapping revealed enhanced phosphorylation of Ser(202)/Thr(205) residues by p25-CDK5 (amino acid residues of tau are numbered according to the longest isoform of human tau). These results suggest that cleavage of p35 to p25 greatly enhances the kinase activity of CDK5 and increases the phosphorylation of Ser(202)/Thr(205). Considering the fact that phosphorylation of Ser(202)/Thr(205) antagonizes the tau-mediated nucleation of tubulin, p25-CDK5 may play a pivotal role in neuronal cell death in Alzheimer's disease.  相似文献   

7.
A set of different protein kinases have been involved in tau phosphorylations, including glycogen synthase kinase 3beta (GSK3 beta), MARK kinase, MAP kinase, the cyclin-dependent kinase 5 (Cdk5) system and others. The latter system include the catalytic component Cdk5 and the regulatory proteins p35, p25 and p39. Cdk5 and its neuron-specific activator p35 are essential molecules for neuronal migration and for the laminar configuration of the cerebral cortex. Recent evidence that the Cdk5/p35 complex concentrates at the leading edge of axonal growth cones, together with the involvement of this system in the phosphorylation of neuronal microtubule-asociated proteins (MAPs), provide further support to the role of this protein kinase in regulating axonal extension in developing brain neurons. Although the aminoacid sequence of p35 has little similarity with those of normal cyclins, studies have shown that its activation domain may adopt a conformation of the cyclin-folded structure. The computed structure for Cdk5 is compatible with experimental data obtained from studies on the Cdk5/p35 complex, and has allowed predictions on the protein interacting domains. This enzyme exhibits a wide cell distribution, even though a regulated Cdk5 activity has been shown only in neuronal cells. Cdk5 has been characterized as a proline-directed Ser/Thr protein kinase, that contributes to phosphorylation of human tau on Ser202, Thr205, Ser235 and Ser404. Cdk5 is active in postmitiotic neurons, and it has been implicated in cytoskeleton assembly and its organization during axonal growth. In addition to tau and other MAPs, Cdk5 phosphorylates the high molecular weight neurofilament proteins at their C-terminal domain. Moreover, nestin, a protein that regulates cytoskeleton organization of neuronal and muscular cells during development of early embryos, and several other regulatory proteins appear to be substrates of Cdk5 and are phosphorylated by this kinase. Studies also suggest, that in addition to Cdk5 involvement in neuronal differentiation, its activity is induced during myogenesis, however, the mechanisms of how this activity is regulated during muscular differentiation has not yet been elucidated. Recent studies have shown that the beta-amyloid peptide (A beta) induces a deregulation of Cdk5 in cultured brain cells, and raises the question on the possible roles of this tau-phosphorylating protein kinase in the sequence of molecular events leading to neuronal death triggered by A beta. In this context, there are evidence that Cdk5 is involved in tau hyperphosphorylation promoted by A beta in its fibrillary form. Cdk5 inhibitors protect hippocampal neurons against both tau anomalous phosphorylations and neuronal death. The links between the studies on the Cdk5/p35 system in normal neurogenesis and its claimed participation in neurodegeneration, provide the framework to understand the regulatory relevance of this kinase system, and changes in its regulation that may be implicated in disturbances such as those occurring in Alzheimer disease.  相似文献   

8.
Cyclin-dependent kinase (Cdk)5 is a proline-directed Ser/Thr protein kinase that functions mainly in neurons and is activated by binding to a regulatory subunit, p35 or p39. Kinase activity is mainly determined by the amount of p35 available, which is controlled by a balance between synthesis and degradation. Kinase activity is also regulated by Cdk5 phosphorylation, but the activity of phosphorylated Cdk5 is in contrast to that of cycling Cdks. Cdk5 is a versatile protein kinase that regulates multiple neuronal activities including neuronal migration and synaptic signaling. Further, Cdk5 plays a role in both survival and death of neurons. Long-term inactivation of Cdk5 triggers cell death, and the survival activity of Cdk5 is apparent when neurons suffer from stress. In contrast, hyper-activation of Cdk5 by p25 promotes cell death, probably by reactivating cell-cycle machinery in the nucleus. The pro-death activity is suppressed by membrane association of Cdk5 via myristoylation of p35. Appropriate activity, localization, and regulation of Cdk5 may be critical for long-term survival of neurons, which is more than 80 years in the case of humans.  相似文献   

9.
10.
Cyclin-dependent kinase 5 (Cdk5) plays a key role in the development of the mammalian nervous system; it phosphorylates a number of targeted proteins involved in neuronal migration during development to synaptic activity in the mature nervous system. Its role in the initial stages of neuronal commitment and differentiation of neural stem cells (NSCs), however, is poorly understood. In this study, we show that Cdk5 phosphorylation of p27Kip1 at Thr187 is crucial to neural differentiation because 1) neurogenesis is specifically suppressed by transfection of p27Kip1 siRNA into Cdk5+/+ NSCs; 2) reduced neuronal differentiation in Cdk5−/− compared with Cdk5+/+ NSCs; 3) Cdk5+/+ NSCs, whose differentiation is inhibited by a nonphosphorylatable mutant, p27/Thr187A, are rescued by cotransfection of a phosphorylation-mimicking mutant, p27/Thr187D; and 4) transfection of mutant p27Kip1 (p27/187A) into Cdk5+/+ NSCs inhibits differentiation. These data suggest that Cdk5 regulates the neural differentiation of NSCs by phosphorylation of p27Kip1 at theThr187 site. Additional experiments exploring the role of Ser10 phosphorylation by Cdk5 suggest that together with Thr187 phosphorylation, Ser10 phosphorylation by Cdk5 promotes neurite outgrowth as neurons differentiate. Cdk5 phosphorylation of p27Kip1, a modular molecule, may regulate the progress of neuronal differentiation from cell cycle arrest through differentiation, neurite outgrowth, and migration.  相似文献   

11.
Cyclin-dependent kinase 5 (Cdk5) is a Ser/Thr kinase that is activated by binding to its regulatory subunit, p35. The calpain-mediated cleavage of p35 to p25 and the resulting aberrant activity and neurotoxicity of Cdk5 have been implicated in neurological disorders, such as Alzheimer's disease. To gain further insight into the molecular mechanisms underlying the pathological function of Cdk5, we investigated the role of the calpain inhibitor protein calpastatin (CAST), in controlling the aberrant production of p25. For this purpose, brain tissue from wild-type, CAST-over-expressing (transgenic), and CAST knockout mice were analyzed. Cleavage of p35 to p25 was increased in extracts from CAST knockout mice, compared with wild-type. Conversely, generation of p25 was not detected in brain lysates from CAST-over-expressing mice. CAST expression was 5-fold higher in mouse cerebellum than cerebral cortex. Accordingly, p25 production was lower in the cerebellum than the cerebral cortex. Furthermore, the Ca(2+) -dependent degradation of p35 by proteasome was evident when calpain was inhibited. Taken together, these results suggest that CAST is a crucial regulator of calpain activity, the production of p25, and, hence, the deregulation of Cdk5. Therefore, impairment of CAST expression and its associated mechanisms may contribute to the pathogenesis of neurodegenerative disorders.  相似文献   

12.
Cdk5 dysregulation is a major event in the neurodegenerative process of Alzheimer's disease (AD). In vitro studies using differentiated neurons exposed to Aβ exhibit Cdk5-mediated tau hyperphosphorylation, cell cycle re-entry and neuronal loss. In this study we aimed to determine the role of Cdk5 in neuronal injury occurring in an AD mouse model obtained through the intracerebroventricular (icv) injection of the Aβ1–40 synthetic peptide. In mice icv-injected with Aβ, Cdk5 activator p35 is cleaved by calpains, leading to p25 formation and Cdk5 overactivation. Subsequently, there was an increase in tau hyperphosphorylation, as well as decreased levels of synaptic markers. Cell cycle reactivation and a significant neuronal loss were also observed. These neurotoxic events in Aβ-injected mice were prevented by blocking calpain activation with MDL28170 , which was administered intraperitoneally (ip). As MDL prevents p35 cleavage and subsequent Cdk5 overactivation, it is likely that this kinase is involved in tau hyperphosphorylation, cell cycle re-entry, synaptic loss and neuronal death triggered by Aβ. Altogether, these data demonstrate that Cdk5 plays a pivotal role in tau phosphorylation, cell cycle induction, synaptotoxicity, and apoptotic death in postmitotic neurons exposed to Aβ peptides in vivo , acting as a link between diverse neurotoxic pathways of AD.  相似文献   

13.
Cyclin-dependent kinase 5 (Cdk5) is a member of the cyclin-dependent kinase family that is mostly seen in neurons, does not vary with cell cycle, and is activated in many neurodegenerative disorders and other non-neuronal pathologies, but its relationship to non-neuronal apoptosis is not understood, nor is the control of the activation of Cdk5 by its activators. The most widely studied activator of Cdk5, p35, is cleaved to p25 by calpain, an event that has been linked with activation of Cdk5 and neuronal death. Here we report that calpain-mediated Cdk5/p25 activation accompanies non-neuronal as well as neuronal cell death, suggesting that the p35/calpain/p25/Cdk5 activation sequence is a general feature of cell death. We further demonstrate that Cdk5 can be activated in the absence of p53, Apaf-1, caspase-9, and -3 during cell death, indicating that its activation relates more to cell death than to a specific pathway of apoptosis.  相似文献   

14.
Apoptosis-associated tyrosine kinase 1 (AATYK1), a novel serine/threonine kinase that is highly expressed in the brain, is involved in neurite extension and apoptosis of cerebellar granule neurons; however, its precise function remains unknown. In this study, we investigated the interaction of AATYK1A with Cyclin-dependent kinase 5 (Cdk5)/p35, a proline-directed protein kinase that is predominantly expressed in neurons. AATYK1A bound to the p35 activation subunit of Cdk5 in cultured cells and in mouse brains and colocalized with p35 on endosomes in COS-7 cells. AATYK1A was phosphorylated at Ser34 by Cdk5/p35 in vitro, in cultured neurons and in mouse brain. In PC12D cells, Ser34 phosphorylation increased after treatment with nerve growth factor and phosphorylated AATYK1A accumulated in growth cones of PC12D cells. Ser34 phosphorylation suppressed the tyrosine phosphorylation of AATYK1A by Src family kinases. These results suggest a possibility that AATYK1A plays a role in early to recycling endosomes and its function is regulated by phosphorylation with Cdk5 or Src-family kinases.  相似文献   

15.
Phosphorylation is a major post-translational modification widely used in the regulation of many cellular processes. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase activated by activation subunit p35. Cdk5-p35 regulates various neuronal activities such as neuronal migration, spine formation, synaptic activity, and cell death. The kinase activity of Cdk5 is regulated by proteolysis of p35: proteasomal degradation causes down-regulation of Cdk5, whereas cleavage of p35 by calpain causes overactivation of Cdk5. Phosphorylation of p35 determines the proteolytic pathway. We have previously identified Ser8 and Thr138 as major phosphorylation sites using metabolic labeling of cultured cells followed by two-dimensional phosphopeptide mapping and phosphospecific antibodies. However, these approaches cannot determine the extent of p35 phosphorylation in vivo. Here we report the use of Phos-tag SDS-PAGE to reveal the phosphorylation states of p35 in neuronal culture and brain. Using Phos-tag acrylamide, the electrophoretic mobility of phosphorylated p35 was delayed because it is trapped at Phos-tag sites. We found a novel phosphorylation site at Ser91, which was phosphorylated by Ca2+-calmodulin-dependent protein kinase II in vitro. We constructed phosphorylation-dependent banding profiles of p35 and Ala substitution mutants at phosphorylation sites co-expressed with Cdk5 in COS-7 cells. Using the standard banding profiles, we assigned respective bands of endogenous p35 with combinations of phosphorylation states and quantified Ser8, Ser91, and Thr138 phosphorylation. The highest level of p35 phosphorylation was observed in embryonic brain; Ser8 was phosphorylated in all p35 molecules, whereas Ser91 was phosphorylated in 60% and Thr138 was phosphorylated in ∼12% of p35 molecules. These are the first quantitative and site-specific measurements of phosphorylation of p35, demonstrating the usefulness of Phos-tag SDS-PAGE for analysis of phosphorylation states of in vivo proteins.Phosphorylation is a major post-translational modification of proteins, modulating a variety of cellular functions (1, 2). Because most phosphorylation occurs in a highly site-specific manner, identification of phosphorylation sites has been a subject of intense investigation. Several analytical methods have been utilized to identify phosphorylation sites, including mass spectrometry, amino acid sequencing, and radioisotope phosphate labeling of proteins with mutation(s) at putative phosphorylation site(s) (3, 4). Phosphorylation site-specific antibodies are frequently used to detect phosphorylation at target sites (5, 6). Many phosphospecific antibodies are now commercially available. These phosphospecific antibodies are convenient and useful tools for examining site-specific phosphorylation both in vivo and in vitro. However, they are not appropriate for estimating quantitative ratios of phosphorylation states. Electrophoretic mobility shift on SDS-PAGE is also often used to observe phosphorylation (710), but this method is not always applied to site-specific phosphorylation.Phos-tag is a newly developed dinuclear metal complex that can be used to provide phosphate-binding sites when conjugated to analytical materials such as acrylamide and biotin (11). In SDS-PAGE using Phos-tag acrylamide, phosphorylated proteins are trapped by the Phos-tag sites, delaying their migration and thus separating them from unphosphorylated proteins. Subsequent immunoblot analysis with phosphorylation-independent antibodies reveals both the phosphorylated and unphosphorylated bands. Because the migration of the phosphorylated proteins is greatly delayed compared with migration in Laemmli SDS-PAGE, it is easy to identify the phosphorylated proteins from observed positions on blots. In the past 3 years, this method has been used to detect phosphorylation states for many proteins such as ERK1/2, cdc37, myosin light chain, eIF2α, protein kinase D, β-casein, SIRT7, and dysbindin-1 (1221).Cyclin-dependent kinase 5 (Cdk5)1 is a proline-directed serine/threonine kinase that is expressed predominantly in postmitotic neurons and regulates various neuronal events such as neuronal migration, spine formation, synaptic activity, and cell death (2224). Cdk5 is activated by binding to activation subunit p35 and inactivated by proteasomal degradation of p35 (25). In addition, Cdk5 activity is deregulated by cleavage of p35 to p25 with calpain, resulting in abnormal activation and ultimately causing neuronal cell death (2629). Proteolysis of p35, either by proteasomal degradation or cleavage by calpain, is regulated by phosphorylation of p35 by Cdk5 (3033). Therefore, phosphorylation of p35 is essential for proper regulation of Cdk5 activity and function. We previously identified Ser8 and Thr138 as major p35 phosphorylation sites (33). We also showed that phosphorylation of p35 decreased during brain development and proposed its relationship to age-dependent vulnerability of neurons to stress stimuli (32). Thus, to understand the in vivo regulation of Cdk5 activity, it is critical to analyze the phosphorylation states of p35 in brain. However, there is no convenient method to analyze the precise in vivo phosphorylation status of the endogenous proteins.In this study, we applied the Phos-tag SDS-PAGE method to analyze the phosphorylation states of p35 in vivo and in cultured neurons. We constructed standard band profiles of phosphorylated p35 by Phos-tag SDS-PAGE using Ala mutants at Ser8 and/or Thr138. From these experiments, we observed an unidentified in vivo phosphorylation site at Ser91. We quantified the phosphorylation at each site in cultured neurons and brain, providing the first quantitative estimate of the in vivo phosphorylation states of p35. We discuss the usefulness of Phos-tag SDS-PAGE to analyze the in vivo phosphorylation states of proteins.  相似文献   

16.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by selective loss of motor neurons in the brain and spinal cord. Neurotoxicity mediated by glutamate is thought to play a role in the neuronal death through intracellular calcium-dependent signaling cascades. Cyclin-dependent kinase 5 (Cdk5) has been proposed as one of the calcium-dependent mediators that may cause neuronal death observed in this disease. Cdk5 is activated in neurons by the association with its activators, p35 or p39. The calcium-activated protease calpain cleaves p35 to its truncated product, p25, which eventually causes the cellular mislocalization and prolonged activation of Cdk5. This deregulated Cdk5 induces cytoskeletal disruption and apoptosis. To examine whether inhibition of the calpain-mediated conversion of p35 to p25 can delay the disease progression of ALS, we generated double transgenic mice in which ALS-linked mutant copper/zinc superoxide dismutase 1 (SOD1G93A) was expressed in a p35-null background. The absence of p35 neither affected the onset and progression of motor neuron disease in the mutant SOD1 mice nor ameliorated the pathological lesions in these mice. Our results provide direct evidence that the pathogenesis of motor neuron disease in the mutant SOD1 mice is independent of the Cdk5 activation by p35 or p25.  相似文献   

17.
18.
Liu F  Su Y  Li B  Zhou Y  Ryder J  Gonzalez-DeWhitt P  May PC  Ni B 《FEBS letters》2003,547(1-3):193-196
The phosphorylation status of amyloid precursor protein (APP) at Thr668 is suggested to play a critical role in the proteolytic cleavage of APP, which generates either soluble APP(beta) (sAPP(beta)) and beta-amyloid peptide (Abeta), the major component of senile plaques in patient brains inflicted with Alzheimer's disease (AD), or soluble APP(alpha) (sAPP(alpha)) and a peptide smaller than Abeta. One of the protein kinases known to phosphorylate APP(Thr668) is cyclin-dependent kinase 5 (Cdk5). Cdk5 is activated by the association with its regulatory partner p35 or its truncated form, p25, which is elevated in AD brains. The comparative effects of p35 and p25 on APP(Thr668) phosphorylation and APP processing, however, have not been reported. In this study, we investigated APP(Thr668) phosphorylation and APP processing mediated by p35/Cdk5 and p25/Cdk5 in the human neuroblastoma cell line SH-SY5Y. Transient overexpression of p35 and p25 elicited distinct patterns of APP(Thr668) phosphorylation, specifically, p35 increasing the phosphorylation of both mature and immature APP, whereas p25 primarily elevated the phosphorylation of immature APP. Despite these differential effects on APP phosphorylation, both p35 and p25 overexpression enhanced the secretion of Abeta, sAPP(beta), as well as sAPP(alpha). These results confirm the involvement of Cdk5 in APP processing, and suggest that p35- and p25-mediated Cdk5 activities lead to discrete APP phosphorylation.  相似文献   

19.
The activity of cyclin-dependent kinase-5 (Cdk5) is tightly regulated by binding of its neuronal activators p35 and p39. Upon neurotoxic insults, p35 is cleaved to p25 by the Ca(2+)-dependent protease calpain. p25 is accumulated in ischemic brains and in brains of patients with Alzheimer's disease. p25 deregulates Cdk5 activity by causing prolonged activation and mislocalization of Cdk5. It is unknown whether p39, which is expressed throughout the adult rat brain, is cleaved by calpain, and whether this contributes to deregulation of Cdk5. Here, we show that calpain cleaved p39 in vitro, resulting in generation of a C-terminal p29 fragment. In vivo, p29 was generated in ischemic brain concomitant with increased calpain activity. In fresh brain lysates, generation of p29 was Ca(2+)-dependent, and calpain inhibitors abolished p29 production. The Ca(2+) ionophore ionomycin and the excitotoxin glutamate induced production of p29 in cultures of cortical neurons in a calpain-dependent manner. Like p25, p29 was more stable than p39 and caused redistribution of Cdk5 in cortical neurons. Our data suggest that neurotoxic insults lead to calpain-mediated conversion of p39 to p29, which might contribute to deregulation of Cdk5.  相似文献   

20.
Recently, it was shown that conversion of cdk5 activator protein p35 to a C-terminal fragment p25 promotes a deregulation of cdk5 activity, which may contribute to neurodegeneration in Alzheimer's disease. In this study, we present evidence that calpain is a protease involved in the conversion of p35 to p25. To activate calpain, rat cerebellar granule neurons were treated with maitotoxin (MTX). A C-terminus-directed anti-p35 antibody detected that p35 conversion to p25 paralleled the formation of calpain-generated alpha-spectrin (alpha-fodrin) breakdown products (SBDP's) in a maitotoxin-dose-dependent manner. Two calpain inhibitors (MDl28170 and SJA6017) reduced p35 processing but were unchanged when exposed to the caspase inhibitor carbobenzoxy-Asp-CH(2)OC(=O)-2, 6-dichlorobenzene or the proteasome inhibitors (lactacystin and Z-Ile-Glu(OtBu)Ala-Leu-CHO). p35 protein was also degraded to p25 when rat brain lysate was subjected to in vitro digestion with purified mu- and m-calpains. Additionally, in a rat temporary middle cerebral artery occlusion model, p35 processing to p25 again paralleled SBDP formation in the ischemic core. Lastly, in malonate-injured rat brains, the ipsilateral side showed a striking correlation of SBDP formation with p35 to p25 conversion and tau phosphorylation (at Ser202 and Thr205) increase. These data suggest that calpain is a major neuronal protease capable of converting p35 to p25 and might play a pathological role of activating cdk5 and its phosphorylation of tau in Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号