首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gravity plays a fundamental role in plant growth and development, yet little is understood about the early events of gravitropism. To identify genes affected in the signal perception and/or transduction phase of the gravity response, a mutant screen was devised using cold treatment to delay the gravity response of inflorescence stems of Arabidopsis. Inflorescence stems of Arabidopsis show no response to gravistimulation at 4 degrees C for up to 3 h. However, when gravistimulated at 4 degrees C and then returned to vertical at room temperature (RT), stems bend in response to the previous, horizontal gravistimulation (H. Fukaki, H. Fujisawa, M. Tasaka [1996] Plant Physiology 110: 933-943). This indicates that gravity perception, but not the gravitropic response, occurs at 4 degrees C. Recessive mutations were identified at three loci using this cold effect on gravitropism to screen for gravity persistence signal (gps) mutants. All three mutants had an altered response after gravistimulation at 4 degrees C, yet had phenotypically normal responses to stimulations at RT. gps1-1 did not bend in response to the 4 degrees C gravity stimulus upon return to RT. gps2-1 responded to the 4 degrees C stimulus but bent in the opposite direction. gps3-1 over-responded after return to RT, continuing to bend to an angle greater than wild-type plants. At 4 degrees C, starch-containing statoliths sedimented normally in both wild-type and the gps mutants, but auxin transport was abolished at 4 degrees C. These results are consistent with GPS loci affecting an aspect of the gravity signal perception/transduction pathway that occurs after statolith sedimentation, but before auxin transport.  相似文献   

2.
H Fukaki  H Fujisawa    M Tasaka 《Plant physiology》1996,110(3):933-943
We have characterized the gravitropic response of inflorescence stems in Arabidopsis thaliana. When the inflorescence stems were placed horizontally, they curved upward about 90 degrees within 90 min in darkness at 23 degrees C, exhibiting strong negative gravitropism. Decapitated stem segments (without all flowers, flower buds, and apical apices) also showed gravitropic responses when they included the elongation zone. This result indicates that the minimum elements needed for the gravitropic response exist in the decapitated inflorescence stem segments. At least the 3-min gravistimulation time was sufficient to induce the initial curvature at 23 degrees C after a lag time of about 30 min. In the gravitropic response of inflorescence stems, (a) the gravity perception site exists through the elongating zone, (b) auxin is involved in this response, (c) the gravitropic curvature was inhibited at 4 degrees C but at least the gravity perception step could occur, and (d) two curvatures could be induced in sequence at 23 degrees C by two opposite directional horizontal gravistimulations at 4 degrees C.  相似文献   

3.
To visualize phytohormone localization in plant tissues, transgenic plants comprising the GUS reporter gene are often used. However, until now only qualitative assessment of the hormone presence was available. In this work, we suggested the method for IAA quantification in transgenic DR5::GUS Arabidopsis thaliana L. plants by the analysis of digital images. An empirical quadratic dependence was established between the IAA concentration in medium and the level of GUS-dependent staining. Using this method, we demonstrated that, after A. thaliana root gravistimulation for 90 min, auxin lateral redistribution occurred. It resulted in the increase in the IAA concentration in the lower root part (in the elongation zone and apical meristem) by 200% on the average.  相似文献   

4.
A semi-dominant mutant suppressor of hy2 (shy2-1D) of Arabidopsis thaliana, originally isolated as a photomorphogenesis mutant, shows altered auxin responses. Recent molecular cloning revealed that the SHY2 gene is identical to the IAA3 gene, a member of the primary auxin-response genes designated the Aux/IAA gene family. Because Aux/IAA proteins are reported to interact with auxin response factors, we investigated the pattern of expression of early auxin genes in the iaa3/shy2-1D mutant. RNA hybridization analysis showed that levels of mRNA accumulation of the early genes were reduced dramatically in the iaa3/shy2-1D mutants, although auxin still enhanced gene expression in the iaa3/shy2-1D mutant. Histochemical analysis using a fusion gene of the auxin responsive domain (AuxRD) and the GUS gene showed no IAA-inducible GUS expression in the root elongation zone of the iaa3/shy2-1D mutant. On the other hand, ectopic GUS expression occurred in the hypocotyl, cotyledon, petiole and root vascular tissues in the absence of auxin. These results suggest that IAA3/SHY2 functions both negatively and positively on early auxin gene expression.  相似文献   

5.
Rock CD  Sun X 《Planta》2005,222(1):98-106
Studies of abscisic acid (ABA) and auxin have revealed that these pathways impinge on each other. The Daucus carota (L.) Dc3 promoter: uidA (-glucuronidase: GUS) chimaeric reporter (ProDc3:GUS) is induced by ABA, osmoticum, and the auxin indole-3-acetic acid (IAA) in vegetative tissues of transgenic Arabidopsis thaliana (L.) Heynh. Here, we describe the root tissue-specific expression of ProDc3:GUS in the ABA-insensitive-2 (abi2-1), auxin-insensitive-1 (aux1), auxin-resistant-4 (axr4), and rooty (rty1) mutants of Arabidopsis in response to ABA, IAA and synthetic auxins naphthalene acetic acid (NAA), and 2, 4-(dichlorophenoxy) acetic acid. Quantitative analysis of ProDc3:GUS expression showed that the abi2-1 mutant had reduced GUS activity in response to ABA, IAA, or 2, 4-d, but not to NAA. Similarly, chromogenic staining of ProDc3:GUS activity showed that the aux1 and axr4 mutants gave predictable hypomorphic ProDc3:GUS expression phenotypes in roots treated with IAA or 2, 4-d, but not the diffusible auxin NAA. Likewise the rty mutant, which accumulates auxin, showed elevated ProDc3:GUS expression in the absence or presence of hormones relative to wild type. Interestingly, the aux1 and axr4 mutants showed a hypomorphic effect on ABA-inducible ProDc3:GUS expression, demonstrating that ABA and IAA signaling pathways interact in roots. Possible mechanisms of crosstalk between ABA and auxin signaling are discussed.  相似文献   

6.
7.
Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots   总被引:1,自引:0,他引:1  
Disruption of the TRH1 potassium transporter impairs root hair development in Arabidopsis, and also affects root gravitropic behaviour. Rescue of these morphological defects by exogenous auxin indicates a link between TRH1 activity and auxin transport. In agreement with this hypothesis, the rate of auxin translocation from shoots to roots and efflux of [3H]IAA in isolated root segments were reduced in the trh1 mutant, but efflux of radiolabelled auxin was accelerated in yeast cells transformed with the TRH1 gene. In roots, Pro(TRH1):GUS expression was localized to the root cap cells which are known to be the sites of gravity perception and are central for the redistribution of auxin fluxes. Consistent with these findings, auxin-dependent DR5:GUS promoter-reporter construct was misexpressed in the trh1 mutant indicating that partial block of auxin transport through the root cap is associated with upstream accumulation of the phytohormone in protoxylem cells. When [K+] in the medium was reduced from 20 to 0.1 mm, wild type roots showed mild agravitropic phenotype and DR5:GUS misexpression in stelar cells. This pattern of response to low external [K+] was also affected by trh1 mutation. We conclude that the TRH1 carrier is an important part of auxin transport system in Arabidopsis roots.  相似文献   

8.
9.
Recent studies have shown that hypergravity enhances lignification through up-regulation of the expression of lignin biosynthesis-related genes, although its hormonal signalling mechanism is unknown. The effects of hypergravity on auxin dynamics were examined using Arabidopsis plants that were transformed with the auxin reporter gene construct DR5::GUS. Hypergravity treatment at 300 g significantly increased β-glucuronidase activity in inflorescence stems of DR5::GUS plants, indicating that endogenous auxin accumulation was enhanced by hypergravity treatment. The hypergravity-related increased expression levels of both DR5::GUS and lignin biosynthesis-related genes in inflorescence stems were suppressed after disbudding, indicating that the increased expression of lignin biosynthesis-related genes is dependent on an increase in auxin influx from the shoot apex.  相似文献   

10.
In the study of auxin transport, transgenic constructs, including DR5::GUS, are widely used for visualization of phytohormone localization. Previously we proposed a method for quantitative evaluation of the IAA content by histochemical staining for glucuronidase activity. In this work, this method was complemented by quantitative data on the content of IAA in plants obtained by gas chromatography-mass spectrometry (GC/MS), which allowed more accurate characterization of the lateral IAA gradient arising at the Arabidopsis thaliana (L.) Heynh (ecotype Columbia 0) root gravistimulation. Applied method of IAA analysis, combining GC/MS and histochemistry, can be used for quantitatification of the other plant hormone distribution in transgenic plants with the GUS reporter.  相似文献   

11.
Mei Y  Jia WJ  Chu YJ  Xue HW 《Cell research》2012,22(3):581-597
Phosphatidylinositol monophosphate 5-kinase (PIP5K) catalyzes the synthesis of PI-4,5-bisphosphate (PtdIns(4,5)P(2)) by phosphorylation of PI-4-phosphate at the 5 position of the inositol ring, and is involved in regulating multiple developmental processes and stress responses. We here report on the functional characterization of Arabidopsis PIP5K2, which is expressed during lateral root initiation and elongation, and whose expression is enhanced by exogenous auxin. The knockout mutant pip5k2 shows reduced lateral root formation, which could be recovered with exogenous auxin, and interestingly, delayed root gravity response that could not be recovered with exogenous auxin. Crossing with the DR5-GUS marker line and measurement of free IAA content confirmed the reduced auxin accumulation in pip5k2. In addition, analysis using the membrane-selective dye FM4-64 revealed the decelerated vesicle trafficking caused by PtdIns(4,5)P(2) reduction, which hence results in suppressed cycling of PIN proteins (PIN2 and 3), and delayed redistribution of PIN2 and auxin under gravistimulation in pip5k2 roots. On the contrary, PtdIns(4,5)P(2) significantly enhanced the vesicle trafficking and cycling of PIN proteins. These results demonstrate that PIP5K2 is involved in regulating lateral root formation and root gravity response, and reveal a critical role of PIP5K2/PtdIns(4,5)P(2) in root development through regulation of PIN proteins, providing direct evidence of crosstalk between the phosphatidylinositol signaling pathway and auxin response, and new insights into the control of polar auxin transport.  相似文献   

12.
The location of GUS gene expression under control of T-cyt gene (gene 4 of T- DNA coding isopenteryl transferase) 5′ region in transgenic tobacco (Nicotiana tabacum cv. W38) and potato (Solanum tuberosum L, cv. Desiree) plants was examined with biochemical assays. The results showed differential distribution in various organs and different cell types. The highest levels of GUS activity were found in tobacco stem where axillary bud was initiated and potato buds on tubers. Moreover, the expression of T-cyt promoter/GUS was found to be inducible in transgenic tobacco stem with cytokinin rather than auxin treatment. Additionally, the level of expression was high in the wounded leaf of transgenic potato. It was suggested that T-cyt promoter may be selectively induced by some exogenous plant hormones.  相似文献   

13.
14.
The asymmetric distribution of auxin plays a fundamental role in plant gravitropism, yet little is understood about how its lateral distribution stimulates growth. In the present work, the asymmetric distribution not only of auxin, but also that of gibberellins (GAs), was observed in rice leaf sheath bases following gravistimulation. Gravistimulation induced the transient accumulation of greater amounts of both IAA and GA in the lower halves of the leaf sheath bases of rice seedlings. OsGA3ox1, a gene of active GA synthesis, was differentially induced by gravistimulation. Furthermore, 2,3,5-tri-iodobenzoic acid (TIBA), an inhibitor of auxin transport, substantially decreased the asymmetric distribution of IAA and the gradient of OsGA3ox1 expression. Externally applied GA(3) restored the gravitropic curvature of rice leaf sheaths inhibited by either TIBA or by ancymidol, a GA synthesis inhibitor. The expression of XET (encoding xyloglucan endotransglycosylase) was differentially induced in the lower halves of gravistimulated leaf sheath bases and was also up-regulated by exogenous IAA and GA(3). Both ancymidol and TIBA decreased the gradient of XET expression. These data suggest that the asymmetric distribution of auxin effected by gravistimulation induced a gradient of GAs via asymmetric expression of OsGA3ox1 in rice leaf sheath bases, and hence caused the asymmetric expression of XET. Cell wall loosening in the curvature site of the leaf sheath triggered by the expression of XET would contribute to gravitropic growth.  相似文献   

15.
以烟草(Nicotiana tabacumL.)花药为材料,通过4’,6-二脒基-2-苯基吲哚(DAPI)染色详细观察花粉发育过程,获得了花药发育时期与花蕾大小的对应关系;通过吲哚乙酸(IAA)单克隆抗体、免疫组织化学技术以及DR5∶∶GUS转基因植株的GUS活性对花药和花粉发育过程中生长素的分布规律进行了研究。免疫酶标记结果表明,在不同的花药发育时期IAA水平呈现出明显的差别。小孢子母细胞时期,IAA在整个花药中均有分布,并且在小孢子母细胞发育晚期,IAA信号集中在小孢子母细胞的细胞核中;随着小孢子母细胞减数分裂后形成四分体,IAA信号逐渐减弱,四分体中几乎没有信号;单核花粉期的花药中IAA信号进一步减弱,仅存在于花药壁中;待小孢子继续发育为成熟二核期时,花粉和整个花药组织中均出现较强的IAA信号。GUS活性检测结果表明,烟草DR5∶∶GUS转基因植株中花药和花粉粒的GUS信号与IAA免疫酶定位结果基本一致。总的来说,IAA在烟草花药和花粉中的积累呈现出由强到弱、再由弱到强的分布规律,暗示IAA在被子植物花药和花粉发育过程中可能起着较为重要的作用。  相似文献   

16.
We have examined the expression pattern of an auxin primary response gene, MSG2/IAA19 , during photo- and gravitropic responses of hypocotyls using a transgenic Arabidopsis harboring MSG2/IAA19 promoter::GUS . The upper portion of most etiolated hypocotyls showed uniform β-glucuronidase (GUS) staining with the strongest activity in the pericycle. When hypocotyls were irradiated with unilateral blue light, GUS activity on the concave side of hypocotyls was decreased, resulting in differential GUS staining with a stronger signal on the convex side. The number of differentially stained hypocotyls peaked at 24 h after the onset of the phototropic stimuli, while hypocotyl curvature continued to increase for the entire 36-h experimental period. This result suggests that the MSG2/IAA19 expression precedes the phototropic responses. When seedlings were grown under dim white light, their hypocotyls displayed almost no GUS activity. The light-grown hypocotyls also showed differential GUS staining after phototropic stimuli as result of the increase in GUS activity on the convex side of hypocotyls, especially in the epidermis, the outer cortex and pericycle, although GUS activity was much weaker than that observed in etiolated hypocotyls. Similar but less obvious differential staining was obtained for gravitropic response of hypocotyls. Considering the recent finding that Aux/IAA proteins are immediate targets of the auxin F box receptors, MSG2/IAA19 is likely to act as one of master genes for tropic responses.  相似文献   

17.
An alternative to the Cholodny-Went, auxin-transport hypothesis of gravitropic stem bending was proposed as early as 1958, suggesting that gravistimulation induces changes in sensitivity to auxin, accounting for differential growth and bending. To test the sensitivity hypothesis, we immersed marked, decapitated sunflower (Helianthus annuus L.) hypocotyl sections in buffered auxin solutions over a wide concentration range (0, 10−8 to 10−2 molar IAA), photographed them at half-hour intervals, analyzed the negatives with a digitizer/computer, and evaluated surface-length changes in terms of Michaelis-Menten enzyme kinetics. Bending decreases with increasing auxin concentration; above about 10−4 molar IAA the hypocotyls bend down; increasing auxin inhibits elongation growth of lower surfaces (which is high at zero or relatively low auxin levels) but promotes upper-surface growth (which is low at low auxin levels). Thus, lower surfaces have a greater Km sensitivity to applied auxin than upper surfaces. At optimum auxin levels (maximum growth), growth of bottom surfaces exceeds that of top surfaces, so bottom tissues have a greater Vmax sensitivity. Vmax sensitivity of vertical controls is slightly lower than it is for either horizontal surface; Km sensitivity is intermediate. Clearly, gravistimulation leads to significant changes in tissue sensitivity to applied auxin. Perhaps these changes are also important in normal gravitropism.  相似文献   

18.
19.
We report an improved method for white clover (Trifolium repens) transformation usingAgrobacterium tumefaciens. High efficiencies of transgenic plant production were achieved using cotyledons of imbibed mature seed. Transgenic plants were recovered routinely from over 50% of treated cotyledons. Thebar gene and phosphinothricin selection was shown to be a more effective selection system thannptII (kanamycin selection) oraadA (spectinomycin selection). White clover was transformed with the soybean auxin responsive promoter, GH3, fused to the GUS gene (-glucuronidase) to study the involvement of auxin in root development. Analysis of 12 independent transgenic plants showed that the location and pattern of GUS expression was consistent but the levels of expression varied. The level of GH3:GUS expression in untreated plants was enhanced specifically by auxin-treatment but the pattern of expression was not altered. Expression of the GH3:GUS fusion was not enhanced by other phytohormones. A consistent GUS expression pattern was evident in untreated plants presumably in response to endogenous auxin or to differences in auxin sensitivity in various clover tissues. In untreated plants, the pattern of GH3:GUS expression was consistent with physiological responses which are regarded as being auxin-mediated. For the first time it is shown that localised spots of GH3:GUS activity occurred in root cortical tissue opposite the sites where lateral roots subsequently were initiated. Newly formed lateral roots grew towards and through these islands of GH3:GUS expression, implying the importance of auxin in controlling lateral root development. Similarly, it is demonstrated for the first time that gravistimulated roots developed a rapid (within 1 h) induction of GH3:GUS activity in tissues on the non-elongating side of the responding root and this induction occurred concurrently with root curvature. These transgenic plants could be useful tools in determining the physiological and biochemical changes that occur during auxin-mediated responses.  相似文献   

20.
Polar auxin transport (PAT) is a major determinant of plant morphology and internal anatomy with important roles in vascular patterning, tropic growth responses, apical dominance and phyllotactic arrangement. Woody plants present a highly complex system of vascular development in which isolated bundles of xylem and phloem gradually unite to form concentric rings of conductive tissue. We generated several transgenic lines of hybrid poplar (Populus tremula x alba) with the auxin-responsive DR5 promoter driving GUS expression in order to visualize an auxin response during the establishment of secondary growth. Distinct GUS expression in the cambial zone and developing xylem-side derivatives supports the current view of this tissue as a major stream of basipetal PAT. However, we also found novel sites of GUS expression in the primary xylem parenchyma lining the outer perimeter of the pith. Strands of primary xylem parenchyma depart the stem as a leaf trace, and showed GUS expression as long as the leaves to which they were connected remained attached (i.e., until just prior to leaf abscission). Tissue composed of primary xylem parenchyma strands contained measurable levels of free indole-3-acetic acid (IAA) and showed basipetal transport of radiolabeled auxin (3H-IAA) that was both significantly faster than diffusion and highly sensitive to the PAT inhibitor NPA. Radiolabeled auxin was also able to move between the primary xylem parenchyma in the interior of the stem and the basipetal stream in the cambial zone, an exchange that was likely mediated by ray parenchyma cells. Our results suggest that (a) channeling of leaf-derived IAA first delineates isolated strands of pre-procambial tissue but then later shifts to include basipetal transport through the rapidly expanding xylem elements, and (b) the transition from primary to secondary vascular development is gradual, with an auxin response preceding the appearance of a unified and radially-organized vascular cambium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号